ardupilot/libraries/SITL/SIM_PS_RPLidar.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

259 lines
8.8 KiB
C++
Raw Permalink Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Simulator for the RPLidar proximity sensors
*/
#include "SIM_PS_RPLidar.h"
#if HAL_SIM_PS_RPLIDARA2_ENABLED
#include <GCS_MAVLink/GCS.h>
#include <stdio.h>
#include <errno.h>
using namespace SITL;
uint32_t PS_RPLidar::packet_for_location(const Location &location,
uint8_t *data,
uint8_t buflen)
{
return 0;
}
void PS_RPLidar::move_preamble_in_buffer()
{
uint8_t i;
for (i=0; i<_buflen; i++) {
if ((uint8_t)_buffer[i] == PREAMBLE) {
break;
}
}
if (i == 0) {
return;
}
memmove(_buffer, &_buffer[i], _buflen-i);
_buflen = _buflen - i;
}
void PS_RPLidar::update_input()
{
const ssize_t n = read_from_autopilot(&_buffer[_buflen], ARRAY_SIZE(_buffer) - _buflen - 1);
if (n < 0) {
// TODO: do better here
if (errno != EAGAIN && errno != EWOULDBLOCK && errno != 0) {
AP_HAL::panic("Failed to read from autopilot");
}
} else {
_buflen += n;
}
switch (_inputstate) {
case InputState::WAITING_FOR_PREAMBLE:
move_preamble_in_buffer();
if (_buflen == 0) {
return;
}
set_inputstate(InputState::GOT_PREAMBLE);
// consume the preamble:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
FALLTHROUGH;
case InputState::GOT_PREAMBLE:
if (_buflen == 0) {
return;
}
switch ((Command)_buffer[0]) {
case Command::STOP:
// consume the command:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
set_inputstate(InputState::WAITING_FOR_PREAMBLE);
set_state(State::IDLE);
return;
case Command::SCAN:
// consume the command:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
send_response_descriptor(0x05, SendMode::SRMR, DataType::Unknown81);
set_inputstate(InputState::WAITING_FOR_PREAMBLE);
set_state(State::SCANNING);
return;
case Command::GET_HEALTH: {
// consume the command:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
send_response_descriptor(0x03, SendMode::SRSR, DataType::Unknown06);
// now send the health:
const uint8_t health[3] {}; // all zeros fine for now
const ssize_t ret = write_to_autopilot((const char*)health, ARRAY_SIZE(health));
if (ret != ARRAY_SIZE(health)) {
abort();
}
set_inputstate(InputState::WAITING_FOR_PREAMBLE);
return;
}
case Command::GET_DEVICE_INFO: {
// consume the command:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
send_response_descriptor(0x14, SendMode::SRSR, DataType::Unknown04);
// now send the device info:
struct PACKED _device_info {
uint8_t model;
uint8_t firmware_minor;
uint8_t firmware_major;
uint8_t hardware;
uint8_t serial[16];
} device_info;
device_info.model = device_info_model();
device_info.firmware_minor = 17;
device_info.firmware_major = 42;
device_info.hardware = 6;
const ssize_t ret = write_to_autopilot((const char*)&device_info, sizeof(device_info));
if (ret != sizeof(device_info)) {
abort();
}
set_inputstate(InputState::WAITING_FOR_PREAMBLE);
return;
}
case Command::FORCE_SCAN:
abort();
case Command::RESET:
// consume the command:
memmove(_buffer, &_buffer[1], _buflen-1);
_buflen--;
set_inputstate(InputState::RESETTING_START);
return;
default:
AP_HAL::panic("Bad command received (%02x)", (uint8_t)_buffer[0]);
}
case InputState::RESETTING_START:
_firmware_info_offset = 0;
set_inputstate(InputState::RESETTING_SEND_FIRMWARE_INFO);
FALLTHROUGH;
case InputState::RESETTING_SEND_FIRMWARE_INFO: {
