ardupilot/libraries/AP_Motors/AP_MotorsSingle.cpp

268 lines
10 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_MotorsSingle.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] PROGMEM = {
// 0 was used by TB_RATIO
// @Param: TCRV_ENABLE
// @DisplayName: Thrust Curve Enable
// @Description: Controls whether a curve is used to linearize the thrust produced by the motors
// @User: Advanced
// @Values: 0:Disabled,1:Enable
AP_GROUPINFO("TCRV_ENABLE", 1, AP_MotorsSingle, _throttle_curve_enabled, THROTTLE_CURVE_ENABLED),
// @Param: TCRV_MIDPCT
// @DisplayName: Thrust Curve mid-point percentage
// @Description: Set the pwm position that produces half the maximum thrust of the motors
// @User: Advanced
// @Range: 20 80
// @Increment: 1
AP_GROUPINFO("TCRV_MIDPCT", 2, AP_MotorsSingle, _throttle_curve_mid, THROTTLE_CURVE_MID_THRUST),
// @Param: TCRV_MAXPCT
// @DisplayName: Thrust Curve max thrust percentage
// @Description: Set to the lowest pwm position that produces the maximum thrust of the motors. Most motors produce maximum thrust below the maximum pwm value that they accept.
// @User: Advanced
// @Range: 20 80
// @Increment: 1
AP_GROUPINFO("TCRV_MAXPCT", 3, AP_MotorsSingle, _throttle_curve_max, THROTTLE_CURVE_MAX_THRUST),
// @Param: SPIN_ARMED
// @DisplayName: Motors always spin when armed
// @Description: Controls whether motors always spin when armed (must be below THR_MIN)
// @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast
// @User: Standard
AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsSingle, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED),
// @Param: REV_ROLL
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_ROLL", 6, AP_MotorsSingle, _rev_roll, AP_MOTORS_SING_POSITIVE),
// @Param: REV_PITCH
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_PITCH", 7, AP_MotorsSingle, _rev_pitch, AP_MOTORS_SING_POSITIVE),
// @Param: REV_ROLL
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_YAW", 8, AP_MotorsSingle, _rev_yaw, AP_MOTORS_SING_POSITIVE),
// @Param: SV_SPEED
// @DisplayName: Servo speed
// @Description: Servo update speed
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("SV_SPEED", 9, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
AP_GROUPEND
};
// init
void AP_MotorsSingle::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_1] = true;
motor_enabled[AP_MOTORS_MOT_2] = true;
motor_enabled[AP_MOTORS_MOT_3] = true;
motor_enabled[AP_MOTORS_MOT_4] = true;
}
// set update rate to motors - a value in hertz
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_3] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_4] ;
hal.rcout->set_freq(mask, _servo_speed);
uint32_t mask2 = 1U << _motor_to_channel_map[AP_MOTORS_MOT_7];
hal.rcout->set_freq(mask2, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsSingle::enable()
{
// enable output channels
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_3]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_7]);
}
// output_min - sends minimum values out to the motor and trim values to the servos
void AP_MotorsSingle::output_min()
{
// fill the motor_out[] array for HIL use
motor_out[AP_MOTORS_MOT_1] = _servo1->radio_trim;
motor_out[AP_MOTORS_MOT_2] = _servo2->radio_trim;
motor_out[AP_MOTORS_MOT_3] = _servo3->radio_trim;
motor_out[AP_MOTORS_MOT_4] = _servo4->radio_trim;
motor_out[AP_MOTORS_MOT_7] = _rc_throttle->radio_min;
// send minimum value to each motor
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo1->radio_trim);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo2->radio_trim);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo3->radio_trim);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo4->radio_trim);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_7], _rc_throttle->radio_min);
}
// output_armed - sends commands to the motors
void AP_MotorsSingle::output_armed()
{
int16_t out_min = _rc_throttle->radio_min + _min_throttle;
// Throttle is 0 to 1000 only
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle);
// capture desired throttle from receiver
_rc_throttle->calc_pwm();
// if we are not sending a throttle output, we cut the motors
if(_rc_throttle->servo_out == 0) {
// range check spin_when_armed
if (_spin_when_armed < 0) {
_spin_when_armed = 0;
}
if (_spin_when_armed > _min_throttle) {
_spin_when_armed = _min_throttle;
}
motor_out[AP_MOTORS_MOT_7] = _rc_throttle->radio_min + _spin_when_armed;
}else{
//motor
motor_out[AP_MOTORS_MOT_7] = _rc_throttle->radio_out;
//front
_servo1->servo_out = _rev_roll*_rc_roll->servo_out + _rev_yaw*_rc_yaw->servo_out;
//right
_servo2->servo_out = _rev_pitch*_rc_pitch->servo_out + _rev_yaw*_rc_yaw->servo_out;
//rear
_servo3->servo_out = -_rev_roll*_rc_roll->servo_out + _rev_yaw*_rc_yaw->servo_out;
//left
_servo4->servo_out = -_rev_pitch*_rc_pitch->servo_out + _rev_yaw*_rc_yaw->servo_out;
_servo1->calc_pwm();
_servo2->calc_pwm();
_servo3->calc_pwm();
_servo4->calc_pwm();
motor_out[AP_MOTORS_MOT_1] = _servo1->radio_out;
motor_out[AP_MOTORS_MOT_2] = _servo2->radio_out;
motor_out[AP_MOTORS_MOT_3] = _servo3->radio_out;
motor_out[AP_MOTORS_MOT_4] = _servo4->radio_out;
// adjust for throttle curve
if( _throttle_curve_enabled ) {
motor_out[AP_MOTORS_MOT_7] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_7]);
}
// ensure motors don't drop below a minimum value and stop
motor_out[AP_MOTORS_MOT_7] = max(motor_out[AP_MOTORS_MOT_7], out_min);
}
// send output to each motor
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], motor_out[AP_MOTORS_MOT_3]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_7], motor_out[AP_MOTORS_MOT_7]);
}
// output_disarmed - sends commands to the motors
void AP_MotorsSingle::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin each motor for a moment to allow the user to confirm the motor order and spin direction
void AP_MotorsSingle::output_test()
{
// Send minimum values to all motors
output_min();
// spin main motor
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_7], _rc_throttle->radio_min + _min_throttle);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_7], _rc_throttle->radio_min);
hal.scheduler->delay(2000);
// flap servo 1
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo1->radio_min);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo1->radio_max);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo1->radio_trim);
hal.scheduler->delay(2000);
// flap servo 2
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo2->radio_min);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo2->radio_max);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo2->radio_trim);
hal.scheduler->delay(2000);
// flap servo 3
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo3->radio_min);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo3->radio_max);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo3->radio_trim);
hal.scheduler->delay(2000);
// flap servo 4
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo4->radio_min);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo4->radio_max);
hal.scheduler->delay(1000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo4->radio_trim);
// Send minimum values to all motors
output_min();
}