ardupilot/libraries/AP_OLC/AP_OLC.cpp

206 lines
6.7 KiB
C++
Raw Permalink Normal View History

2020-08-20 02:23:13 -03:00
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* AP_OLC is based on INAV olc.c implemention, thanks @fiam and other contributors.
*/
#include "AP_OLC.h"
#include <cmath>
2020-08-20 02:23:13 -03:00
#include <AP_Math/AP_Math.h>
#if HAL_PLUSCODE_ENABLE
2020-08-20 02:23:13 -03:00
// This is a port of https://github.com/google/open-location-code/blob/master/c/olc.c
// to avoid double floating point math and use integer math as much as possible.
static constexpr char SEPARATOR_CHAR = '+';
static constexpr uint8_t SEPARATOR_POS = 8U;
static constexpr char PADDING_CHAR = '0';
static constexpr uint8_t ENCODING_BASE = 20U;
static constexpr uint8_t PAIR_CODE_LEN = 10U;
static constexpr uint8_t CODE_LEN_MAX = 15U;
static constexpr uint8_t GRID_COLS = 4U;
static constexpr uint8_t GRID_ROWS = (ENCODING_BASE / GRID_COLS);
static constexpr uint32_t OLC_DEG_MULTIPLIER = 10000000U; // 1e7
static constexpr int32_t LAT_MAX = static_cast<int32_t>(90 * OLC_DEG_MULTIPLIER);
static constexpr int32_t LON_MAX = static_cast<int32_t>(180 * OLC_DEG_MULTIPLIER);
const int32_t AP_OLC::INITIAL_EXPONENT = floorf(logf(2 * (LON_MAX / OLC_DEG_MULTIPLIER)) / logf(ENCODING_BASE));
// Work out the enclosing resolution (in degrees) for the grid algorithm.
const int32_t AP_OLC::GRID_SIZE = (1 / powf(ENCODING_BASE, PAIR_CODE_LEN / 2 - (INITIAL_EXPONENT + 1))) * OLC_DEG_MULTIPLIER;
// Work out the initial resolution
const int32_t AP_OLC::INITIAL_RESOLUTION = powf(ENCODING_BASE, INITIAL_EXPONENT) * OLC_DEG_MULTIPLIER;
2020-08-20 02:23:13 -03:00
constexpr char AP_OLC::olc_alphabet[];
2020-08-20 02:23:13 -03:00
// Compute the latitude precision value for a given code length. Lengths <= 10
// have the same precision for latitude and longitude, but lengths > 10 have
// different precisions due to the grid method having fewer columns than rows.
float AP_OLC::compute_precision_for_length(uint8_t length)
2020-08-20 02:23:13 -03:00
{
// Magic numbers!
if (length <= PAIR_CODE_LEN) {
2020-08-20 02:23:13 -03:00
return powf(ENCODING_BASE, floorf((length / -2) + 2));
}
return powf(ENCODING_BASE, -3) / powf(5, length - PAIR_CODE_LEN);
2020-08-20 02:23:13 -03:00
}
int32_t AP_OLC::adjust_latitude(int32_t lat, uint8_t code_len)
2020-08-20 02:23:13 -03:00
{
lat = constrain_int32(lat, -LAT_MAX, LAT_MAX);
2020-08-20 02:23:13 -03:00
if (lat >= LAT_MAX) {
// Subtract half the code precision to get the latitude into the code area.
2020-08-20 02:24:57 -03:00
int32_t precision = compute_precision_for_length(code_len) * OLC_DEG_MULTIPLIER;
2020-08-20 02:23:13 -03:00
lat -= precision / 2;
}
return lat;
}
2020-08-20 02:24:57 -03:00
int32_t AP_OLC::normalize_longitude(int32_t lon)
2020-08-20 02:23:13 -03:00
{
while (lon < -LON_MAX) {
lon += LON_MAX;
lon += LON_MAX;
}
while (lon >= LON_MAX) {
lon -= LON_MAX;
lon -= LON_MAX;
}
return lon;
}
// Encodes positive range lat,lon into a sequence of OLC lat/lon pairs. This
// uses pairs of characters (latitude and longitude in that order) to represent
// each step in a 20x20 grid. Each code, therefore, has 1/400th the area of
// the previous code.
