2020-03-10 03:45:40 -03:00
# pragma once
# pragma GCC optimize("O2")
# include <AP_NavEKF/AP_Nav_Common.h>
# include <AP_Math/AP_Math.h>
# include <AP_Math/vectorN.h>
# define IMU_DT_MIN_SEC 0.001f // Minimum delta time between IMU samples (sec)
class EKFGSF_yaw
{
public :
// Constructor
EKFGSF_yaw ( ) ;
// Update Filter States - this should be called whenever new IMU data is available
void update ( const Vector3f & delAng , // IMU delta angle rotation vector meassured in body frame (rad)
const Vector3f & delVel , // IMU delta velocity vector meassured in body frame (m/s)
const float delAngDT , // time interval that delAng was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
const float delVelDT , // time interval that delVel was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
bool runEKF , // set to true when flying or movement suitable for yaw estimation
float TAS ) ; // true airspeed used for centripetal accel compensation - set to 0 when not required.
void pushVelData ( Vector2f vel , // NE velocity measurement (m/s)
float velAcc ) ; // 1-sigma accuracy of velocity measurement (m/s)
// get solution data for logging
// return false if yaw estimation is inactive
2020-04-22 21:44:03 -03:00
bool getLogData ( float & yaw_composite , float & yaw_composite_variance , float yaw [ N_MODELS_EKFGSF ] , float innov_VN [ N_MODELS_EKFGSF ] , float innov_VE [ N_MODELS_EKFGSF ] , float weight [ N_MODELS_EKFGSF ] ) ;
2020-03-10 03:45:40 -03:00
// get yaw estimated and corresponding variance
// return false if yaw estimation is inactive
2020-04-22 21:44:03 -03:00
bool getYawData ( float & yaw , float & yawVariance ) ;
2020-03-10 03:45:40 -03:00
private :
typedef float ftype ;
# if MATH_CHECK_INDEXES
typedef VectorN < ftype , 2 > Vector2 ;
typedef VectorN < ftype , 3 > Vector3 ;
typedef VectorN < VectorN < ftype , 3 > , 3 > Matrix3 ;
# else
typedef ftype Vector2 [ 2 ] ;
typedef ftype Vector3 [ 3 ] ;
typedef ftype Matrix3 [ 3 ] [ 3 ] ;
# endif
// Parameters
2020-04-23 01:11:03 -03:00
const float EKFGSF_gyroNoise { 1.0e-1 f } ; // yaw rate noise used for covariance prediction (rad/sec)
const float EKFGSF_accelNoise { 2.0f } ; // horizontal accel noise used for covariance prediction (m/sec**2)
const float EKFGSF_tiltGain { 0.2f } ; // gain from tilt error to gyro correction for complementary filter (1/sec)
const float EKFGSF_gyroBiasGain { 0.04f } ; // gain applied to integral of gyro correction for complementary filter (1/sec)
2020-03-10 03:45:40 -03:00
const float EKFGSF_accelFiltRatio { 10.0f } ; // ratio of time constant of AHRS tilt correction to time constant of first order LPF applied to accel data used by ahrs
// Declarations used by the bank of AHRS complementary filters that use IMU data augmented by true
// airspeed data when in fixed wing mode to estimate the quaternions that are used to rotate IMU data into a
// Front, Right, Yaw frame of reference.
Vector3f delta_angle ;
Vector3f delta_velocity ;
float angle_dt ;
float velocity_dt ;
struct ahrs_struct {
2020-04-23 01:11:03 -03:00
Matrix3f R ; // matrix that rotates a vector from body to earth frame
Vector3f gyro_bias ; // gyro bias learned and used by the quaternion calculation
bool aligned { false } ; // true when AHRS has been aligned
float accel_FR [ 2 ] ; // front-right acceleration vector in a horizontal plane (m/s/s)
float vel_NE [ 2 ] ; // NE velocity vector from last GPS measurement (m/s)
bool fuse_gps ; // true when GPS should be fused on that frame
float accel_dt ; // time step used when generating _simple_accel_FR data (sec)
2020-03-10 03:45:40 -03:00
} ;
ahrs_struct AHRS [ N_MODELS_EKFGSF ] ;
bool ahrs_tilt_aligned ; // true the initial tilt alignment has been calculated
2020-04-23 01:11:03 -03:00
float accel_gain ; // gain from accel vector tilt error to rate gyro correction used by AHRS calculation
Vector3f ahrs_accel ; // filtered body frame specific force vector used by AHRS calculation (m/s/s)
float ahrs_accel_norm ; // length of body frame specific force vector used by AHRS calculation (m/s/s)
bool ahrs_turn_comp_enabled ; // true when compensation for centripetal acceleration in coordinated turns using true airspeed is being used.
2020-03-10 03:45:40 -03:00
float true_airspeed ; // true airspeed used to correct for centripetal acceleratoin in coordinated turns (m/s)
// Runs quaternion prediction for the selected AHRS using IMU (and optionally true airspeed) data
void predictAHRS ( const uint8_t mdl_idx ) ;
// Applies a body frame delta angle to a body to earth frame rotation matrix using a small angle approximation
Matrix3f updateRotMat ( const Matrix3f & R , const Vector3f & g ) ;
// Initialises the tilt (roll and pitch) for all AHRS using IMU acceleration data
void alignTilt ( ) ;
// Initialises the yaw angle for all AHRS using a uniform distribution of yaw angles between -180 and +180 deg
void alignYaw ( ) ;
// The Following declarations are used by bank of EKF's that estimate yaw angle starting from a different yaw hypothesis for each filter.
struct EKF_struct {
float X [ 3 ] ; // Vel North (m/s), Vel East (m/s), yaw (rad)
float P [ 3 ] [ 3 ] ; // covariance matrix
float S [ 2 ] [ 2 ] ; // N,E velocity innovation variance (m/s)^2
float innov [ 2 ] ; // Velocity N,E innovation (m/s)
} ;
EKF_struct EKF [ N_MODELS_EKFGSF ] ;
bool vel_fuse_running ; // true when the bank of EKF's has started fusing GPS velocity data
bool vel_data_updated ; // true when velocity data has been updated
bool run_ekf_gsf ; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
Vector2f vel_NE ; // NE velocity observations (m/s)
float vel_accuracy ; // 1-sigma accuracy of velocity observations (m/s)
// Initialises the EKF's and GSF states, but not the AHRS complementary filters
void initialise ( ) ;
// Runs the state and covariance prediction for the selected EKF
void predict ( const uint8_t mdl_idx ) ;
// Runs the state and covariance update for the selected EKF using the GPS NE velocity measurement
// Returns false if the sttae and covariance correction failed
bool correct ( const uint8_t mdl_idx ) ;
// Forces symmetry on the covariance matrix for the selected EKF
void forceSymmetry ( const uint8_t mdl_idx ) ;
// The following declarations are used by the Gaussian Sum Filter that combines the state estimates from the bank of
// EKF's to form a single state estimate.
struct GSF_struct {
float yaw ; // yaw (rad)
float yaw_variance ; // Yaw state variance (rad^2)
float weights [ N_MODELS_EKFGSF ] ; // Weighting applied to each EKF model. Sum of weights is unity.
} ;
GSF_struct GSF ;
// Returns the probability for a selected model assuming a Gaussian error distribution
// Used by the Guassian Sum Filter to calculate the weightings when combining the outputs from the bank of EKF's
float gaussianDensity ( const uint8_t mdl_idx ) const ;
} ;