const ssize_t written = write_to_autopilot(&FIRMWARE_INFO[_firmware_info_offset], strlen(FIRMWARE_INFO) - _firmware_info_offset);
if (written <= 0) {
AP_HAL::panic("Failed to write to autopilot");
}
_firmware_info_offset += written;
if (_firmware_info_offset < strlen(FIRMWARE_INFO)) {
return;
}
set_inputstate(InputState::WAITING_FOR_PREAMBLE);
return;
}
}
}
void PS_RPLidar::update_output_scan(const Location &location)
{
const uint32_t now = AP_HAL::millis();
if (last_scan_output_time_ms == 0) {
last_scan_output_time_ms = now;
return;
}
const uint32_t time_delta = (now - last_scan_output_time_ms);
const uint32_t samples_per_second = 1000;
const float samples_per_ms = samples_per_second / 1000.0f;
const uint32_t sample_count = time_delta / samples_per_ms;
const float degrees_per_ms = 3600 / 1000.0f;
const float degrees_per_sample = degrees_per_ms / samples_per_ms;
// ::fprintf(stderr, "Packing %u samples in for %ums interval (%f degrees/sample)\n", sample_count, time_delta, degrees_per_sample);
last_scan_output_time_ms += sample_count/samples_per_ms;
for (uint32_t i=0; i<sample_count; i++) {
const float current_degrees_bf = fmod((last_degrees_bf + degrees_per_sample), 360.0f);
const uint8_t quality = 17; // random number
const uint16_t angle_q6 = current_degrees_bf * 64;
const bool is_start_packet = current_degrees_bf < last_degrees_bf;
last_degrees_bf = current_degrees_bf;
float distance = measure_distance_at_angle_bf(location, current_degrees_bf);
// ::fprintf(stderr, "SIM: %f=%fm\n", current_degrees_bf, distance);
if (distance > max_range()) {
// sensor returns zero for out-of-range
distance = 0.0f;
}
const uint16_t distance_q2 = (distance*1000 * 4); // m->mm and *4
struct PACKED {
uint8_t startbit : 1; ///< on the first revolution 1 else 0
uint8_t not_startbit : 1; ///< complementary to startbit
uint8_t quality : 6; ///< Related the reflected laser pulse strength
uint8_t checkbit : 1; ///< always set to 1
uint16_t angle_q6 : 15; ///< Actual heading = angle_q6/64.0 Degree
uint16_t distance_q2 : 16; ///< Actual Distance = distance_q2/4.0 mm
} send_buffer;
send_buffer.startbit = is_start_packet;
send_buffer.not_startbit = !is_start_packet;
send_buffer.quality = quality;
send_buffer.checkbit = 1;
send_buffer.angle_q6 = angle_q6;
send_buffer.distance_q2 = distance_q2;
static_assert(sizeof(send_buffer) == 5, "send_buffer correct size");
const ssize_t ret = write_to_autopilot((const char*)&send_buffer, sizeof(send_buffer));
if (ret != sizeof(send_buffer)) {
abort();
}
}
}
void PS_RPLidar::update_output(const Location &location)
{
switch (_state) {
case State::IDLE:
return;
case State::SCANNING:
update_output_scan(location);
return;
}
}
void PS_RPLidar::update(const Location &location)
{
update_input();
update_output(location);
}
void PS_RPLidar::send_response_descriptor(uint32_t data_response_length, SendMode sendmode, DataType datatype)
{
const uint8_t send_buffer[] = {
0xA5,
0x5A,
uint8_t((data_response_length >> 0) & 0xff),
uint8_t((data_response_length >> 8) & 0xff),
uint8_t((data_response_length >> 16) & 0xff),
uint8_t(((data_response_length >> 24) & 0xff) | (uint8_t) sendmode),
(uint8_t)datatype
};
static_assert(ARRAY_SIZE(send_buffer) == 7, "send_buffer correct size");
const ssize_t ret = write_to_autopilot((const char*)send_buffer, ARRAY_SIZE(send_buffer));
if (ret != ARRAY_SIZE(send_buffer)) {
abort();
}
}
#endif // HAL_SIM_PS_RPLIDARA2_ENABLED