uint32_t AP_OLC::encode_pairs(uint32_t lat, uint32_t lon, uint8_t length, char *buf, uint8_t bufsize)
2020-08-20 02:23:13 -03:00
{
if ((length + 1) >= bufsize) {
buf[0] = '\0';
return 0;
}
uint32_t pos = 0;
int32_t resolution = INITIAL_RESOLUTION;
2020-08-20 02:23:13 -03:00
// Add two digits on each pass.
for (uint8_t digit_count = 0;
2020-08-20 02:23:13 -03:00
digit_count < length;
digit_count += 2, resolution /= ENCODING_BASE) {
// Do the latitude - gets the digit for this place and subtracts that
// for the next digit.
auto digit_value = lat / resolution;
2020-08-20 02:23:13 -03:00
lat -= digit_value * resolution;
buf[pos++] = olc_alphabet[digit_value];
2020-08-20 02:23:13 -03:00
// Do the longitude - gets the digit for this place and subtracts that
// for the next digit.
digit_value = lon / resolution;
lon -= digit_value * resolution;
buf[pos++] = olc_alphabet[digit_value];
2020-08-20 02:23:13 -03:00
// Should we add a separator here?
if (pos == SEPARATOR_POS && pos < length) {
buf[pos++] = SEPARATOR_CHAR;
}
}
while (pos < SEPARATOR_POS) {
buf[pos++] = PADDING_CHAR;
}
if (pos == SEPARATOR_POS) {
buf[pos++] = SEPARATOR_CHAR;
}
buf[pos] = '\0';
return pos;
}
// Encodes a location using the grid refinement method into an OLC string. The
// grid refinement method divides the area into a grid of 4x5, and uses a
// single character to refine the area. The grid squares use the OLC
// characters in order to number the squares as follows:
//
// R V W X
// J M P Q
// C F G H
// 6 7 8 9
// 2 3 4 5
//
// This allows default accuracy OLC codes to be refined with just a single
// character.
int32_t AP_OLC::encode_grid(uint32_t lat, uint32_t lon, uint8_t length,
char *buf, uint8_t bufsize)
2020-08-20 02:23:13 -03:00
{
if ((length + 1) >= bufsize) {
buf[0] = '\0';
return 0;
}
int pos = 0;
int32_t lat_grid_size = GRID_SIZE;
int32_t lon_grid_size = GRID_SIZE;
2020-08-20 02:23:13 -03:00
lat %= lat_grid_size;
lon %= lon_grid_size;
for (uint8_t i = 0; i < length; i++) {
2020-08-20 02:24:57 -03:00
int32_t lat_div = lat_grid_size / GRID_ROWS;
int32_t lon_div = lon_grid_size / GRID_COLS;
2020-08-20 02:23:13 -03:00
if (lat_div == 0 || lon_div == 0) {
// This case happens when OLC_DEG_MULTIPLIER doesn't have enough
// precision for the requested length.
break;
}
// Work out the row and column.
auto row = lat / lat_div;
auto col = lon / lon_div;
2020-08-20 02:23:13 -03:00
lat_grid_size /= GRID_ROWS;
lon_grid_size /= GRID_COLS;
lat -= row * lat_grid_size;
lon -= col * lon_grid_size;
buf[pos++] = olc_alphabet[row * GRID_COLS + col];
2020-08-20 02:23:13 -03:00
}
buf[pos] = '\0';
return pos;
}
uint32_t AP_OLC::olc_encode(int32_t lat, int32_t lon, uint8_t length, char *buf, uint8_t bufsize)
2020-08-20 02:23:13 -03:00
{
uint32_t pos = 0;
2020-08-20 02:23:13 -03:00
length = MIN(length, CODE_LEN_MAX);
// Adjust latitude and longitude so they fall into positive ranges.
2020-08-20 02:24:57 -03:00
uint32_t alat = adjust_latitude(lat, length) + LAT_MAX;
uint32_t alon = normalize_longitude(lon) + LON_MAX;
2020-08-20 02:23:13 -03:00
pos += encode_pairs(alat, alon, MIN(length, PAIR_CODE_LEN), buf + pos, bufsize - pos);
// If the requested length indicates we want grid refined codes.
if (length > PAIR_CODE_LEN) {
pos += encode_grid(alat, alon, length - PAIR_CODE_LEN, buf + pos, bufsize - pos);
}
buf[pos] = '\0';
return pos;
}
#endif