ardupilot/libraries/AP_NavEKF/EKFGSF_yaw.h

137 lines
7.1 KiB
C
Raw Normal View History

#pragma once
#pragma GCC optimize("O2")
#include <AP_NavEKF/AP_Nav_Common.h>
#include <AP_Math/AP_Math.h>
#include <AP_Math/vectorN.h>
#define IMU_DT_MIN_SEC 0.001f // Minimum delta time between IMU samples (sec)
class EKFGSF_yaw
{
public:
// Constructor
EKFGSF_yaw();
// Update Filter States - this should be called whenever new IMU data is available
void update(const Vector3f &delAng,// IMU delta angle rotation vector meassured in body frame (rad)
const Vector3f &delVel,// IMU delta velocity vector meassured in body frame (m/s)
const float delAngDT, // time interval that delAng was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
const float delVelDT, // time interval that delVel was integrated over (sec) - must be no less than IMU_DT_MIN_SEC
bool runEKF, // set to true when flying or movement suitable for yaw estimation
float TAS); // true airspeed used for centripetal accel compensation - set to 0 when not required.
// Fuse NE velocty mesurements and update the EKF's and GSF state and covariance estimates
// Should be called after update(...) whenever new velocity data is available
2020-04-24 21:25:29 -03:00
void fuseVelData(const Vector2f &vel, // NE velocity measurement (m/s)
const float velAcc); // 1-sigma accuracy of velocity measurement (m/s)
// set the gyro bias in rad/sec
void setGyroBias(Vector3f &gyroBias);
// get solution data for logging
// return false if yaw estimation is inactive
bool getLogData(float &yaw_composite, float &yaw_composite_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]);
// get yaw estimated and corresponding variance
// return false if yaw estimation is inactive
bool getYawData(float &yaw, float &yawVariance);
private:
typedef float ftype;
#if MATH_CHECK_INDEXES
typedef VectorN<ftype,2> Vector2;
typedef VectorN<ftype,3> Vector3;
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
#else
typedef ftype Vector2[2];
typedef ftype Vector3[3];
typedef ftype Matrix3[3][3];
#endif
// Parameters
2020-04-23 01:11:03 -03:00
const float EKFGSF_gyroNoise{1.0e-1f}; // yaw rate noise used for covariance prediction (rad/sec)
const float EKFGSF_accelNoise{2.0f}; // horizontal accel noise used for covariance prediction (m/sec**2)
const float EKFGSF_tiltGain{0.2f}; // gain from tilt error to gyro correction for complementary filter (1/sec)
const float EKFGSF_gyroBiasGain{0.04f}; // gain applied to integral of gyro correction for complementary filter (1/sec)
const float EKFGSF_accelFiltRatio{10.0f}; // ratio of time constant of AHRS tilt correction to time constant of first order LPF applied to accel data used by ahrs
// Declarations used by the bank of AHRS complementary filters that use IMU data augmented by true
// airspeed data when in fixed wing mode to estimate the quaternions that are used to rotate IMU data into a
// Front, Right, Yaw frame of reference.
Vector3f delta_angle;
Vector3f delta_velocity;
float angle_dt;
float velocity_dt;
struct ahrs_struct {
2020-04-23 01:11:03 -03:00
Matrix3f R; // matrix that rotates a vector from body to earth frame
Vector3f gyro_bias; // gyro bias learned and used by the quaternion calculation
bool aligned{false}; // true when AHRS has been aligned
float accel_FR[2]; // front-right acceleration vector in a horizontal plane (m/s/s)
float vel_NE[2]; // NE velocity vector from last GPS measurement (m/s)
bool fuse_gps; // true when GPS should be fused on that frame
float accel_dt; // time step used when generating _simple_accel_FR data (sec)
};
ahrs_struct AHRS[N_MODELS_EKFGSF];
bool ahrs_tilt_aligned; // true the initial tilt alignment has been calculated
2020-04-23 01:11:03 -03:00
float accel_gain; // gain from accel vector tilt error to rate gyro correction used by AHRS calculation
Vector3f ahrs_accel; // filtered body frame specific force vector used by AHRS calculation (m/s/s)
float ahrs_accel_norm; // length of body frame specific force vector used by AHRS calculation (m/s/s)
bool ahrs_turn_comp_enabled; // true when compensation for centripetal acceleration in coordinated turns using true airspeed is being used.
float true_airspeed; // true airspeed used to correct for centripetal acceleratoin in coordinated turns (m/s)
// Runs quaternion prediction for the selected AHRS using IMU (and optionally true airspeed) data
void predictAHRS(const uint8_t mdl_idx);
// Applies a body frame delta angle to a body to earth frame rotation matrix using a small angle approximation
Matrix3f updateRotMat(const Matrix3f &R, const Vector3f &g);
// Initialises the tilt (roll and pitch) for all AHRS using IMU acceleration data
void alignTilt();
// Initialises the yaw angle for all AHRS using a uniform distribution of yaw angles between -180 and +180 deg
void alignYaw();
// The Following declarations are used by bank of EKF's that estimate yaw angle starting from a different yaw hypothesis for each filter.
struct EKF_struct {
float X[3]; // Vel North (m/s), Vel East (m/s), yaw (rad)
float P[3][3]; // covariance matrix
float S[2][2]; // N,E velocity innovation variance (m/s)^2
float innov[2]; // Velocity N,E innovation (m/s)
};
EKF_struct EKF[N_MODELS_EKFGSF];
bool vel_fuse_running; // true when the bank of EKF's has started fusing GPS velocity data
bool run_ekf_gsf; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
// Resets states and covariances for the EKF's and GSF including GSF weights, but not the AHRS complementary filters
void resetEKFGSF();
// Runs the state and covariance prediction for the selected EKF
void predict(const uint8_t mdl_idx);
// Runs the state and covariance update for the selected EKF using the GPS NE velocity measurement
// Returns false if the sttae and covariance correction failed
bool correct(const uint8_t mdl_idx, const Vector2f &vel, const float velObsVar);
// Forces symmetry on the covariance matrix for the selected EKF
void forceSymmetry(const uint8_t mdl_idx);
// The following declarations are used by the Gaussian Sum Filter that combines the state estimates from the bank of
// EKF's to form a single state estimate.
struct GSF_struct {
float yaw; // yaw (rad)
float yaw_variance; // Yaw state variance (rad^2)
float weights[N_MODELS_EKFGSF]; // Weighting applied to each EKF model. Sum of weights is unity.
};
GSF_struct GSF;
// Returns the probability for a selected model assuming a Gaussian error distribution
// Used by the Guassian Sum Filter to calculate the weightings when combining the outputs from the bank of EKF's
float gaussianDensity(const uint8_t mdl_idx) const;
};