ardupilot/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.cpp

190 lines
6.6 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor.
* inspired by the PX4Firmware code.
*
* @author: Víctor Mayoral Vilches
*
* Address range 0x42 - 0x49
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include "OpticalFlow.h"
#define PX4FLOW_DEBUG 1
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#define PX4FLOW_REG 0x16 // Measure Register 22
#define I2C_FRAME_SIZE (sizeof(i2c_frame))
#define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame))
extern const AP_HAL::HAL& hal;
AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend, AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
: OpticalFlow_backend(_frontend)
, _dev(std::move(dev))
{}
void AP_OpticalFlow_Linux::init(void)
{
// only initialise once
if (initialised) {
return;
}
// take i2c bus sempahore
if (!_dev->get_semaphore()->take(200)) {
return;
}
// read from flow sensor to ensure it is not a ll40ls Lidar (which can be on 0x42)
// read I2C_FRAME_SIZE bytes, the ll40ls will error whereas the flow happily returns data
uint8_t val[I2C_FRAME_SIZE];
if (!_dev->read_registers(0, val, I2C_FRAME_SIZE)) {
goto fail;
}
// success
initialised = true;
fail:
_dev->get_semaphore()->give();
}
bool AP_OpticalFlow_Linux::request_measurement()
{
// send measure request to sensor
return _dev->write_register(PX4FLOW_REG, 0);
}
bool AP_OpticalFlow_Linux::read(optical_flow_s* report)
{
// take i2c bus sempahore (non blocking)
if (!_dev->get_semaphore()->take_nonblocking()) {
return false;
}
// request measurement
request_measurement();
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = {};
i2c_integral_frame f_integral;
// Perform the writing and reading in a single command
if (PX4FLOW_REG == 0x00) {
if (!_dev->read_registers(PX4FLOW_REG, val, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE)) {
2015-11-02 11:19:13 -04:00
goto fail_transfer;
}
memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE);
}
if (PX4FLOW_REG == 0x16) {
if (!_dev->read_registers(PX4FLOW_REG, val, I2C_INTEGRAL_FRAME_SIZE)) {
2015-11-02 11:19:13 -04:00
goto fail_transfer;
}
memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE);
}
_dev->get_semaphore()->give();
// reduce error count
if (num_errors > 0) {
num_errors--;
}
report->pixel_flow_x_integral = static_cast<float>(f_integral.pixel_flow_x_integral) / 10000.0f; //convert to radians
report->pixel_flow_y_integral = static_cast<float>(f_integral.pixel_flow_y_integral) / 10000.0f; //convert to radians
report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout;
report->ground_distance_m = static_cast<float>(f_integral.ground_distance) / 1000.0f; // convert to meters
report->quality = f_integral.qual; // 0:bad, 255 max quality
report->gyro_x_rate_integral = static_cast<float>(f_integral.gyro_x_rate_integral) / 10000.0f; // convert to radians
report->gyro_y_rate_integral = static_cast<float>(f_integral.gyro_y_rate_integral) / 10000.0f; // convert to radians
report->gyro_z_rate_integral = static_cast<float>(f_integral.gyro_z_rate_integral) / 10000.0f; // convert to radians
report->integration_timespan = f_integral.integration_timespan; // microseconds
report->time_since_last_sonar_update = f_integral.sonar_timestamp; // microseconds
report->gyro_temperature = f_integral.gyro_temperature; // Temperature * 100 in centi-degrees Celsius
report->sensor_id = 0;
return true;
2015-11-02 11:19:13 -04:00
fail_transfer:
num_errors++;
_dev->get_semaphore()->give();
2015-11-02 11:19:13 -04:00
return false;
}
// update - read latest values from sensor and fill in x,y and totals.
void AP_OpticalFlow_Linux::update(void)
{
optical_flow_s report;
// return immediately if not initialised or more than half of last 40 reads have failed
if (!initialised || num_errors >= 20) {
return;
}
// throttle reads to no more than 10hz
uint32_t now = AP_HAL::millis();
if (now - last_read_ms < 100) {
return;
}
last_read_ms = now;
// read the report from the sensor
if (!read(&report)) {
return;
}
// process
struct OpticalFlow::OpticalFlow_state state;
state.device_id = report.sensor_id;
state.surface_quality = report.quality;
if (report.integration_timespan > 0) {
const Vector2f flowScaler = _flowScaler();
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
float integralToRate = 1e6f / float(report.integration_timespan);
state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis
state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis
state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis
state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis
} else {
state.flowRate.zero();
state.bodyRate.zero();
}
// copy results to front end
_update_frontend(state);
#if PX4FLOW_DEBUG
hal.console->printf("PX4FLOW id:%u qual:%u FlowRateX:%4.2f Y:%4.2f BodyRateX:%4.2f y:%4.2f\n",
(unsigned)state.device_id,
(unsigned)state.surface_quality,
(double)state.flowRate.x,
(double)state.flowRate.y,
(double)state.bodyRate.x,
(double)state.bodyRate.y);
#endif
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX