ardupilot/ArduCopter/heli.pde

168 lines
6.2 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Traditional helicopter variables and functions
#if FRAME_CONFIG == HELI_FRAME
#ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN
#define HELI_DYNAMIC_FLIGHT_SPEED_MIN 500 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds
#endif
// counter to control dynamic flight profile
static int8_t heli_dynamic_flight_counter;
// Mode filter to reject RC Input glitches. Filter size is 5, and it draws the 4th element, so it can reject 3 low glitches,
// and 1 high glitch. This is because any "off" glitches can be highly problematic for a helicopter running an ESC
// governor. Even a single "off" frame can cause the rotor to slow dramatically and take a long time to restart.
ModeFilterInt16_Size5 rotor_speed_deglitch_filter(4);
// Tradheli flags
static struct {
uint8_t dynamic_flight : 1; // 0 // true if we are moving at a significant speed (used to turn on/off leaky I terms)
} heli_flags;
2014-02-03 08:06:34 -04:00
// heli_init - perform any special initialisation required for the tradheli
static void heli_init()
{
}
// get_pilot_desired_collective - converts pilot input (from 0 ~ 1000) to a value that can be fed into the g.rc_3.servo_out function
static int16_t get_pilot_desired_collective(int16_t control_in)
{
// return immediately if reduce collective range for manual flight has not been configured
if (g.heli_stab_col_min == 0 && g.heli_stab_col_max == 1000) {
return control_in;
}
// scale pilot input to reduced collective range
float scalar = ((float)(g.heli_stab_col_max - g.heli_stab_col_min))/1000.0f;
int16_t collective_out = g.heli_stab_col_min + control_in * scalar;
collective_out = constrain_int16(collective_out, 0, 1000);
return collective_out;
}
// heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity
// should be called at 50hz
static void check_dynamic_flight(void)
{
2014-02-03 08:06:34 -04:00
if (!motors.armed() || !motors.motor_runup_complete() ||
control_mode == LAND || (control_mode==RTL && rtl_state == Land) || (control_mode == AUTO && auto_mode == Auto_Land)) {
heli_dynamic_flight_counter = 0;
heli_flags.dynamic_flight = false;
return;
}
bool moving = false;
// with GPS lock use inertial nav to determine if we are moving
if (GPS_ok()) {
// get horizontal velocity
float velocity = inertial_nav.get_velocity_xy();
moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN);
}else{
// with no GPS lock base it on throttle and forward lean angle
moving = (g.rc_3.servo_out > 800 || ahrs.pitch_sensor < -1500);
}
if (moving) {
// if moving for 2 seconds, set the dynamic flight flag
if (!heli_flags.dynamic_flight) {
heli_dynamic_flight_counter++;
if (heli_dynamic_flight_counter >= 100) {
heli_flags.dynamic_flight = true;
heli_dynamic_flight_counter = 100;
}
}
}else{
// if not moving for 2 seconds, clear the dynamic flight flag
if (heli_flags.dynamic_flight) {
if (heli_dynamic_flight_counter > 0) {
heli_dynamic_flight_counter--;
}else{
heli_flags.dynamic_flight = false;
}
}
}
}
// update_heli_control_dynamics - pushes several important factors up into AP_MotorsHeli.
// should be run between the rate controller and the servo updates.
static void update_heli_control_dynamics(void)
{
// Use Leaky_I if we are not moving fast
attitude_control.use_leaky_i(!heli_flags.dynamic_flight);
// To-Do: Update dynamic phase angle of swashplate
}
// heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing
// should be called soon after update_land_detector in main code
static void heli_update_landing_swash()
{
2014-02-03 08:06:34 -04:00
switch(control_mode) {
case ACRO:
case STABILIZE:
case DRIFT:
case SPORT:
// manual modes always uses full swash range
motors.set_collective_for_landing(false);
break;
2014-02-03 08:06:34 -04:00
case LAND:
// landing always uses limit swash range
motors.set_collective_for_landing(true);
break;
2014-02-03 08:06:34 -04:00
case RTL:
if (rtl_state == Land) {
motors.set_collective_for_landing(true);
}else{
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
case AUTO:
if (auto_mode == Auto_Land) {
motors.set_collective_for_landing(true);
}else{
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
default:
// auto and hold use limited swash when landed
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
break;
}
}
// heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object
static void heli_update_rotor_speed_targets()
{
// get rotor control method
uint8_t rsc_control_mode = motors.get_rsc_mode();
int16_t rsc_control_deglitched = rotor_speed_deglitch_filter.apply(g.rc_8.control_in);
switch (rsc_control_mode) {
case AP_MOTORS_HELI_RSC_MODE_NONE:
// even though pilot passes rotors speed directly to rotor ESC via receiver, motor lib needs to know if
// rotor is spinning in case we are using direct drive tailrotor which must be spun up at same time
case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH:
// pass through pilot desired rotor speed
motors.set_desired_rotor_speed(rsc_control_deglitched);
break;
case AP_MOTORS_HELI_RSC_MODE_SETPOINT:
// pass setpoint through as desired rotor speed
if (rsc_control_deglitched > 0) {
motors.set_desired_rotor_speed(motors.get_rsc_setpoint());
}else{
motors.set_desired_rotor_speed(0);
}
break;
}
}
#endif // FRAME_CONFIG == HELI_FRAME