mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
584 lines
14 KiB
Plaintext
584 lines
14 KiB
Plaintext
|
// These are function definitions so the Menu can be constructed before the functions
|
||
|
// are defined below. Order matters to the compiler.
|
||
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_flaps(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_gyro(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_nav_out(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
|
||
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
|
||
|
|
||
|
// This is the help function
|
||
|
// PSTR is an AVR macro to read strings from flash memory
|
||
|
// printf_P is a version of printf that reads from flash memory
|
||
|
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
Serial.printf_P(PSTR("\n"
|
||
|
"Commands:\n"
|
||
|
" radio\n"
|
||
|
" servos\n"
|
||
|
" gps\n"
|
||
|
" imu\n"
|
||
|
" battery\n"
|
||
|
"\n"));
|
||
|
}*/
|
||
|
|
||
|
// Creates a constant array of structs representing menu options
|
||
|
// and stores them in Flash memory, not RAM.
|
||
|
// User enters the string in the console to call the functions on the right.
|
||
|
// See class Menu in AP_Coommon for implementation details
|
||
|
const struct Menu::command test_menu_commands[] PROGMEM = {
|
||
|
{"pwm", test_radio_pwm},
|
||
|
{"radio", test_radio},
|
||
|
{"flaps", test_flaps},
|
||
|
{"stabilize", test_stabilize},
|
||
|
{"gps", test_gps},
|
||
|
{"imu", test_imu},
|
||
|
{"gyro", test_gyro},
|
||
|
{"omega", test_omega},
|
||
|
{"battery", test_battery},
|
||
|
{"relay", test_relay},
|
||
|
{"waypoints", test_wp},
|
||
|
{"airpressure", test_pressure},
|
||
|
{"nav", test_nav_out},
|
||
|
{"compass", test_mag},
|
||
|
{"xbee", test_xbee},
|
||
|
{"eedump", test_eedump},
|
||
|
};
|
||
|
|
||
|
// A Macro to create the Menu
|
||
|
MENU(test_menu, "test", test_menu_commands);
|
||
|
|
||
|
int8_t
|
||
|
test_mode(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
Serial.printf_P(PSTR("Test Mode\n\n"));
|
||
|
test_menu.run();
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_eedump(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
// hexdump the EEPROM
|
||
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
|
||
|
Serial.printf_P(PSTR("%04x:"), i);
|
||
|
for (j = 0; j < 16; j++)
|
||
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
|
||
|
Serial.println();
|
||
|
}
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
delay(20);
|
||
|
|
||
|
// Filters radio input - adjust filters in the radio.pde file
|
||
|
// ----------------------------------------------------------
|
||
|
read_radio();
|
||
|
|
||
|
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), rc_1.radio_in, rc_2.radio_in, rc_3.radio_in, rc_4.radio_in, rc_5.radio_in, rc_6.radio_in, rc_7.radio_in, rc_8.radio_in);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_radio(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
// read the radio to set trims
|
||
|
// ---------------------------
|
||
|
trim_radio();
|
||
|
|
||
|
while(1){
|
||
|
delay(20);
|
||
|
read_radio();
|
||
|
|
||
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), (rc_1.control_in), (rc_2.control_in), (rc_3.control_in), (rc_4.control_in), rc_5.control_in, rc_6.control_in, rc_7.control_in);
|
||
|
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (rc_1.servo_out / 100), (rc_2.servo_out / 100), rc_3.servo_out, (rc_4.servo_out / 100));
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_stabilize(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
//imu.init_gyro();
|
||
|
|
||
|
// read the radio to set trims
|
||
|
// ---------------------------
|
||
|
trim_radio();
|
||
|
control_mode = STABILIZE;
