2017-03-14 06:46:08 -03:00
/*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include <stdlib.h>
# include <AP_HAL/AP_HAL.h>
# include "AP_MotorsHeli_Dual.h"
extern const AP_HAL : : HAL & hal ;
const AP_Param : : GroupInfo AP_MotorsHeli_Dual : : var_info [ ] = {
AP_NESTEDGROUPINFO ( AP_MotorsHeli , 0 ) ,
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV1_POS " , 1 , AP_MotorsHeli_Dual , _servo1_pos , AP_MOTORS_HELI_DUAL_SERVO1_POS ) ,
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV2_POS " , 2 , AP_MotorsHeli_Dual , _servo2_pos , AP_MOTORS_HELI_DUAL_SERVO2_POS ) ,
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV3_POS " , 3 , AP_MotorsHeli_Dual , _servo3_pos , AP_MOTORS_HELI_DUAL_SERVO3_POS ) ,
// @Param: SV4_POS
// @DisplayName: Servo 4 Position
// @Description: Angular location of swash servo #4
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV4_POS " , 4 , AP_MotorsHeli_Dual , _servo4_pos , AP_MOTORS_HELI_DUAL_SERVO4_POS ) ,
// @Param: SV5_POS
// @DisplayName: Servo 5 Position
// @Description: Angular location of swash servo #5
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV5_POS " , 5 , AP_MotorsHeli_Dual , _servo5_pos , AP_MOTORS_HELI_DUAL_SERVO5_POS ) ,
// @Param: SV6_POS
// @DisplayName: Servo 6 Position
// @Description: Angular location of swash servo #6
// @Range: -180 180
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Standard
// @Increment: 1
AP_GROUPINFO ( " SV6_POS " , 6 , AP_MotorsHeli_Dual , _servo6_pos , AP_MOTORS_HELI_DUAL_SERVO6_POS ) ,
// @Param: PHANG1
// @DisplayName: Swashplate 1 Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Advanced
// @Increment: 1
AP_GROUPINFO ( " PHANG1 " , 7 , AP_MotorsHeli_Dual , _swash1_phase_angle , 0 ) ,
// @Param: PHANG2
// @DisplayName: Swashplate 2 Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
2017-05-02 10:45:39 -03:00
// @Units: deg
2017-03-14 06:46:08 -03:00
// @User: Advanced
// @Increment: 1
AP_GROUPINFO ( " PHANG2 " , 8 , AP_MotorsHeli_Dual , _swash2_phase_angle , 0 ) ,
// @Param: DUAL_MODE
// @DisplayName: Dual Mode
// @Description: Sets the dual mode of the heli, either as tandem or as transverse.
// @Values: 0:Longitudinal, 1:Transverse
// @User: Standard
AP_GROUPINFO ( " DUAL_MODE " , 9 , AP_MotorsHeli_Dual , _dual_mode , AP_MOTORS_HELI_DUAL_MODE_TANDEM ) ,
// @Param: DCP_SCALER
// @DisplayName: Differential-Collective-Pitch Scaler
// @Description: Scaling factor applied to the differential-collective-pitch
// @Range: 0 1
// @User: Standard
AP_GROUPINFO ( " DCP_SCALER " , 10 , AP_MotorsHeli_Dual , _dcp_scaler , AP_MOTORS_HELI_DUAL_DCP_SCALER ) ,
// @Param: DCP_YAW
// @DisplayName: Differential-Collective-Pitch Yaw Mixing
// @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO ( " DCP_YAW " , 11 , AP_MotorsHeli_Dual , _dcp_yaw_effect , 0 ) ,
// @Param: YAW_SCALER
// @DisplayName: Scaler for yaw mixing
// @Description: Scaler for mixing yaw into roll or pitch.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO ( " YAW_SCALER " , 12 , AP_MotorsHeli_Dual , _yaw_scaler , 1.0f ) ,
2018-01-22 23:58:52 -04:00
// Indices 13-15 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
2017-03-31 10:44:12 -03:00
// @Param: COL2_MIN
2017-03-31 10:30:53 -03:00
// @DisplayName: Collective Pitch Minimum for rear swashplate
2017-05-15 20:21:53 -03:00
// @Description: Lowest possible servo position in PWM microseconds for the rear swashplate
