ardupilot/ArduCopterMega/Attitude.pde

231 lines
8.0 KiB
Plaintext
Raw Normal View History

// desired angle in
// motor commands out (in degrees)
void init_pids()
{
max_stabilize_dampener = pid_stabilize_roll.kP() * 2500;
stabilze_dampener = 5729.57795 * stabilize_rate_roll_pitch;
max_yaw_dampener = pid_yaw.kP() * 6000; // .3 * 6000 = 1800
stabilze_yaw_dampener = 5729.57795 * stabilize_rate_yaw; // .3
}
void output_stabilize()
{
float roll_error, pitch_error;
int max_out;
Vector3f omega = dcm.get_gyro();
/*testing code:*/
//pitch_sensor = roll_sensor = 0; // testing only
//stabilize_rate_roll_pitch = (float)rc_6.control_in / 1000;
//init_pids();
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
rc_1.servo_out = rc_1.control_mix(nav_roll);
rc_2.servo_out = rc_2.control_mix(nav_pitch);
roll_error = rc_1.servo_out - roll_sensor;
pitch_error = rc_2.servo_out - pitch_sensor;
yaw_error = nav_yaw - yaw_sensor;
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
roll_error = constrain(roll_error, -2500, 2500);
pitch_error = constrain(pitch_error, -2500, 2500);
yaw_error = constrain(yaw_error, -6000, 6000);
//Serial.printf("s: %d \t mix %d, err %d", (int)roll_sensor, (int)rc_1.servo_out, (int)roll_error);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
rc_1.servo_out = pid_stabilize_roll.get_pid(roll_error, deltaMiliSeconds, 1.0);
rc_2.servo_out = pid_stabilize_pitch.get_pid(pitch_error, deltaMiliSeconds, 1.0);
rc_4.servo_out = pid_yaw.get_pid(yaw_error, deltaMiliSeconds, 1.0); // .3 = 198pwm
//Serial.printf("\tpid: %d", (int)rc_1.servo_out);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
int roll_dampener = (omega.x * stabilze_dampener);// Omega is in radians
int pitch_dampener = (omega.y * stabilze_dampener);
int yaw_dampener = (omega.z * stabilze_yaw_dampener);
// Limit dampening to be equal to propotional term for symmetry
rc_1.servo_out -= constrain(roll_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15°
rc_2.servo_out -= constrain(pitch_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15°
rc_4.servo_out -= constrain(yaw_dampener, -max_yaw_dampener, max_yaw_dampener); // +- 15°
//Serial.printf(" yaw out: %d, d: %d", (int)rc_4.angle_to_pwm(), yaw_dampener);
//Serial.printf("\trd: %d", roll_dampener);
//Serial.printf("\tlimit: %d, PWM: %d", rc_1.servo_out, rc_1.angle_to_pwm());
}
// err -2500 pid: -1100 rd: 1117 limit: -1650, PWM: -152
//s: -1247 mix 0, err 1247 pid: 548 rd: -153 limit: 395, PWM: 35
void output_rate_control()
{
Vector3f omega = dcm.get_gyro();
rc_4.servo_out = rc_4.control_in;
rc_1.servo_out = rc_2.control_in;
rc_2.servo_out = rc_2.control_in;
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading plus Omega_I, so it´s bias corrected
rc_1.servo_out -= (omega.x * 5729.57795 * acro_rate_roll_pitch);
rc_2.servo_out -= (omega.y * 5729.57795 * acro_rate_roll_pitch);
rc_4.servo_out -= (omega.z * 5729.57795 * acro_rate_yaw);
//Serial.printf("\trated out %d, omega ", rc_1.servo_out);
//Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3);
// Limit output
rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void reset_I(void)
{
pid_nav.reset_I();
pid_throttle.reset_I();
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void set_servos_4(void)
{
static byte num;
//motor_armed = false;
// Quadcopter mix
if (motor_armed == true) {
int out_min = rc_3.radio_min;
// Throttle is 0 to 1000 only
rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000);
if(rc_3.servo_out > 0)
out_min = rc_3.radio_min + 50;
//Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
// creates the radio_out anf pwm_out values
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
rc_4.calc_pwm();
//Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out);
//Serial.printf("yaw: %d ", rc_4.radio_out);
if(frame_type == PLUS_FRAME){
motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out;
motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out;
motor_out[FRONT] = rc_3.radio_out + rc_2.pwm_out;
motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out;
}else{
int roll_out = rc_1.pwm_out / 2;
int pitch_out = rc_2.pwm_out / 2;
motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out;
motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out;
motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out;
motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out;
}
//Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
motor_out[RIGHT] += rc_4.pwm_out;
motor_out[LEFT] += rc_4.pwm_out;
motor_out[FRONT] -= rc_4.pwm_out;
motor_out[BACK] -= rc_4.pwm_out;
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
motor_out[RIGHT] = constrain(motor_out[RIGHT], out_min, rc_3.radio_max);
motor_out[LEFT] = constrain(motor_out[LEFT], out_min, rc_3.radio_max);
motor_out[FRONT] = constrain(motor_out[FRONT], out_min, rc_3.radio_max);
motor_out[BACK] = constrain(motor_out[BACK], out_min, rc_3.radio_max);
///*
int r_out = ((long)(motor_out[RIGHT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int l_out = ((long)(motor_out[LEFT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int f_out = ((long)(motor_out[FRONT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int b_out = ((long)(motor_out[BACK] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
//*/
//~#*set_servos_4: 398, -39 38 38 -36
/*
num++;
if (num > 50){
num = 0;
Serial.printf("control_in: %d ", rc_3.control_in);
Serial.printf(" servo: %d %d %d %d\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
Serial.printf(" pwm: %d %d %d %d\n", r_out, l_out, f_out, b_out);
}
//*/
//Serial.printf("set: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
//Serial.printf("s: %d %d %d\t\t", (int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor);
///Serial.printf("outmin: %d\n", out_min);
/*
write_int(r_out);
write_int(l_out);
write_int(f_out);
write_int(b_out);
write_int((int)(roll_sensor / 100));
write_int((int)(pitch_sensor / 100));
write_int((int)(yaw_sensor / 100));
write_int((int)(yaw_error / 100));
write_int((int)(current_loc.alt));
write_int((int)(altitude_error));
flush(10);
//*/
// Send commands to motors
if(rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[RIGHT]);
APM_RC.OutputCh(CH_2, motor_out[LEFT]);
APM_RC.OutputCh(CH_3, motor_out[FRONT]);
APM_RC.OutputCh(CH_4, motor_out[BACK]);
}else{
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
}
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
}else{
// Send commands to motors
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
// reset I terms of PID controls
reset_I();
// Initialize yaw command to actual yaw when throttle is down...
rc_4.control_in = ToDeg(yaw);
}
}
void demo_servos(byte i) {
// nothing to do
}