|
||
|
Serial.printf_P(PSTR("pid_stabilize_roll.kP: "));
|
||
|
Serial.println(pid_stabilize_roll.kP(),3);
|
||
|
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
|
||
|
/*
|
||
|
Serial.printf_P(PSTR("pid_yaw.kP: "));
|
||
|
Serial.println(pid_yaw.kP(),3);
|
||
|
Serial.printf_P(PSTR("max_yaw_dampener:%d\n\n "), max_yaw_dampener);
|
||
|
Serial.printf_P(PSTR("stabilize_rate_yaw "));
|
||
|
Serial.print(stabilize_rate_yaw, 3);
|
||
|
Serial.printf_P(PSTR("stabilze_yaw_dampener "));
|
||
|
Serial.print(stabilze_yaw_dampener, 3);
|
||
|
Serial.printf_P(PSTR("\n\n "));
|
||
|
*/
|
||
|
|
||
|
motor_armed = true;
|
||
|
|
||
|
while(1){
|
||
|
// 50 hz
|
||
|
if (millis() - fast_loopTimer > 49) {
|
||
|
deltaMiliSeconds = millis() - fast_loopTimer;
|
||
|
fast_loopTimer = millis();
|
||
|
G_Dt = (float)deltaMiliSeconds / 1000.f;
|
||
|
|
||
|
if(compass_enabled){
|
||
|
medium_loopCounter++;
|
||
|
if(medium_loopCounter == 5){
|
||
|
compass.read(); // Read magnetometer
|
||
|
compass.calculate(roll, pitch); // Calculate heading
|
||
|
medium_loopCounter = 0;
|
||
|
}
|
||
|
}
|
||
|
// for trim features
|
||
|
read_trim_switch();
|
||
|
|
||
|
// Filters radio input - adjust filters in the radio.pde file
|
||
|
// ----------------------------------------------------------
|
||
|
read_radio();
|
||
|
|
||
|
// IMU
|
||
|
// ---
|
||
|
read_AHRS();
|
||
|
|
||
|
// custom code/exceptions for flight modes
|
||
|
// ---------------------------------------
|
||
|
update_current_flight_mode();
|
||
|
|
||
|
//Serial.println(" ");
|
||
|
|
||
|
// write out the servo PWM values
|
||
|
// ------------------------------
|
||
|
set_servos_4();
|
||
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)deltaMiliSeconds, ((int)roll_sensor/100), ((int)pitch_sensor/100), ((uint16_t)yaw_sensor/100));
|
||
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)deltaMiliSeconds, ((int)roll_sensor/100), ((int)pitch_sensor/100), ((uint16_t)yaw_sensor/100));
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_imu(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
//Serial.printf_P(PSTR("Calibrating."));
|
||
|
|
||
|
imu.init_gyro();
|
||
|
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
delay(20);
|
||
|
if (millis() - fast_loopTimer > 19) {
|
||
|
deltaMiliSeconds = millis() - fast_loopTimer;
|
||
|
G_Dt = (float)deltaMiliSeconds / 1000.f; // used by DCM integrator
|
||
|
fast_loopTimer = millis();
|
||
|
|
||
|
|
||
|
// IMU
|
||
|
// ---
|
||
|
read_AHRS();
|
||
|
|
||
|
Vector3f accels = imu.get_accel();
|
||
|
Vector3f gyros = imu.get_gyro();
|
||
|
|
||
|
if(compass_enabled){
|
||
|
medium_loopCounter++;
|
||
|
if(medium_loopCounter == 5){
|
||
|
compass.read(); // Read magnetometer
|
||
|
compass.calculate(roll, pitch); // Calculate heading
|
||
|
medium_loopCounter = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We are using the IMU
|
||
|
// ---------------------
|
||
|
Serial.printf_P(PSTR("A: %d,%d,%d\tG: %d,%d,%d\t"), (int)(accels.x*100), (int)(accels.y*100), (int)(accels.z*100),(int)(gyros.x*100), (int)(gyros.y*100), (int)(gyros.z*100));
|
||
|
|
||
|
Serial.printf_P(PSTR("r: %d\tp: %d\t y: %d\n"), ((int)roll_sensor/100), ((int)pitch_sensor/100), ((uint16_t)yaw_sensor/100));
|
||
|
}
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_gps(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
delay(100);
|
||
|
update_GPS();
|
||
|
if(home.lng != 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
while(1){
|
||
|
delay(20);
|
||
|
calc_distance_error();
|
||
|
// Blink GPS LED if we don't have a fix
|
||
|
// ------------------------------------
|
||
|
//update_GPS_light();
|
||
|
|
||
|
GPS.update();
|
||
|
|
||
|
if (GPS.new_data){
