mirror of https://github.com/ArduPilot/ardupilot
84 lines
2.8 KiB
Mathematica
84 lines
2.8 KiB
Mathematica
|
function [nextQuat, nextStates, Tbn, correctedDelAng, correctedDelVel] = PredictStates( ...
|
||
|
quat, ... % previous quaternion states 4x1
|
||
|
states, ... % previous states (3x1 rotation error, 3x1 velocity, 3x1 gyro bias)
|
||
|
angRate, ... % IMU rate gyro measurements, 3x1 (rad/sec)
|
||
|
accel, ... % IMU accelerometer measurements 3x1 (m/s/s)
|
||
|
dt) % time since last IMU measurement (sec)
|
||
|
|
||
|
% Define parameters used for previous angular rates and acceleration shwich
|
||
|
% are used for trapezoidal integration
|
||
|
persistent prevAngRate;
|
||
|
if isempty(prevAngRate)
|
||
|
prevAngRate = angRate;
|
||
|
end
|
||
|
persistent prevAccel;
|
||
|
if isempty(prevAccel)
|
||
|
prevAccel = accel;
|
||
|
end
|
||
|
% define persistent variables for previous delta angle and velocity which
|
||
|
% are required for sculling and coning error corrections
|
||
|
persistent prevDelAng;
|
||
|
if isempty(prevDelAng)
|
||
|
prevDelAng = single([0;0;0]);
|
||
|
end
|
||
|
persistent prevDelVel;
|
||
|
if isempty(prevDelVel)
|
||
|
prevDelVel = single([0;0;0]);
|
||
|
end
|
||
|
|
||
|
% Convert IMU data to delta angles and velocities using trapezoidal
|
||
|
% integration
|
||
|
dAng = 0.5*(angRate + prevAngRate)*dt;
|
||
|
dVel = 0.5*(accel + prevAccel )*dt;
|
||
|
prevAngRate = angRate;
|
||
|
prevAccel = accel;
|
||
|
|
||
|
% Remove sensor bias errors
|
||
|
dAng = dAng - states(7:9);
|
||
|
|
||
|
% Apply rotational and skulling corrections
|
||
|
correctedDelVel= dVel + ...
|
||
|
0.5*cross(prevDelAng + dAng , prevDelVel + dVel) + 1/6*cross(prevDelAng + dAng , cross(prevDelAng + dAng , prevDelVel + dVel)) + ... % rotational correction
|
||
|
1/12*(cross(prevDelAng , dVel) + cross(prevDelVel , dAng)); % sculling correction
|
||
|
|
||
|
% Apply corrections for coning errors
|
||
|
correctedDelAng = dAng - 1/12*cross(prevDelAng , dAng);
|
||
|
|
||
|
% Save current measurements
|
||
|
prevDelAng = dAng;
|
||
|
prevDelVel = dVel;
|
||
|
|
||
|
% Initialise the updated state vector
|
||
|
nextQuat = quat;
|
||
|
nextStates = states;
|
||
|
|
||
|
% Convert the rotation vector to its equivalent quaternion
|
||
|
rotationMag = sqrt(correctedDelAng(1)^2 + correctedDelAng(2)^2 + correctedDelAng(3)^2);
|
||
|
if rotationMag<1e-12
|
||
|
deltaQuat = single([1;0;0;0]);
|
||
|
else
|
||
|
deltaQuat = [cos(0.5*rotationMag); correctedDelAng/rotationMag*sin(0.5*rotationMag)];
|
||
|
end
|
||
|
|
||
|
% Update the quaternions by rotating from the previous attitude through
|
||
|
% the delta angle rotation quaternion
|
||
|
qUpdated = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))];
|
||
|
|
||
|
% Normalise the quaternions and update the quaternion states
|
||
|
quatMag = sqrt(qUpdated(1)^2 + qUpdated(2)^2 + qUpdated(3)^2 + qUpdated(4)^2);
|
||
|
if (quatMag < 1e-16)
|
||
|
nextQuat(1:4) = qUpdated;
|
||
|
else
|
||
|
nextQuat(1:4) = qUpdated / quatMag;
|
||
|
end
|
||
|
|
||
|
% Calculate the body to nav cosine matrix
|
||
|
Tbn = Quat2Tbn(nextQuat);
|
||
|
|
||
|
% transform body delta velocities to delta velocities in the nav frame
|
||
|
delVelNav = Tbn * correctedDelVel + [0;0;9.807]*dt;
|
||
|
|
||
|
% Sum delta velocities to get velocity
|
||
|
nextStates(4:6) = states(4:6) + delVelNav(1:3);
|
||
|
|
||
|
end
|