2017-03-31 10:30:53 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO ( " COL2_MIN " , 16 , AP_MotorsHeli_Dual , _collective2_min , AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN ) ,
2017-03-31 10:44:12 -03:00
// @Param: COL2_MAX
2017-03-31 10:30:53 -03:00
// @DisplayName: Collective Pitch Maximum for rear swashplate
2017-05-15 20:21:53 -03:00
// @Description: Highest possible servo position in PWM microseconds for the rear swashplate
2017-03-31 10:30:53 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO ( " COL2_MAX " , 17 , AP_MotorsHeli_Dual , _collective2_max , AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX ) ,
// @Param: COL2_MID
// @DisplayName: Collective Pitch Mid-Point for rear swashplate
2017-05-15 20:21:53 -03:00
// @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)
2017-03-31 10:30:53 -03:00
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO ( " COL2_MID " , 18 , AP_MotorsHeli_Dual , _collective2_mid , AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID ) ,
2018-03-28 12:20:59 -03:00
// @Param: COL_CTRL_DIR
// @DisplayName: Collective Control Direction
2018-06-27 19:50:17 -03:00
// @Description: Direction collective moves for positive pitch. 0 for Normal, 1 for Reversed
// @Values: 0:Normal,1:Reversed
2018-03-28 12:20:59 -03:00
// @User: Standard
AP_GROUPINFO ( " COL_CTRL_DIR " , 19 , AP_MotorsHeli_Dual , _collective_direction , AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_NORMAL ) ,
2017-03-14 06:46:08 -03:00
AP_GROUPEND
} ;
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Dual : : set_update_rate ( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz ;
// setup fast channels
2018-07-11 16:45:59 -03:00
uint16_t mask = 0 ;
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
mask | = 1U < < ( AP_MOTORS_MOT_1 + i ) ;
}
2017-03-14 06:46:08 -03:00
rc_set_freq ( mask , _speed_hz ) ;
}
// init_outputs
bool AP_MotorsHeli_Dual : : init_outputs ( )
{
if ( ! _flags . initialised_ok ) {
2018-07-11 16:33:00 -03:00
// make sure 6 output channels are mapped
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
add_motor_num ( CH_1 + i ) ;
2017-03-14 06:46:08 -03:00
}
2018-07-11 16:33:00 -03:00
// set rotor servo range
_rotor . init_servo ( ) ;
2017-03-14 06:46:08 -03:00
}
// reset swash servo range and endpoints
2018-07-11 16:33:00 -03:00
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
reset_swash_servo ( SRV_Channels : : get_motor_function ( i ) ) ;
}
2017-03-14 06:46:08 -03:00
_flags . initialised_ok = true ;
return true ;
}
2018-04-27 13:22:07 -03:00
// output_test_seq - spin a motor at the pwm value specified
2017-03-14 06:46:08 -03:00
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
2018-04-27 13:22:07 -03:00
void AP_MotorsHeli_Dual : : output_test_seq ( uint8_t motor_seq , int16_t pwm )
2017-03-14 06:46:08 -03:00
{
// exit immediately if not armed
if ( ! armed ( ) ) {
return ;
}
// output to motors and servos
switch ( motor_seq ) {
case 1 :
// swash servo 1
rc_write ( AP_MOTORS_MOT_1 , pwm ) ;
break ;
case 2 :
// swash servo 2
rc_write ( AP_MOTORS_MOT_2 , pwm ) ;
break ;
case 3 :
// swash servo 3
rc_write ( AP_MOTORS_MOT_3 , pwm ) ;
break ;
case 4 :
// swash servo 4
rc_write ( AP_MOTORS_MOT_4 , pwm ) ;
break ;
case 5 :
// swash servo 5
rc_write ( AP_MOTORS_MOT_5 , pwm ) ;
break ;
case 6 :
// swash servo 6
rc_write ( AP_MOTORS_MOT_6 , pwm ) ;
break ;
case 7 :
// main rotor
rc_write ( AP_MOTORS_HELI_DUAL_RSC , pwm ) ;
break ;
default :
// do nothing