|
||
|
Serial.print("Lat:");
|
||
|
Serial.print((float)GPS.latitude/10000000, 10);
|
||
|
Serial.print(" Lon:");
|
||
|
Serial.print((float)GPS.longitude/10000000, 10);
|
||
|
Serial.printf_P(PSTR(" alt %dm, spd: %d dist:%d, #sats: %d\n"), (int)GPS.altitude/100, (int)GPS.ground_speed, (int)wp_distance, (int)GPS.num_sats);
|
||
|
}else{
|
||
|
//Serial.print(".");
|
||
|
}
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_gyro(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
Serial.printf_P(PSTR("Gyro | Accel\n"));
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
Vector3f gyros = imu.get_gyro();
|
||
|
Vector3f accels = imu.get_accel();
|
||
|
Serial.printf_P(PSTR("%d\t%d\t%d\t|\t%d\t%d\t%d\n"), (int)gyros.x, (int)gyros.y, (int)gyros.z, (int)accels.x, (int)accels.y, (int)accels.z);
|
||
|
delay(100);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
static int8_t
|
||
|
test_dcm(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
Serial.printf_P(PSTR("Gyro | Accel\n"));
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
Vector3f accels = dcm.get_accel();
|
||
|
Serial.print("accels.z:");
|
||
|
Serial.print(accels.z);
|
||
|
Serial.print("omega.z:");
|
||
|
Serial.print(omega.z);
|
||
|
delay(100);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
static int8_t
|
||
|
test_omega(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
Serial.printf_P(PSTR("Omega"));
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
Vector3f omega = dcm.get_gyro();
|
||
|
Serial.printf_P(PSTR("R: %d\tP: %d\tY: %d\n"), (int)(ToDeg(omega.x)), (int)(ToDeg(omega.y)), (int)(ToDeg(omega.z)));
|
||
|
delay(100);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_battery(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
#if BATTERY_EVENT == 1
|
||
|
for (int i = 0; i < 20; i++){
|
||
|
delay(20);
|
||
|
read_battery();
|
||
|
}
|
||
|
Serial.printf_P(PSTR("Volts: 1:"));
|
||
|
Serial.print(battery_voltage1, 4);
|
||
|
Serial.print(" 2:");
|
||
|
Serial.print(battery_voltage2, 4);
|
||
|
Serial.print(" 3:");
|
||
|
Serial.print(battery_voltage3, 4);
|
||
|
Serial.print(" 4:");
|
||
|
Serial.println(battery_voltage4, 4);
|
||
|
#else
|
||
|
Serial.printf_P(PSTR("Not enabled\n"));
|
||
|
|
||
|
#endif
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int8_t
|
||
|
test_relay(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
Serial.println("Relay A");
|
||
|
relay_A();
|
||
|
delay(3000);
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
Serial.println("Relay B");
|
||
|
relay_B();
|
||
|
delay(3000);
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_flaps(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
|
||
|
while(1){
|
||
|
delay(300);
|
||
|
read_radio();
|
||
|
float temp = (float)rc_6.control_in / 1000;
|
||
|
|
||
|
Serial.print("flaps: ");
|
||
|
Serial.println(temp, 3);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static int8_t
|
||
|
test_wp(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
delay(1000);
|
||
|
read_EEPROM_waypoint_info();
|
||
|
|
||
|
|
||
|
// save the alitude above home option
|
||
|
if(alt_to_hold == -1){
|
||
|
Serial.printf_P(PSTR("Hold current altitude\n"));
|
||
|
}else{
|
||
|
Serial.printf_P(PSTR("Hold altitude of %dm\n"), alt_to_hold/100);
|
||
|
}
|
||
|
|
||
|
Serial.printf_P(PSTR("%d waypoints\n"), wp_total);
|
||
|
Serial.printf_P(PSTR("Hit radius: %d\n"), wp_radius);
|
||
|
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), loiter_radius);
|
||
|
|
||
|
for(byte i = 0; i <= wp_total; i++){
|
||
|
struct Location temp = get_wp_with_index(i);
|
||
|
print_waypoint(&temp, i);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int8_t
|
||
|
