ardupilot/libraries/AC_AutoTune/AC_AutoTune.h

229 lines
11 KiB
C
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell
*/
#pragma once
#include <AP_HAL/AP_HAL.h>
#include <AC_AttitudeControl/AC_AttitudeControl_Multi.h>
#include <AC_AttitudeControl/AC_PosControl.h>
class AC_AutoTune {
public:
// constructor
AC_AutoTune();
// main run loop
virtual void run();
// save gained, called on disarm
void save_tuning_gains();
// stop tune, reverting gains
void stop();
2019-05-01 09:15:56 -03:00
// reset Autotune so that gains are not saved again and autotune can be run again.
void reset() {
mode = UNINITIALISED;
axes_completed = 0;
}
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// methods that must be supplied by the vehicle specific subclass
virtual bool init(void) = 0;
// get pilot input for desired cimb rate
virtual float get_pilot_desired_climb_rate_cms(void) const = 0;
// get pilot input for designed roll and pitch, and yaw rate
virtual void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) = 0;
// init pos controller Z velocity and accel limits
virtual void init_z_limits() = 0;
// log PIDs at full rate for during twitch
virtual void log_pids() = 0;
// return true if we have a good position estimate
virtual bool position_ok();
// internal init function, should be called from init()
bool init_internals(bool use_poshold,
AC_AttitudeControl_Multi *attitude_control,
AC_PosControl *pos_control,
AP_AHRS_View *ahrs_view,
AP_InertialNav *inertial_nav);
// initialise position controller
bool init_position_controller();
private:
void control_attitude();
void backup_gains_and_initialise();
void load_orig_gains();
void load_tuned_gains();
void load_intra_test_gains();
void load_twitch_gains();
void update_gcs(uint8_t message_id) const;
bool roll_enabled();
bool pitch_enabled();
bool yaw_enabled();
void twitching_test_rate(float rate, float rate_target, float &meas_rate_min, float &meas_rate_max);
void twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min);
void twitching_test_angle(float angle, float rate, float angle_target, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max);
void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const;
void updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
void updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd);
void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt);
void Log_Write_AutoTuneDetails(float angle_cd, float rate_cds);
void send_step_string();
const char *level_issue_string() const;
const char * type_string() const;
void announce_state_to_gcs();
void do_gcs_announcements();
enum struct LevelIssue {
NONE,
ANGLE_ROLL,
ANGLE_PITCH,
ANGLE_YAW,
RATE_ROLL,
RATE_PITCH,
RATE_YAW,
};
bool check_level(const enum LevelIssue issue, const float current, const float maximum);
bool currently_level();
// autotune modes (high level states)
enum TuneMode {
UNINITIALISED = 0, // autotune has never been run
TUNING = 1, // autotune is testing gains
SUCCESS = 2, // tuning has completed, user is flight testing the new gains
FAILED = 3, // tuning has failed, user is flying on original gains
};
// steps performed while in the tuning mode
enum StepType {
WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch
TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement
UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results
};
// things that can be tuned
enum AxisType {
ROLL = 0, // roll axis is being tuned (either angle or rate)
PITCH = 1, // pitch axis is being tuned (either angle or rate)
YAW = 2, // pitch axis is being tuned (either angle or rate)
};
// mini steps performed while in Tuning mode, Testing step
enum TuneType {
RD_UP = 0, // rate D is being tuned up
RD_DOWN = 1, // rate D is being tuned down
RP_UP = 2, // rate P is being tuned up
SP_DOWN = 3, // angle P is being tuned down
SP_UP = 4 // angle P is being tuned up
};
// type of gains to load
enum GainType {
GAIN_ORIGINAL = 0,
GAIN_TWITCH = 1,
GAIN_INTRA_TEST = 2,
GAIN_TUNED = 3,
};
void load_gains(enum GainType gain_type);
TuneMode mode; // see TuneMode for what modes are allowed
bool pilot_override; // true = pilot is overriding controls so we suspend tuning temporarily
AxisType axis; // see AxisType for which things can be tuned
bool positive_direction; // false = tuning in negative direction (i.e. left for roll), true = positive direction (i.e. right for roll)
StepType step; // see StepType for what steps are performed
TuneType tune_type; // see TuneType
bool ignore_next; // true = ignore the next test
bool twitch_first_iter; // true on first iteration of a twitch (used to signal we must step the attitude or rate target)
bool use_poshold; // true = enable position hold
bool have_position; // true = start_position is value
Vector3f start_position;
uint8_t axes_completed; // bitmask of completed axes
// variables
uint32_t override_time; // the last time the pilot overrode the controls
float test_rate_min; // the minimum angular rate achieved during TESTING_RATE step
float test_rate_max; // the maximum angular rate achieved during TESTING_RATE step
float test_angle_min; // the minimum angle achieved during TESTING_ANGLE step
float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step
2018-12-20 09:57:30 -04:00
uint32_t step_start_time_ms; // start time of current tuning step (used for timeout checks)
uint32_t level_start_time_ms; // start time of waiting for level
uint32_t level_fail_warning_time_ms; // last time level failure warning message was sent to GCS
2018-12-20 09:57:30 -04:00
uint32_t step_time_limit_ms; // time limit of current autotune process
int8_t counter; // counter for tuning gains
float target_rate, start_rate; // target and start rate
float target_angle, start_angle; // target and start angles
float desired_yaw_cd; // yaw heading during tune
float rate_max, test_accel_max; // maximum acceleration variables
float step_scaler; // scaler to reduce maximum target step
float abort_angle; // Angle that test is aborted
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
// backup of currently being tuned parameter values
float orig_roll_rp, orig_roll_ri, orig_roll_rd, orig_roll_rff, orig_roll_fltt, orig_roll_sp, orig_roll_accel;
float orig_pitch_rp, orig_pitch_ri, orig_pitch_rd, orig_pitch_rff, orig_pitch_fltt, orig_pitch_sp, orig_pitch_accel;
float orig_yaw_rp, orig_yaw_ri, orig_yaw_rd, orig_yaw_rff, orig_yaw_fltt, orig_yaw_rLPF, orig_yaw_sp, orig_yaw_accel;
bool orig_bf_feedforward;
// currently being tuned parameter values
float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel;
float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel;
float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel;
uint32_t announce_time;
float lean_angle;
float rotation_rate;
float roll_cd, pitch_cd;
uint32_t last_pilot_override_warning;
struct {
LevelIssue issue{LevelIssue::NONE};
float maximum;
float current;
} level_problem;
AP_Int8 axis_bitmask;
AP_Float aggressiveness;
AP_Float min_d;
// copies of object pointers to make code a bit clearer
AC_AttitudeControl_Multi *attitude_control;
AC_PosControl *pos_control;
AP_AHRS_View *ahrs_view;
AP_InertialNav *inertial_nav;
AP_Motors *motors;
};