ardupilot/ArduCopterMega/navigation.pde

253 lines
7.8 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
void navigate()
{
// do not navigate with corrupt data
// ---------------------------------
if (g_gps->fix == 0){
g_gps->new_data = false;
return;
}
if(next_WP.lat == 0){
return;
}
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
if (wp_distance < 0){
gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
//Serial.println(wp_distance,DEC);
//print_current_waypoints();
return;
}
// target_bearing is where we should be heading
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
// nav_bearing will includes xtrac correction
// ------------------------------------------
nav_bearing = target_bearing;
}
bool check_missed_wp()
{
long temp = target_bearing - saved_target_bearing;
temp = wrap_180(temp);
return (abs(temp) > 10000); //we pased the waypoint by 10 °
}
#define DIST_ERROR_MAX 1800
void calc_loiter_nav()
{
/*
Becuase we are using lat and lon to do our distance errors here's a quick chart:
100 = 1m
1000 = 11m = 36 feet
1800 = 19.80m = 60 feet
3000 = 33m
10000 = 111m
pitch_max = 22° (2200)
*/
// X ROLL
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST
// Y PITCH
lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH
// constrain input, not output to let I term ramp up and do it's job again wind
long_error = constrain(long_error, -loiter_error_max, loiter_error_max); // +- 20m max error
lat_error = constrain(lat_error, -loiter_error_max, loiter_error_max); // +- 20m max error
nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav, 1.0); // X 700 * 2.5 = 1750,
nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav, 1.0); // Y invert lat (for pitch)
//long pmax = g.pitch_max.get();
//nav_lon = constrain(nav_lon, -pmax, pmax);
//nav_lat = constrain(nav_lat, -pmax, pmax);
}
void calc_loiter_output()
{
// rotate the vector
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x;
// BAD
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left
//WEST -1000 * 0 - 1000 * -1 = 1000 // roll right - Backwards
//EAST -1000 * 0 - 1000 * 1 = -1000 // roll left - Backwards
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right
// GOOD
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left
//WEST -1000 * 0 - 1000 * 1 = -1000 // roll right
//EAST -1000 * 0 - 1000 * -1 = 1000 // roll left
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right
nav_pitch = ((float)nav_lon * -cos_yaw_x + (float)nav_lat * sin_yaw_y);
// BAD
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back
//WEST -1000 * -1 + 1000 * 0 = 1000 // pitch back - Backwards
//EAST -1000 * 1 + 1000 * 0 = -1000 // pitch forward - Backwards
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward
// GOOD
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back
//WEST -1000 * 1 + 1000 * 0 = -1000 // pitch forward
//EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward
//limit our copter pitch - this will change if we go to a fully rate limited approach.
//limit_nav_pitch_roll(g.pitch_max.get());
}
void calc_simple_nav()
{
// no dampening here in SIMPLE mode
nav_lat = constrain((wp_distance * 100), -4500, 4500); // +- 20m max error
// Scale response by kP
//nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36°
}
void calc_nav_output()
{
// get the sin and cos of the bearing error - rotated 90°
float sin_nav_y = sin(radians((float)(9000 - bearing_error) / 100));
float cos_nav_x = cos(radians((float)(bearing_error - 9000) / 100));
// rotate the vector
nav_roll = (float)nav_lat * cos_nav_x;
nav_pitch = -(float)nav_lat * sin_nav_y;
}
// called after we get GPS read
void calc_rate_nav()
{
// which direction are we moving?
long target_error = target_bearing - g_gps->ground_course;
target_error = wrap_180(target_error);
// calc the cos of the error to tell how fast we are moving towards the target in cm
int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100));
// change to rate error
// we want to be going 450cm/s
int error = constrain(WAYPOINT_SPEED - groundspeed, -1000, 1000);
// Scale response by kP
nav_lat = nav_lat + g.pid_nav_wp.get_pid(error, dTnav, 1.0);
nav_lat >>= 1; // divide by two
// unfiltered:
//nav_lat = g.pid_nav_wp.get_pid(error, dTnav, 1.0);
//Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, groundspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat);
// limit our output
nav_lat = constrain(nav_lat, -4000, 4000); // +- max error
}
void calc_bearing_error()
{
bearing_error = nav_bearing - dcm.yaw_sensor;
bearing_error = wrap_180(bearing_error);
}
void calc_altitude_error()
{
altitude_error = next_WP.alt - current_loc.alt;
}
void calc_altitude_smoothing_error()
{
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
target_altitude = next_WP.alt - ((wp_distance * (next_WP.alt - prev_WP.alt)) / (wp_totalDistance - g.waypoint_radius));
// stay within a certain range
if(prev_WP.alt > next_WP.alt){
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
}else{
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
}
altitude_error = target_altitude - current_loc.alt;
}
long wrap_360(long error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
long wrap_180(long error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
nav_bearing = wrap_360(nav_bearing);
}
}
long cross_track_test()
{
long temp = target_bearing - crosstrack_bearing;
temp = wrap_180(temp);
return abs(temp);
}
void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
long get_altitude_above_home(void)
{
// This is the altitude above the home location
// The GPS gives us altitude at Sea Level
// if you slope soar, you should see a negative number sometimes
// -------------------------------------------------------------
return current_loc.alt - home.alt;
}
// distance is returned in meters
long get_distance(struct Location *loc1, struct Location *loc2)
{
//if(loc1->lat == 0 || loc1->lng == 0)
// return -1;
//if(loc2->lat == 0 || loc2->lng == 0)
// return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
long get_alt_distance(struct Location *loc1, struct Location *loc2)
{
return abs(loc1->alt - loc2->alt);
}
long get_bearing(struct Location *loc1, struct Location *loc2)
{
long off_x = loc2->lng - loc1->lng;
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}