ardupilot/libraries/AC_Fence/AC_Fence.cpp

605 lines
17 KiB
C++
Raw Normal View History

#include "AC_Fence.h"
2019-02-14 02:40:09 -04:00
#include <AP_AHRS/AP_AHRS.h>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
#if APM_BUILD_TYPE(APM_BUILD_APMrover2)
#define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON
#else
#define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON
#endif
const AP_Param::GroupInfo AC_Fence::var_info[] = {
// @Param: ENABLE
// @DisplayName: Fence enable/disable
// @Description: Allows you to enable (1) or disable (0) the fence functionality
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0),
// @Param: TYPE
// @DisplayName: Fence Type
// @Description: Enabled fence types held as bitmask
// @Values: 0:None,1:Altitude,2:Circle,3:Altitude and Circle,4:Polygon,5:Altitude and Polygon,6:Circle and Polygon,7:All
// @Bitmask: 0:Altitude,1:Circle,2:Polygon
// @User: Standard
AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_DEFAULT),
// @Param: ACTION
2013-11-26 09:18:05 -04:00
// @DisplayName: Fence Action
// @Description: What action should be taken when fence is breached
// @Values{Copter}: 0:Report Only,1:RTL or Land,2:Always Land,3:SmartRTL or RTL or Land,4:Brake or Land
// @Values: 0:Report Only,1:RTL or Land
// @User: Standard
AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND),
// @Param: ALT_MAX
// @DisplayName: Fence Maximum Altitude
// @Description: Maximum altitude allowed before geofence triggers
// @Units: m
// @Range: 10 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI),
// @Param: RADIUS
// @DisplayName: Circular Fence Radius
// @Description: Circle fence radius which when breached will cause an RTL
// @Units: m
// @Range: 30 10000
// @User: Standard
AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT),
// @Param: MARGIN
// @DisplayName: Fence Margin
// @Description: Distance that autopilot's should maintain from the fence to avoid a breach
// @Units: m
// @Range: 1 10
// @User: Standard
AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT),
// @Param: TOTAL
// @DisplayName: Fence polygon point total
// @Description: Number of polygon points saved in eeprom (do not update manually)
// @Range: 1 20
// @User: Standard
AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0),
// @Param: ALT_MIN
// @DisplayName: Fence Minimum Altitude
// @Description: Minimum altitude allowed before geofence triggers
// @Units: m
// @Range: -100 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_SUB),
AP_GROUPEND
};
/// Default constructor.
AC_Fence::AC_Fence()
{
2019-01-30 21:54:13 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("Fence must be singleton");
}
#endif
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
void AC_Fence::enable(bool value)
{
_enabled = value;
if (!value) {
clear_breach(AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON);
}
}
/// get_enabled_fences - returns bitmask of enabled fences
uint8_t AC_Fence::get_enabled_fences() const
{
if (!_enabled) {
return 0;
}
return _enabled_fences;
}
// additional checks for the polygon fence:
bool AC_Fence::pre_arm_check_polygon(const char* &fail_msg) const
{
if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
// not enabled; all good
return true;
}
if (!_poly_loader.valid()) {
fail_msg = "Polygon boundary invalid";
return false;
}
return true;
}
// additional checks for the circle fence:
bool AC_Fence::pre_arm_check_circle(const char* &fail_msg) const
{
if (_circle_radius < 0) {
fail_msg = "Invalid FENCE_RADIUS value";
return false;
}
return true;
}
// additional checks for the alt fence:
bool AC_Fence::pre_arm_check_alt(const char* &fail_msg) const
{
if (_alt_max < 0.0f) {
fail_msg = "Invalid FENCE_ALT_MAX value";
return false;
}
return true;
}
/// pre_arm_check - returns true if all pre-takeoff checks have completed successfully
2017-03-24 01:38:19 -03:00
bool AC_Fence::pre_arm_check(const char* &fail_msg) const
{
2017-03-24 01:38:19 -03:00
fail_msg = nullptr;
// if not enabled or not fence set-up always return true
if (!_enabled || !_enabled_fences) {
return true;
}
// check no limits are currently breached
if (_breached_fences) {
2017-03-24 01:38:19 -03:00
fail_msg = "vehicle outside fence";
return false;
}
// if we have horizontal limits enabled, check we can get a
// relative position from the AHRS
if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) ||
(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
Vector2f position;
if (!AP::ahrs().get_relative_position_NE_home(position)) {
fail_msg = "fence requires position";
return false;
}
}
if (!pre_arm_check_polygon(fail_msg)) {
return false;
}
if (!pre_arm_check_circle(fail_msg)) {
return false;
}
if (!pre_arm_check_alt(fail_msg)) {
return false;
}
// if we got this far everything must be ok
return true;
}
bool AC_Fence::check_fence_alt_max()