break ;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Dual : : set_desired_rotor_speed ( float desired_speed )
{
_rotor . set_desired_speed ( desired_speed ) ;
}
// calculate_armed_scalars
void AP_MotorsHeli_Dual : : calculate_armed_scalars ( )
{
2018-03-23 01:09:14 -03:00
float thrcrv [ 5 ] ;
for ( uint8_t i = 0 ; i < 5 ; i + + ) {
thrcrv [ i ] = _rsc_thrcrv [ i ] * 0.001f ;
}
2017-03-14 06:46:08 -03:00
_rotor . set_ramp_time ( _rsc_ramp_time ) ;
_rotor . set_runup_time ( _rsc_runup_time ) ;
2018-03-23 01:09:14 -03:00
_rotor . set_critical_speed ( _rsc_critical * 0.001f ) ;
_rotor . set_idle_output ( _rsc_idle_output * 0.001f ) ;
_rotor . set_throttle_curve ( thrcrv , ( uint16_t ) _rsc_slewrate . get ( ) ) ;
2017-03-14 06:46:08 -03:00
}
// calculate_scalars
void AP_MotorsHeli_Dual : : calculate_scalars ( )
{
// range check collective min, max and mid
if ( _collective_min > = _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN ;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX ;
}
2017-03-31 10:30:53 -03:00
// range check collective min, max and mid for rear swashplate
if ( _collective2_min > = _collective2_max ) {
_collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN ;
_collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX ;
}
2017-03-14 06:46:08 -03:00
_collective_mid = constrain_int16 ( _collective_mid , _collective_min , _collective_max ) ;
2017-03-31 10:30:53 -03:00
_collective2_mid = constrain_int16 ( _collective2_mid , _collective2_min , _collective2_max ) ;
2017-03-14 06:46:08 -03:00
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pct = ( ( float ) ( _collective_mid - _collective_min ) ) / ( ( float ) ( _collective_max - _collective_min ) ) ;
2017-03-31 10:30:53 -03:00
_collective2_mid_pct = ( ( float ) ( _collective2_mid - _collective2_min ) ) / ( ( float ) ( _collective2_max - _collective2_min ) ) ;
2017-03-14 06:46:08 -03:00
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors ( ) ;
// set mode of main rotor controller and trigger recalculation of scalars
_rotor . set_control_mode ( static_cast < RotorControlMode > ( _rsc_mode . get ( ) ) ) ;
calculate_armed_scalars ( ) ;
}
// calculate_swash_factors - calculate factors based on swash type and servo position
2018-04-01 20:19:52 -03:00
// To Do: support H3-140 swashplates in Heli Dual?
2017-03-14 06:46:08 -03:00
void AP_MotorsHeli_Dual : : calculate_roll_pitch_collective_factors ( )
{
if ( _dual_mode = = AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE ) {
// roll factors
_rollFactor [ CH_1 ] = _dcp_scaler ;
_rollFactor [ CH_2 ] = _dcp_scaler ;
_rollFactor [ CH_3 ] = _dcp_scaler ;
_rollFactor [ CH_4 ] = - _dcp_scaler ;
_rollFactor [ CH_5 ] = - _dcp_scaler ;
_rollFactor [ CH_6 ] = - _dcp_scaler ;
// pitch factors
_pitchFactor [ CH_1 ] = cosf ( radians ( _servo1_pos - _swash1_phase_angle ) ) ;
_pitchFactor [ CH_2 ] = cosf ( radians ( _servo2_pos - _swash1_phase_angle ) ) ;
_pitchFactor [ CH_3 ] = cosf ( radians ( _servo3_pos - _swash1_phase_angle ) ) ;
_pitchFactor [ CH_4 ] = cosf ( radians ( _servo4_pos - _swash2_phase_angle ) ) ;
_pitchFactor [ CH_5 ] = cosf ( radians ( _servo5_pos - _swash2_phase_angle ) ) ;
_pitchFactor [ CH_6 ] = cosf ( radians ( _servo6_pos - _swash2_phase_angle ) ) ;
// yaw factors
