mirror of https://github.com/ArduPilot/ardupilot
162 lines
6.4 KiB
Mathematica
162 lines
6.4 KiB
Mathematica
|
% IMPORTANT - This script requires the Matlab symbolic toolbox
|
||
|
|
||
|
% Author: Paul Riseborough
|
||
|
% Last Modified: 16 Feb 2015
|
||
|
|
||
|
% Derivation of a navigation EKF using a local NED earth Tangent Frame for
|
||
|
% the initial alignment and gyro bias estimation from a moving platform
|
||
|
% Based on use of a rotation vector for attitude estimation as described
|
||
|
% here:
|
||
|
%
|
||
|
% Mark E. Pittelkau. "Rotation Vector in Attitude Estimation",
|
||
|
% Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6 (2003),
|
||
|
% pp. 855-860.
|
||
|
%
|
||
|
% The benefits for use of rotation error vector over use of a four parameter
|
||
|
% quaternion representation of the estiamted orientation are:
|
||
|
% a) Reduced computational load
|
||
|
% b) Improved stability
|
||
|
% c) The ability to recover faster from large orientation errors. This
|
||
|
% makes this filter particularly suitable where the initial alignment is
|
||
|
% uncertain
|
||
|
|
||
|
% State vector:
|
||
|
% error rotation vector
|
||
|
% Velocity - North, East, Down (m/s)
|
||
|
% Delta Angle bias - X,Y,Z (rad)
|
||
|
|
||
|
% Observations:
|
||
|
% NED velocity - N,E,D (m/s)
|
||
|
% body fixed magnetic field vector - X,Y,Z
|
||
|
|
||
|
% Time varying parameters:
|
||
|
% XYZ delta angle measurements in body axes - rad
|
||
|
% XYZ delta velocity measurements in body axes - m/sec
|
||
|
% magnetic declination
|
||
|
clear all;
|
||
|
|
||
|
%% define symbolic variables and constants
|
||
|
syms dax day daz real % IMU delta angle measurements in body axes - rad
|
||
|
syms dvx dvy dvz real % IMU delta velocity measurements in body axes - m/sec
|
||
|
syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED
|
||
|
syms vn ve vd real % NED velocity - m/sec
|
||
|
syms dax_b day_b daz_b real % delta angle bias - rad
|
||
|
syms dvx_b dvy_b dvz_b real % delta velocity bias - m/sec
|
||
|
syms dt real % IMU time step - sec
|
||
|
syms gravity real % gravity - m/sec^2
|
||
|
syms daxNoise dayNoise dazNoise dvxNoise dvyNoise dvzNoise real; % IMU delta angle and delta velocity measurement noise
|
||
|
syms vwn vwe real; % NE wind velocity - m/sec
|
||
|
syms magX magY magZ real; % XYZ body fixed magnetic field measurements - milligauss
|
||
|
syms magN magE magD real; % NED earth fixed magnetic field components - milligauss
|
||
|
syms R_VN R_VE R_VD real % variances for NED velocity measurements - (m/sec)^2
|
||
|
syms R_MAG real % variance for magnetic flux measurements - milligauss^2
|
||
|
syms rotErr1 rotErr2 rotErr3 real; % error rotation vector
|
||
|
|
||
|
%% define the process equations
|
||
|
|
||
|
% define the measured Delta angle and delta velocity vectors
|
||
|
dAngMeas = [dax; day; daz];
|
||
|
dVelMeas = [dvx; dvy; dvz];
|
||
|
|
||
|
% define the delta angle bias errors
|
||
|
dAngBias = [dax_b; day_b; daz_b];
|
||
|
|
||
|
% define the quaternion rotation vector for the state estimate
|
||
|
estQuat = [q0;q1;q2;q3];
|
||
|
|
||
|
% define the attitude error rotation vector, where error = truth - estimate
|
||
|
errRotVec = [rotErr1;rotErr2;rotErr3];
|
||
|
|
||
|
% define the attitude error quaternion using a first order linearisation
|
||
|
errQuat = [1;0.5*errRotVec];
|
||
|
|
||
|
% Define the truth quaternion as the estimate + error
|
||
|
truthQuat = QuatMult(estQuat, errQuat);
|
||
|
|
||
|
% derive the truth body to nav direction cosine matrix
|
||
|
Tbn = Quat2Tbn(truthQuat);
|
||
|
|
||
|
% define the truth delta angle
|
||
|
% ignore coning acompensation as these effects are negligible in terms of
|
||
|
% covariance growth for our application and grade of sensor
|
||
|
dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];
