2012-03-09 22:51:28 -04:00
/*
2012-08-17 03:20:51 -03:00
* ADC . cpp - Analog Digital Converter Base Class for Ardupilot Mega
* Code by James Goppert . DIYDrones . com
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2.1 of the License , or ( at your option ) any later version .
*/
2012-03-09 22:51:28 -04:00
# include "AP_OpticalFlow.h"
# define FORTYFIVE_DEGREES 0.78539816
AP_OpticalFlow * AP_OpticalFlow : : _sensor = NULL ; // pointer to the last instantiated optical flow sensor. Will be turned into a table if we ever add support for more than one sensor
2012-09-14 08:33:08 -03:00
uint8_t AP_OpticalFlow : : _num_calls ; // number of times we have been called by 1khz timer process. We use this to throttle read down to 20hz
2012-03-09 22:51:28 -04:00
// init - initCommAPI parameter controls whether I2C/SPI interface is initialised (set to false if other devices are on the I2C/SPI bus and have already initialised the interface)
bool
2012-10-18 05:02:45 -03:00
AP_OpticalFlow : : init ( bool initCommAPI , AP_PeriodicProcess * scheduler , AP_Semaphore * spi_semaphore , AP_Semaphore * spi3_semaphore )
2012-03-09 22:51:28 -04:00
{
2012-08-17 03:20:51 -03:00
_orientation = ROTATION_NONE ;
update_conversion_factors ( ) ;
return true ; // just return true by default
2012-03-09 22:51:28 -04:00
}
// set_orientation - Rotation vector to transform sensor readings to the body frame.
void
2012-03-09 22:57:06 -04:00
AP_OpticalFlow : : set_orientation ( enum Rotation rotation )
2012-03-09 22:51:28 -04:00
{
2012-03-09 22:57:06 -04:00
_orientation = rotation ;
2012-03-09 22:51:28 -04:00
}
2012-09-14 08:33:08 -03:00
// parent method called at 1khz by periodic process
// this is slowed down to 20hz and each instance's update function is called (only one instance is supported at the moment)
void
AP_OpticalFlow : : read ( uint32_t now )
{
_num_calls + + ;
if ( _num_calls > = AP_OPTICALFLOW_NUM_CALLS_FOR_20HZ ) {
_num_calls = 0 ;
// call to update all attached sensors
if ( _sensor ! = NULL ) {
_sensor - > update ( now ) ;
}
}
} ;
2012-03-09 22:51:28 -04:00
// read value from the sensor. Should be overridden by derived class
2012-09-14 08:33:08 -03:00
void
AP_OpticalFlow : : update ( uint32_t now )
2012-03-09 22:51:28 -04:00
{
}
// reads a value from the sensor (will be sensor specific)
byte
AP_OpticalFlow : : read_register ( byte address )
{
2012-08-17 03:20:51 -03:00
return 0 ;
2012-03-09 22:51:28 -04:00
}
// writes a value to one of the sensor's register (will be sensor specific)
void
AP_OpticalFlow : : write_register ( byte address , byte value )
{
}
// rotate raw values to arrive at final x,y,dx and dy values
void
AP_OpticalFlow : : apply_orientation_matrix ( )
{
2012-08-17 03:20:51 -03:00
Vector3f rot_vector ;
rot_vector ( raw_dx , raw_dy , 0 ) ;
2012-03-09 22:51:28 -04:00
2012-08-17 03:20:51 -03:00
// next rotate dx and dy
rot_vector . rotate ( _orientation ) ;
2012-03-09 22:57:06 -04:00
2012-08-17 03:20:51 -03:00
dx = rot_vector . x ;
dy = rot_vector . y ;
2012-03-09 22:51:28 -04:00
2012-08-17 03:20:51 -03:00
// add rotated values to totals (perhaps this is pointless as we need to take into account yaw, roll, pitch)
x + = dx ;
y + = dy ;
2012-03-09 22:51:28 -04:00
}
// updatse conversion factors that are dependent upon field_of_view
void
AP_OpticalFlow : : update_conversion_factors ( )
{
2012-08-17 03:20:51 -03:00
conv_factor = ( 1.0 / ( float ) ( num_pixels * scaler ) ) * 2.0 * tan ( field_of_view / 2.0 ) ; // multiply this number by altitude and pixel change to get horizontal move (in same units as altitude)
// 0.00615
radians_to_pixels = ( num_pixels * scaler ) / field_of_view ;
// 162.99
2012-03-09 22:51:28 -04:00
}
// updates internal lon and lat with estimation based on optical flow
void
AP_OpticalFlow : : update_position ( float roll , float pitch , float cos_yaw_x , float sin_yaw_y , float altitude )
{
2012-08-17 03:20:51 -03:00
float diff_roll = roll - _last_roll ;
float diff_pitch = pitch - _last_pitch ;
// only update position if surface quality is good and angle is not over 45 degrees
if ( surface_quality > = 10 & & fabs ( roll ) < = FORTYFIVE_DEGREES & & fabs ( pitch ) < = FORTYFIVE_DEGREES ) {
altitude = max ( altitude , 0 ) ;
// calculate expected x,y diff due to roll and pitch change
exp_change_x = diff_roll * radians_to_pixels ;
exp_change_y = - diff_pitch * radians_to_pixels ;
// real estimated raw change from mouse
change_x = dx - exp_change_x ;
change_y = dy - exp_change_y ;
float avg_altitude = ( altitude + _last_altitude ) * 0.5 ;
// convert raw change to horizontal movement in cm
x_cm = - change_x * avg_altitude * conv_factor ; // perhaps this altitude should actually be the distance to the ground? i.e. if we are very rolled over it should be longer?
y_cm = - change_y * avg_altitude * conv_factor ; // for example if you are leaned over at 45 deg the ground will appear farther away and motion from opt flow sensor will be less
// convert x/y movements into lon/lat movement
vlon = x_cm * sin_yaw_y + y_cm * cos_yaw_x ;
vlat = y_cm * sin_yaw_y - x_cm * cos_yaw_x ;
}
_last_altitude = altitude ;
_last_roll = roll ;
_last_pitch = pitch ;
2012-03-09 22:57:06 -04:00
}