_yawFactor [ CH_1 ] = cosf ( radians ( _servo1_pos + 180 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_2 ] = cosf ( radians ( _servo2_pos + 180 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_3 ] = cosf ( radians ( _servo3_pos + 180 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_4 ] = cosf ( radians ( _servo4_pos - _swash2_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_5 ] = cosf ( radians ( _servo5_pos - _swash2_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_6 ] = cosf ( radians ( _servo6_pos - _swash2_phase_angle ) ) * _yaw_scaler ;
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
// roll factors
_rollFactor [ CH_1 ] = cosf ( radians ( _servo1_pos + 90 - _swash1_phase_angle ) ) ;
_rollFactor [ CH_2 ] = cosf ( radians ( _servo2_pos + 90 - _swash1_phase_angle ) ) ;
_rollFactor [ CH_3 ] = cosf ( radians ( _servo3_pos + 90 - _swash1_phase_angle ) ) ;
_rollFactor [ CH_4 ] = cosf ( radians ( _servo4_pos + 90 - _swash2_phase_angle ) ) ;
_rollFactor [ CH_5 ] = cosf ( radians ( _servo5_pos + 90 - _swash2_phase_angle ) ) ;
_rollFactor [ CH_6 ] = cosf ( radians ( _servo6_pos + 90 - _swash2_phase_angle ) ) ;
// pitch factors
_pitchFactor [ CH_1 ] = _dcp_scaler ;
_pitchFactor [ CH_2 ] = _dcp_scaler ;
_pitchFactor [ CH_3 ] = _dcp_scaler ;
_pitchFactor [ CH_4 ] = - _dcp_scaler ;
_pitchFactor [ CH_5 ] = - _dcp_scaler ;
_pitchFactor [ CH_6 ] = - _dcp_scaler ;
// yaw factors
_yawFactor [ CH_1 ] = cosf ( radians ( _servo1_pos + 90 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_2 ] = cosf ( radians ( _servo2_pos + 90 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_3 ] = cosf ( radians ( _servo3_pos + 90 - _swash1_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_4 ] = cosf ( radians ( _servo4_pos + 270 - _swash2_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_5 ] = cosf ( radians ( _servo5_pos + 270 - _swash2_phase_angle ) ) * _yaw_scaler ;
_yawFactor [ CH_6 ] = cosf ( radians ( _servo6_pos + 270 - _swash2_phase_angle ) ) * _yaw_scaler ;
}
// collective factors
_collectiveFactor [ CH_1 ] = 1 ;
_collectiveFactor [ CH_2 ] = 1 ;
_collectiveFactor [ CH_3 ] = 1 ;
_collectiveFactor [ CH_4 ] = 1 ;
_collectiveFactor [ CH_5 ] = 1 ;
_collectiveFactor [ CH_6 ] = 1 ;
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Dual : : get_motor_mask ( )
{
// dual heli uses channels 1,2,3,4,5,6 and 8
2018-07-11 16:45:59 -03:00
uint16_t mask = 0 ;
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
mask | = 1U < < ( AP_MOTORS_MOT_1 + i ) ;
}
mask | = 1U < < AP_MOTORS_HELI_DUAL_RSC ;
return mask ;
2017-03-14 06:46:08 -03:00
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Dual : : update_motor_control ( RotorControlState state )
{
// Send state update to motors
_rotor . output ( state ) ;
if ( state = = ROTOR_CONTROL_STOP ) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels : : set_output_limit ( SRV_Channel : : k_engine_run_enable , SRV_Channel : : SRV_CHANNEL_LIMIT_MIN ) ;
} else {
// else if armed, set engine run enable output to run position
SRV_Channels : : set_output_limit ( SRV_Channel : : k_engine_run_enable , SRV_Channel : : SRV_CHANNEL_LIMIT_MAX ) ;
}
// Check if rotors are run-up
_heliflags . rotor_runup_complete = _rotor . is_runup_complete ( ) ;
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
2017-05-09 05:08:02 -03:00
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
2017-03-14 06:46:08 -03:00
//
void AP_MotorsHeli_Dual : : move_actuators ( float roll_out , float pitch_out , float collective_in , float yaw_out )
{
// initialize limits flag
limit . roll_pitch = false ;
limit . yaw = false ;
