mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
72 lines
2.4 KiB
Mathematica
72 lines
2.4 KiB
Mathematica
|
function [...
|
||
|
quat, ... % quaternion state vector after fusion of measurements
|
||
|
states, ... % state vector after fusion of measurements
|
||
|
tiltErr, ... % angle error
|
||
|
P, ... % state covariance matrix after fusion of corrections
|
||
|
innovation,... % NED velocity innovations (m/s)
|
||
|
varInnov] ... % NED velocity innovation variance ((m/s)^2)
|
||
|
= FuseVelocity( ...
|
||
|
quat, ... % predicted quaternion states from the INS
|
||
|
states, ... % predicted states from the INS
|
||
|
P, ... % predicted covariance
|
||
|
measVel) % NED velocity measurements (m/s)
|
||
|
|
||
|
R_OBS = 0.5^2;
|
||
|
innovation = zeros(1,3);
|
||
|
varInnov = zeros(1,3);
|
||
|
% Fuse measurements sequentially
|
||
|
angErrVec = [0;0;0];
|
||
|
for obsIndex = 1:3
|
||
|
stateIndex = 3 + obsIndex;
|
||
|
% Calculate the velocity measurement innovation
|
||
|
innovation(obsIndex) = states(stateIndex) - measVel(obsIndex);
|
||
|
|
||
|
% Calculate the Kalman Gain taking advantage of direct state observation
|
||
|
H = zeros(1,9);
|
||
|
H(1,stateIndex) = 1;
|
||
|
varInnov(obsIndex) = P(stateIndex,stateIndex) + R_OBS;
|
||
|
K = P(:,stateIndex)/varInnov(obsIndex);
|
||
|
|
||
|
% Calculate state corrections
|
||
|
xk = K * innovation(obsIndex);
|
||
|
|
||
|
% Apply the state corrections
|
||
|
states(1:3) = 0;
|
||
|
states = states - xk;
|
||
|
|
||
|
% Store tilt error estimate for external monitoring
|
||
|
angErrVec = angErrVec + states(1:3);
|
||
|
|
||
|
% the first 3 states represent the angular misalignment vector. This is
|
||
|
% is used to correct the estimated quaternion
|
||
|
% Convert the error rotation vector to its equivalent quaternion
|
||
|
% truth = estimate + error
|
||
|
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
||
|
if rotationMag > 1e-12
|
||
|
deltaQuat = [cos(0.5*rotationMag); [states(1);states(2);states(3)]/rotationMag*sin(0.5*rotationMag)];
|
||
|
% Update the quaternion states by rotating from the previous attitude through
|
||
|
% the error quaternion
|
||
|
quat = QuatMult(quat,deltaQuat);
|
||
|
% re-normalise the quaternion
|
||
|
quatMag = sqrt(quat(1)^2 + quat(2)^2 + quat(3)^2 + quat(4)^2);
|
||
|
quat = quat / quatMag;
|
||
|
end
|
||
|
|
||
|
% Update the covariance
|
||
|
P = P - K*P(stateIndex,:);
|
||
|
|
||
|
% Force symmetry on the covariance matrix to prevent ill-conditioning
|
||
|
P = 0.5*(P + transpose(P));
|
||
|
|
||
|
% ensure diagonals are positive
|
||
|
for i=1:9
|
||
|
if P(i,i) < 0
|
||
|
P(i,i) = 0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
tiltErr = sqrt(dot(angErrVec(1:2),angErrVec(1:2)));
|
||
|
|
||
|
end
|