|
||
|
|
||
|
% Define the truth delta velocity
|
||
|
dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];
|
||
|
|
||
|
% define the attitude update equations
|
||
|
% use a first order expansion of rotation to calculate the quaternion increment
|
||
|
% acceptable for propagation of covariances
|
||
|
deltaQuat = [1;
|
||
|
0.5*dAngTruth(1);
|
||
|
0.5*dAngTruth(2);
|
||
|
0.5*dAngTruth(3);
|
||
|
];
|
||
|
truthQuatNew = QuatMult(truthQuat,deltaQuat);
|
||
|
% calculate the updated attitude error quaternion with respect to the previous estimate
|
||
|
errQuatNew = QuatDivide(truthQuatNew,estQuat);
|
||
|
% change to a rotaton vector - this is the error rotation vector updated state
|
||
|
errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];
|
||
|
|
||
|
% define the velocity update equations
|
||
|
% ignore coriolis terms for linearisation purposes
|
||
|
vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;
|
||
|
|
||
|
% define the IMU bias error update equations
|
||
|
dabNew = [dax_b; day_b; daz_b];
|
||
|
|
||
|
% Define the state vector & number of states
|
||
|
stateVector = [errRotVec;vn;ve;vd;dAngBias];
|
||
|
nStates=numel(stateVector);
|
||
|
|
||
|
%% derive the covariance prediction equation
|
||
|
% This reduces the number of floating point operations by a factor of 6 or
|
||
|
% more compared to using the standard matrix operations in code
|
||
|
|
||
|
% Define the control (disturbance) vector. Error growth in the inertial
|
||
|
% solution is assumed to be driven by 'noise' in the delta angles and
|
||
|
% velocities, after bias effects have been removed. This is OK becasue we
|
||
|
% have sensor bias accounted for in the state equations.
|
||
|
distVector = [daxNoise;dayNoise;dazNoise;dvxNoise;dvyNoise;dvzNoise];
|
||
|
|
||
|
% derive the control(disturbance) influence matrix
|
||
|
G = jacobian([errRotNew;vNew;dabNew], distVector);
|
||
|
G = subs(G, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
|
||
|
|
||
|
% derive the state error matrix
|
||
|
distMatrix = diag(distVector);
|
||
|
Q = G*distMatrix*transpose(G);
|
||
|
f = matlabFunction(Q,'file','calcQ.m');
|
||
|
|
||
|
% derive the state transition matrix
|
||
|
vNew = subs(vNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
|
||
|
errRotNew = subs(errRotNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
|
||
|
F = jacobian([errRotNew;vNew;dabNew], stateVector);
|
||
|
F = subs(F, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
|
||
|
f = matlabFunction(F,'file','calcF.m');
|
||
|
|
||
|
% define a symbolic covariance matrix using strings to represent
|
||
|
% '_l_' to represent '( '
|
||
|
% '_c_' to represent ,
|
||
|
% '_r_' to represent ')'
|
||
|
% these can be substituted later to create executable code
|
||
|
% for rowIndex = 1:nStates
|
||
|
% for colIndex = 1:nStates
|
||
|
% eval(['syms OP_l_',num2str(rowIndex),'_c_',num2str(colIndex), '_r_ real']);
|
||
|
% eval(['P(',num2str(rowIndex),',',num2str(colIndex), ') = OP_l_',num2str(rowIndex),'_c_',num2str(colIndex),'_r_;']);
|
||
|
% end
|
||
|
% end
|
||
|
|
||
|
% Derive the predicted covariance matrix using the standard equation
|
||
|
% nextP = F*P*transpose(F) + Q;
|
||
|
% f = matlabFunction(nextP,'file','calcP.m');
|
||
|
%% derive equations for fusion of magnetic deviation measurement
|
||
|
% rotate body measured field into earth axes
|
||
|
magMeasNED = Tbn*[magX;magY;magZ];
|
||
|
% the predicted measurement is the angle wrt true north of the horizontal
|
||
|
% component of the measured field
|
||
|
angMeas = tan(magMeasNED(2)/magMeasNED(1));
|
||
|
H_MAG = jacobian(angMeas,stateVector); % measurement Jacobian
|
||
|
H_MAG = subs(H_MAG, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
|
||
|
f = matlabFunction(H_MAG,'file','calcH_MAG.m');
|