limit . throttle_lower = false ;
limit . throttle_upper = false ;
if ( _dual_mode = = AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE ) {
2017-05-11 12:25:06 -03:00
if ( pitch_out < - _cyclic_max / 4500.0f ) {
pitch_out = - _cyclic_max / 4500.0f ;
limit . roll_pitch = true ;
}
if ( pitch_out > _cyclic_max / 4500.0f ) {
pitch_out = _cyclic_max / 4500.0f ;
limit . roll_pitch = true ;
}
2017-03-14 06:46:08 -03:00
} else {
2017-05-11 12:25:06 -03:00
if ( roll_out < - _cyclic_max / 4500.0f ) {
roll_out = - _cyclic_max / 4500.0f ;
limit . roll_pitch = true ;
}
if ( roll_out > _cyclic_max / 4500.0f ) {
roll_out = _cyclic_max / 4500.0f ;
limit . roll_pitch = true ;
}
2017-03-14 06:46:08 -03:00
}
2017-08-27 20:51:33 -03:00
if ( _heliflags . inverted_flight ) {
collective_in = 1 - collective_in ;
}
2017-03-14 06:46:08 -03:00
float yaw_compensation = 0.0f ;
// if servo output not in manual mode, process pre-compensation factors
if ( _servo_mode = = SERVO_CONTROL_MODE_AUTOMATED ) {
// add differential collective pitch yaw compensation
if ( _dual_mode = = AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE ) {
yaw_compensation = _dcp_yaw_effect * roll_out ;
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
yaw_compensation = _dcp_yaw_effect * pitch_out ;
}
yaw_out = yaw_out + yaw_compensation ;
}
// scale yaw and update limits
if ( yaw_out < - _cyclic_max / 4500.0f ) {
yaw_out = - _cyclic_max / 4500.0f ;
limit . yaw = true ;
}
if ( yaw_out > _cyclic_max / 4500.0f ) {
yaw_out = _cyclic_max / 4500.0f ;
limit . yaw = true ;
}
// constrain collective input
float collective_out = collective_in ;
if ( collective_out < = 0.0f ) {
collective_out = 0.0f ;
limit . throttle_lower = true ;
}
if ( collective_out > = 1.0f ) {
collective_out = 1.0f ;
limit . throttle_upper = true ;
}
// ensure not below landed/landing collective
2018-03-23 01:09:14 -03:00
if ( _heliflags . landing_collective & & collective_out < ( _land_collective_min * 0.001f ) ) {
collective_out = _land_collective_min * 0.001f ;
2017-03-14 06:46:08 -03:00
limit . throttle_lower = true ;
}
2018-12-17 00:08:19 -04:00
// Set rear collective to midpoint if required
float collective2_out = collective_out ;
if ( _servo_mode = = SERVO_CONTROL_MODE_MANUAL_CENTER ) {
collective2_out = _collective2_mid_pct ;
}
2017-03-31 10:30:53 -03:00
// scale collective pitch for front swashplate (servos 1,2,3)
2018-03-23 01:09:14 -03:00
float collective_scaler = ( ( float ) ( _collective_max - _collective_min ) ) * 0.001f ;
float collective_out_scaled = collective_out * collective_scaler + ( _collective_min - 1000 ) * 0.001f ;
2017-03-14 06:46:08 -03:00
2017-03-31 10:30:53 -03:00
// scale collective pitch for rear swashplate (servos 4,5,6)
2018-03-23 01:09:14 -03:00
float collective2_scaler = ( ( float ) ( _collective2_max - _collective2_min ) ) * 0.001f ;
float collective2_out_scaled = collective2_out * collective2_scaler + ( _collective2_min - 1000 ) * 0.001f ;
2017-03-31 10:30:53 -03:00
2018-03-28 12:20:59 -03:00
// Collective control direction. Swash plates move up for negative collective pitch, down for positive collective pitch
if ( _collective_direction = = AP_MOTORS_HELI_DUAL_COLLECTIVE_DIRECTION_REVERSED ) {
collective_out_scaled = 1 - collective_out_scaled ;
collective2_out_scaled = 1 - collective2_out_scaled ;
}
2017-03-14 06:46:08 -03:00
// feed power estimate into main rotor controller
// ToDo: add main rotor cyclic power?