test_xbee(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
print_hit_enter();
|
||
|
delay(1000);
|
||
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
|
||
|
while(1){
|
||
|
delay(250);
|
||
|
// Timeout set high enough for X-CTU RSSI Calc over XBee @ 115200
|
||
|
Serial3.printf_P(PSTR("0123456789:;<=>?@ABCDEFGHIJKLMNO\n"));
|
||
|
//Serial.print("X");
|
||
|
// Default 32bit data from X-CTU Range Test
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_pressure(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
uint32_t sum;
|
||
|
|
||
|
Serial.printf_P(PSTR("Uncalibrated Abs Airpressure\n"));
|
||
|
Serial.printf_P(PSTR("Altitude is relative to the start of this test\n"));
|
||
|
print_hit_enter();
|
||
|
|
||
|
Serial.printf_P(PSTR("\nCalibrating....\n"));
|
||
|
/*
|
||
|
for (int i = 1; i < 301; i++) {
|
||
|
read_barometer();
|
||
|
if(i > 200)
|
||
|
sum += abs_pressure;
|
||
|
delay(10);
|
||
|
}
|
||
|
abs_pressure_ground = (float)sum / 100.0;
|
||
|
*/
|
||
|
|
||
|
home.alt = 0;
|
||
|
wp_distance = 0;
|
||
|
init_pressure_ground();
|
||
|
|
||
|
while(1){
|
||
|
if (millis()-fast_loopTimer > 9) {
|
||
|
deltaMiliSeconds = millis() - fast_loopTimer;
|
||
|
G_Dt = (float)deltaMiliSeconds / 1000.f; // used by DCM integrator
|
||
|
fast_loopTimer = millis();
|
||
|
|
||
|
|
||
|
calc_altitude_error();
|
||
|
calc_nav_throttle();
|
||
|
}
|
||
|
|
||
|
if (millis()-medium_loopTimer > 100) {
|
||
|
medium_loopTimer = millis();
|
||
|
|
||
|
read_radio(); // read the radio first
|
||
|
next_WP.alt = home.alt + rc_6.control_in; // 0 - 2000 (20 meters)
|
||
|
read_trim_switch();
|
||
|
read_barometer();
|
||
|
|
||
|
//Serial.printf_P(PSTR("Alt: %dm, Raw: %d\n"), pressure_altitude / 100, abs_pressure); // Someone needs to fix the formatting here for long integers
|
||
|
/*
|
||
|
Serial.print("Altitude: ");
|
||
|
Serial.print((int)current_loc.alt,DEC);
|
||
|
Serial.print("\tnext_alt: ");
|
||
|
Serial.print((int)next_WP.alt,DEC);
|
||
|
Serial.print("\talt_err: ");
|
||
|
Serial.print((int)altitude_error,DEC);
|
||
|
Serial.print("\ttNom: ");
|
||
|
Serial.print(throttle_cruise,DEC);
|
||
|
Serial.print("\ttOut: ");
|
||
|
Serial.println(rc_3.servo_out,DEC);
|
||
|
*/
|
||
|
//Serial.print(" Raw pressure value: ");
|
||
|
//Serial.println(abs_pressure);
|
||
|
}
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_nav_out(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
Serial.printf_P(PSTR("Nav test\n"));
|
||
|
print_hit_enter();
|
||
|
|
||
|
wp_distance = 100;
|
||
|
dTnav = 50;
|
||
|
|
||
|
while(1){
|
||
|
delay(50);
|
||
|
bearing_error += 100;
|
||
|
bearing_error = wrap_360(bearing_error);
|
||
|
calc_nav_pid();
|
||
|
calc_nav_pitch();
|
||
|
calc_nav_roll();
|
||
|
|
||
|
Serial.printf("error %ld,\troll %ld,\tpitch %ld\n", bearing_error, nav_roll, nav_pitch);
|
||
|
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int8_t
|
||
|
test_mag(uint8_t argc, const Menu::arg *argv)
|
||
|
{
|
||
|
if(compass_enabled == false){
|
||
|
Serial.printf_P(PSTR("Compass disabled\n"));
|
||
|
return (0);
|
||
|
}else{
|
||
|
print_hit_enter();
|
||
|
while(1){
|
||
|
delay(250);
|
||
|
compass.read();
|
||
|
compass.calculate(0,0);
|
||
|
Serial.printf_P(PSTR("Heading: ("));
|
||
|
Serial.print(ToDeg(compass.heading));
|
||
|
Serial.printf_P(PSTR(") XYZ: ("));
|
||
|
Serial.print(compass.mag_x);
|
||
|
Serial.print(comma);
|
||
|
Serial.print(compass.mag_y);
|
||
|
Serial.print(comma);
|
||
|
Serial.print(compass.mag_z);
|
||
|
Serial.println(")");
|
||
|
if(Serial.available() > 0){
|
||
|
return (0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void print_hit_enter()
|
||
|
{
|
||
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
|
||
|
}
|