ardupilot/libraries/AP_RangeFinder/AP_RangeFinder_NMEA.cpp

184 lines
5.6 KiB
C++
Raw Permalink Normal View History

2018-05-14 02:03:08 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_RangeFinder_LightWareSerial.h"
#include <AP_SerialManager/AP_SerialManager.h>
#include <ctype.h>
#include "AP_RangeFinder_NMEA.h"
extern const AP_HAL::HAL& hal;
// constructor initialises the rangefinder
// Note this is called after detect() returns true, so we
// already know that we should setup the rangefinder
AP_RangeFinder_NMEA::AP_RangeFinder_NMEA(RangeFinder::RangeFinder_State &_state,
AP_RangeFinder_Params &_params,
2018-05-14 02:03:08 -03:00
uint8_t serial_instance) :
AP_RangeFinder_Backend(_state, _params),
2018-05-14 02:03:08 -03:00
_distance_m(-1.0f)
{
const AP_SerialManager &serial_manager = AP::serialmanager();
2018-05-14 02:03:08 -03:00
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance);
if (uart != nullptr) {
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance));
}
}
// detect if a NMEA rangefinder by looking to see if the user has configured it
bool AP_RangeFinder_NMEA::detect(uint8_t serial_instance)
2018-05-14 02:03:08 -03:00
{
return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr;
2018-05-14 02:03:08 -03:00
}
// update the state of the sensor
void AP_RangeFinder_NMEA::update(void)
{
uint32_t now = AP_HAL::millis();
if (get_reading(state.distance_cm)) {
// update range_valid state based on distance measured
state.last_reading_ms = now;
2018-05-14 02:03:08 -03:00
update_status();
} else if ((now - state.last_reading_ms) > 3000) {
2018-05-14 02:03:08 -03:00
set_status(RangeFinder::RangeFinder_NoData);
}
}
// return last value measured by sensor
bool AP_RangeFinder_NMEA::get_reading(uint16_t &reading_cm)
{
if (uart == nullptr) {
return false;
}
// read any available lines from the lidar
float sum = 0.0f;
uint16_t count = 0;
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
char c = uart->read();
if (decode(c)) {
sum += _distance_m;
count++;
}
}
// return false on failure
if (count == 0) {
return false;
}
// return average of all measurements
reading_cm = 100.0f * sum / count;
return true;
}
// add a single character to the buffer and attempt to decode
// returns true if a complete sentence was successfully decoded
bool AP_RangeFinder_NMEA::decode(char c)
{
switch (c) {
case ',':
// end of a term, add to checksum
_checksum ^= c;
FALLTHROUGH;
case '\r':
case '\n':
case '*':
{
// null terminate and decode latest term
_term[_term_offset] = 0;
bool valid_sentence = decode_latest_term();
// move onto next term
_term_number++;
_term_offset = 0;
_term_is_checksum = (c == '*');
return valid_sentence;
}
case '$': // sentence begin
_sentence_type = SONAR_UNKNOWN;
_term_number = 0;
_term_offset = 0;
_checksum = 0;
_term_is_checksum = false;
_distance_m = -1.0f;
return false;
}
// ordinary characters are added to term
if (_term_offset < sizeof(_term) - 1) {
2018-05-14 02:03:08 -03:00
_term[_term_offset++] = c;
}
if (!_term_is_checksum) {
2018-05-14 02:03:08 -03:00
_checksum ^= c;
}
2018-05-14 02:03:08 -03:00
return false;
}
// decode the most recently consumed term
// returns true if new sentence has just passed checksum test and is validated
bool AP_RangeFinder_NMEA::decode_latest_term()
{
// handle the last term in a message
if (_term_is_checksum) {
uint8_t nibble_high = 0;
uint8_t nibble_low = 0;
if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) {
return false;
}
const uint8_t checksum = (nibble_high << 4u) | nibble_low;
2018-05-14 02:03:08 -03:00
return ((checksum == _checksum) &&
!is_negative(_distance_m) &&
(_sentence_type == SONAR_DBT || _sentence_type == SONAR_DPT));
}
// the first term determines the sentence type
if (_term_number == 0) {
// the first two letters of the NMEA term are the talker ID.
// we accept any two characters here.
if (_term[0] < 'A' || _term[0] > 'Z' ||
_term[1] < 'A' || _term[1] > 'Z') {
_sentence_type = SONAR_UNKNOWN;
return false;
}
const char *term_type = &_term[2];
if (strcmp(term_type, "DBT") == 0) {
_sentence_type = SONAR_DBT;
} else if (strcmp(term_type, "DPT") == 0) {
_sentence_type = SONAR_DPT;
} else {
_sentence_type = SONAR_UNKNOWN;
}
return false;
}
if (_sentence_type == SONAR_DBT) {
// parse DBT messages
if (_term_number == 3) {
_distance_m = atof(_term);
}
} else if (_sentence_type == SONAR_DPT) {
// parse DPT messages
if (_term_number == 1) {
_distance_m = atof(_term);
}
}
return false;
}