2018-03-23 01:09:14 -03:00
_rotor . set_collective ( fabsf ( collective_out ) ) ;
2017-03-14 06:46:08 -03:00
// swashplate servos
2018-07-11 16:33:00 -03:00
float servo_out [ AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ] ;
2018-12-17 00:08:19 -04:00
servo_out [ CH_1 ] = ( _rollFactor [ CH_1 ] * roll_out + _pitchFactor [ CH_1 ] * pitch_out + _yawFactor [ CH_1 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_1 ] * collective_out_scaled ;
servo_out [ CH_2 ] = ( _rollFactor [ CH_2 ] * roll_out + _pitchFactor [ CH_2 ] * pitch_out + _yawFactor [ CH_2 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_2 ] * collective_out_scaled ;
servo_out [ CH_3 ] = ( _rollFactor [ CH_3 ] * roll_out + _pitchFactor [ CH_3 ] * pitch_out + _yawFactor [ CH_3 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_3 ] * collective_out_scaled ;
servo_out [ CH_4 ] = ( _rollFactor [ CH_4 ] * roll_out + _pitchFactor [ CH_4 ] * pitch_out + _yawFactor [ CH_4 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_4 ] * collective2_out_scaled ;
servo_out [ CH_5 ] = ( _rollFactor [ CH_5 ] * roll_out + _pitchFactor [ CH_5 ] * pitch_out + _yawFactor [ CH_5 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_5 ] * collective2_out_scaled ;
servo_out [ CH_6 ] = ( _rollFactor [ CH_6 ] * roll_out + _pitchFactor [ CH_6 ] * pitch_out + _yawFactor [ CH_6 ] * yaw_out ) * 0.45f + _collectiveFactor [ CH_6 ] * collective2_out_scaled ;
2017-03-14 06:46:08 -03:00
// rescale from -1..1, so we can use the pwm calc that includes trim
2018-07-11 16:33:00 -03:00
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
servo_out [ i ] = 2 * servo_out [ i ] - 1 ;
}
// actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value.
for ( uint8_t i = 0 ; i < AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS ; i + + ) {
rc_write_swash ( i , servo_out [ i ] ) ;
}
2017-03-14 06:46:08 -03:00
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Dual : : servo_test ( )
{
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
// mixing of yaw, as that physical movement is represented by pitch and roll
_servo_test_cycle_time + = 1.0f / _loop_rate ;
if ( ( _servo_test_cycle_time > = 0.0f & & _servo_test_cycle_time < 0.5f ) | | // Tilt swash back
( _servo_test_cycle_time > = 6.0f & & _servo_test_cycle_time < 6.5f ) ) {
_pitch_test + = ( 1.0f / ( _loop_rate / 2 ) ) ;
_oscillate_angle + = 8 * M_PI / _loop_rate ;
} else if ( ( _servo_test_cycle_time > = 0.5f & & _servo_test_cycle_time < 4.5f ) | | // Roll swash around
( _servo_test_cycle_time > = 6.5f & & _servo_test_cycle_time < 10.5f ) ) {
_oscillate_angle + = M_PI / ( 2 * _loop_rate ) ;
_roll_test = sinf ( _oscillate_angle ) ;
_pitch_test = cosf ( _oscillate_angle ) ;
} else if ( ( _servo_test_cycle_time > = 4.5f & & _servo_test_cycle_time < 5.0f ) | | // Return swash to level
( _servo_test_cycle_time > = 10.5f & & _servo_test_cycle_time < 11.0f ) ) {
_pitch_test - = ( 1.0f / ( _loop_rate / 2 ) ) ;
_oscillate_angle + = 8 * M_PI / _loop_rate ;
} else if ( _servo_test_cycle_time > = 5.0f & & _servo_test_cycle_time < 6.0f ) { // Raise swash to top
2018-09-23 17:12:09 -03:00
_collective_test + = ( 1.0f / _loop_rate ) ;
2017-03-14 06:46:08 -03:00
_oscillate_angle + = 2 * M_PI / _loop_rate ;
} else if ( _servo_test_cycle_time > = 11.0f & & _servo_test_cycle_time < 12.0f ) { // Lower swash to bottom
2018-09-23 17:12:09 -03:00
_collective_test - = ( 1.0f / _loop_rate ) ;
2017-03-14 06:46:08 -03:00
_oscillate_angle + = 2 * M_PI / _loop_rate ;
} else { // reset cycle
_servo_test_cycle_time = 0.0f ;
_oscillate_angle = 0.0f ;
_collective_test = 0.0f ;
_roll_test = 0.0f ;
_pitch_test = 0.0f ;
// decrement servo test cycle counter at the end of the cycle
if ( _servo_test_cycle_counter > 0 ) {
_servo_test_cycle_counter - - ;
}
}
// over-ride servo commands to move servos through defined ranges
2018-09-23 17:12:09 -03:00
_throttle_filter . reset ( constrain_float ( _collective_test , 0.0f , 1.0f ) ) ;
_roll_in = constrain_float ( _roll_test , - 1.0f , 1.0f ) ;
_pitch_in = constrain_float ( _pitch_test , - 1.0f , 1.0f ) ;
2017-03-14 06:46:08 -03:00
}