{
// altitude fence check
if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MAX)) {
// not enabled; no breach
return false;
}
AP::ahrs().get_relative_position_D_home(_curr_alt);
_curr_alt = -_curr_alt; // translate Down to Up
// check if we are over the altitude fence
if(_curr_alt >= _alt_max) {
// record distance above breach
_alt_max_breach_distance = _curr_alt - _alt_max;
// check for a new breach or a breach of the backup fence
if (!(_breached_fences & AC_FENCE_TYPE_ALT_MAX) ||
(!is_zero(_alt_max_backup) && _curr_alt >= _alt_max_backup)) {
// new breach
record_breach(AC_FENCE_TYPE_ALT_MAX);
// create a backup fence 20m higher up
_alt_max_backup = _curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE;
// new breach:
return true;
}
// old breach:
return false;
}
// not breached
// clear alt breach if present
if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) {
clear_breach(AC_FENCE_TYPE_ALT_MAX);
_alt_max_backup = 0.0f;
_alt_max_breach_distance = 0.0f;
}
return false;
}
// check_fence_polygon - returns true if the polygon fence is freshly breached
bool AC_Fence::check_fence_polygon()
{
const bool was_breached = _breached_fences & AC_FENCE_TYPE_POLYGON;
const bool breached = polygon_fence_is_breached();
if (breached) {
if (!was_breached) {
record_breach(AC_FENCE_TYPE_POLYGON);
return true;
}
return false;
}
if (was_breached) {
clear_breach(AC_FENCE_TYPE_POLYGON);
}
return false;
}
bool AC_Fence::polygon_fence_is_breached()
{
if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
// not enabled; no breach
return false;
}
return _poly_loader.breached();
}
bool AC_Fence::check_fence_circle()
{
if (!(_enabled_fences & AC_FENCE_TYPE_CIRCLE)) {
// not enabled; no breach
return false;
}
Vector2f home;
if (AP::ahrs().get_relative_position_NE_home(home)) {
// we (may) remain breached if we can't update home
_home_distance = home.length();
}
// check if we are outside the fence
if (_home_distance >= _circle_radius) {
// record distance outside the fence
_circle_breach_distance = _home_distance - _circle_radius;
// check for a new breach or a breach of the backup fence
if (!(_breached_fences & AC_FENCE_TYPE_CIRCLE) ||
(!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) {
// new breach
// create a backup fence 20m further out
record_breach(AC_FENCE_TYPE_CIRCLE);
_circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE;
return true;
}
return false;
}
// not currently breached
// clear circle breach if present
if (_breached_fences & AC_FENCE_TYPE_CIRCLE) {
clear_breach(AC_FENCE_TYPE_CIRCLE);
_circle_radius_backup = 0.0f;
_circle_breach_distance = 0.0f;
}
return false;
}
/// check - returns bitmask of fence types breached (if any)
uint8_t AC_Fence::check()
{
uint8_t ret = 0;
// return immediately if disabled
if (!_enabled || !_enabled_fences) {
return 0;
}
// check if pilot is attempting to recover manually
if (_manual_recovery_start_ms != 0) {
// we ignore any fence breaches during the manual recovery period which is about 10 seconds
if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) {
return 0;
}
// recovery period has passed so reset manual recovery time
// and continue with fence breach checks
_manual_recovery_start_ms = 0;
}
// maximum altitude fence check
if (check_fence_alt_max()) {
ret |= AC_FENCE_TYPE_ALT_MAX;
}
// circle fence check
if (check_fence_circle()) {
ret |= AC_FENCE_TYPE_CIRCLE;
}
// polygon fence check
if (check_fence_polygon()) {
ret |= AC_FENCE_TYPE_POLYGON;
}
// return any new breaches that have occurred
return ret;
}
// returns true if the destination is within fence (used to reject waypoints outside the fence)
bool AC_Fence::check_destination_within_fence(const Location& loc)
{
// Altitude fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) {
int32_t alt_above_home_cm;
if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) {
if ((alt_above_home_cm * 0.01f) > _alt_max) {
return false;
}
}
}
// Circular fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) {
if (AP::ahrs().get_home().get_distance(loc) > _circle_radius) {
return false;
}
}
// polygon fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON)) {
if (_poly_loader.breached(loc)) {
return false;
}
}
return true;
}
/// record_breach - update breach bitmask, time and count
void AC_Fence::record_breach(uint8_t fence_type)
{
// if we haven't already breached a limit, update the breach time
if (!_breached_fences) {
_breach_time = AP_HAL::millis();
}
// update breach count
if (_breach_count < 65500) {
_breach_count++;
}
// update bitmask
_breached_fences |= fence_type;
}
/// clear_breach - update breach bitmask, time and count
void AC_Fence::clear_breach(uint8_t fence_type)
{
_breached_fences &= ~fence_type;
}
/// get_breach_distance - returns maximum distance in meters outside
/// of the given fences. fence_type is a bitmask here.
float AC_Fence::get_breach_distance(uint8_t fence_type) const
{
float max = 0.0f;
if (fence_type & AC_FENCE_TYPE_ALT_MAX) {
max = MAX(_alt_max_breach_distance, max);
}
if (fence_type & AC_FENCE_TYPE_CIRCLE) {
max = MAX(_circle_breach_distance, max);
}
return max;
}
/// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds
/// has no effect if no breaches have occurred
void AC_Fence::manual_recovery_start()
{
// return immediate if we haven't breached a fence
if (!_breached_fences) {
return;
}
// record time pilot began manual recovery
_manual_recovery_start_ms = AP_HAL::millis();
}
/// returns pointer to array of polygon points and num_points is filled in with the total number
Vector2f* AC_PolyFence_loader::get_boundary_points(uint16_t& num_points) const
{
// return array minus the first point which holds the return location
if (_boundary == nullptr) {
return nullptr;
}
if (!valid()) {
return nullptr;
}
// minus one for return point, minus one for closing point
// (polygon().valid() is not true unless we have a closing point AND
// we have a minumum number of points)
if (_boundary_num_points < 2) {
return nullptr;
}
num_points = _boundary_num_points - 2;
return &_boundary[1];
}
/// handler for polygon fence messages with GCS
void AC_PolyFence_loader::handle_msg(GCS_MAVLINK &link, const mavlink_message_t& msg)
{
switch (msg.msgid) {
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(&msg, &packet);
if (!check_latlng(packet.lat,packet.lng)) {
link.send_text(MAV_SEVERITY_WARNING, "Invalid fence point, lat or lng too large");
} else {
Vector2l point;
point.x = packet.lat*1.0e7f;
point.y = packet.lng*1.0e7f;
if (!save_point_to_eeprom(packet.idx, point)) {
link.send_text(MAV_SEVERITY_WARNING, "Failed to save polygon point, too many points?");
} else {
// trigger reload of points
_boundary_num_points = 0;
}
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(&msg, &packet);
// attempt to retrieve from eeprom
Vector2l point;
if (load_point_from_eeprom(packet.idx, point)) {
mavlink_msg_fence_point_send(link.get_chan(), msg.sysid, msg.compid, packet.idx, _total, point.x*1.0e-7f, point.y*1.0e-7f);
} else {
link.send_text(MAV_SEVERITY_WARNING, "Bad fence point");
}
break;
}
default:
// do nothing
break;
}
}
/// load polygon points stored in eeprom into boundary array and perform validation
bool AC_PolyFence_loader::load_from_eeprom()
{
// check if we need to create array
if (!_create_attempted) {
_boundary = (Vector2f *)create_point_array(sizeof(Vector2f));
_create_attempted = true;
}
// exit if we could not allocate RAM for the boundary
if (_boundary == nullptr) {
return false;
}
// get current location from EKF
Location temp_loc;
if (!AP::ahrs_navekf().get_location(temp_loc)) {
return false;
}
struct Location ekf_origin {};
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
// sanity check total
_total = constrain_int16(_total, 0, max_points());
// load each point from eeprom
Vector2l temp_latlon;
for (uint16_t index=0; index<_total; index++) {
// load boundary point as lat/lon point
if (!load_point_from_eeprom(index, temp_latlon)) {
return false;
}
// move into location structure and convert to offset from ekf origin
temp_loc.lat = temp_latlon.x;
temp_loc.lng = temp_latlon.y;
_boundary[index] = ekf_origin.get_distance_NE(temp_loc) * 100.0f;
}
_boundary_num_points = _total;
_update_ms = AP_HAL::millis();
// update validity of polygon
_valid = calculate_boundary_valid();
return true;
}
// methods for mavlink SYS_STATUS message (send_sys_status)
bool AC_Fence::sys_status_present() const
{
return _enabled;
}
bool AC_Fence::sys_status_enabled() const
{
if (!sys_status_present()) {
return false;
}
if (_action == AC_FENCE_ACTION_REPORT_ONLY) {
return false;
}
return true;
}
bool AC_Fence::sys_status_failed() const
{
if (!sys_status_present()) {
// not failed if not present; can fail if present but not enabled
return false;
}
if (get_breaches() != 0) {
return true;
}
if (_enabled_fences & AC_FENCE_TYPE_POLYGON) {
if (!_poly_loader.valid()) {
return true;
}
}
if (_enabled_fences & AC_FENCE_TYPE_CIRCLE) {
if (_circle_radius < 0) {
return true;
}
}
if (_enabled_fences & AC_FENCE_TYPE_ALT_MAX) {
if (_alt_max < 0.0f) {
return true;
}
}
if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) ||
(_enabled_fences & AC_FENCE_TYPE_POLYGON)) {
Vector2f position;
if (!AP::ahrs().get_relative_position_NE_home(position)) {
// both these fence types require position
return true;
}
}
return false;
}
2019-01-30 21:54:13 -04:00
// singleton instance
AC_Fence *AC_Fence::_singleton;
namespace AP {
AC_Fence *fence()
{
return AC_Fence::get_singleton();
}
}