ardupilot/libraries/SITL/SIM_Temperature_TSYS01.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

202 lines
6.3 KiB
C++
Raw Permalink Normal View History

#include "SIM_Temperature_TSYS01.h"
#include <stdio.h>
constexpr const int32_t SITL::TSYS01::_k[5];
int SITL::TSYS01::rdwr(I2C::i2c_rdwr_ioctl_data *&data)
{
if (data->nmsgs == 2) {
// something is expecting a response....
if (data->msgs[0].flags != 0) {
AP_HAL::panic("Unexpected flags");
}
if (data->msgs[1].flags != I2C_M_RD) {
AP_HAL::panic("Unexpected flags");
}
const uint8_t command = data->msgs[0].buf[0];
switch ((Command)command) {
case Command::RESET:
AP_HAL::panic("Bad RESET");
case Command::READ_PROM0:
case Command::READ_PROM1:
case Command::READ_PROM2:
case Command::READ_PROM3:
case Command::READ_PROM4:
case Command::READ_PROM5: {
if (state != State::RESET) {
AP_HAL::panic("reading prom outside RESET state");
}
if (data->msgs[1].len != 2) {
AP_HAL::panic("Unexpected prom read length");
}
uint8_t offs = 5-((uint8_t(command) - uint8_t(Command::READ_PROM0))/2);
const uint16_t k = _k[offs];
data->msgs[1].buf[0] = k >> 8;
data->msgs[1].buf[1] = k & 0xFF;
break;
}
case Command::CONVERT:
AP_HAL::panic("Bad CONVERT");
case Command::READ_ADC: {
uint8_t registers[3] {};
if (data->msgs[1].len != sizeof(registers)) {
AP_HAL::panic("Unexpected prom read length");
}
if (state == State::CONVERTING) {
// we've been asked for values while still converting.
// Return zeroes per data sheet
} else if (state == State::CONVERTED) {
uint32_t value = adc;
registers[2] = value & 0xff;
value >>= 8;
registers[1] = value & 0xff;
value >>= 8;
registers[0] = value & 0xff;
set_state(State::IDLE);
} else {
// AP_HAL::panic("READ_ADC in bad state");
// this happens at startup
return -1;
}
for (uint8_t i=0; i<ARRAY_SIZE(registers); i++) {
data->msgs[1].buf[i] = registers[i];
}
break;
}
}
return 0;
}
if (data->nmsgs == 1) {
// incoming write-only command
const auto &msg = data->msgs[0];
const uint8_t cmd = msg.buf[0];
switch ((Command)cmd) {
case Command::RESET:
set_state(State::RESET);
break;
case Command::READ_PROM0:
case Command::READ_PROM1:
case Command::READ_PROM2:
case Command::READ_PROM3:
case Command::READ_PROM4:
case Command::READ_PROM5:
AP_HAL::panic("bad prom read");
case Command::CONVERT:
if (state != State::RESET &&
state != State::CONVERTING &&
state != State::IDLE &&
state != State::READ_PROM) {
AP_HAL::panic("Convert outside reset/idle");
}
set_state(State::CONVERTING);
break;
case Command::READ_ADC:
AP_HAL::panic("bad READ_ADC");
}
return 0;
}
return -1;
}
// swiped from the driver:
float SITL::TSYS01::temperature_for_adc(uint32_t _adc) const
{
const float adc16 = _adc/256.0;
// const uint32_t _k[] { 28446, 24926, 36016, 32791, 40781 };
return
-2 * _k[4] * powf(10, -21) * powf(adc16, 4) +
4 * _k[3] * powf(10, -16) * powf(adc16, 3) +
-2 * _k[2] * powf(10, -11) * powf(adc16, 2) +
1 * _k[1] * powf(10, -6) * adc16 +
-1.5 * _k[0] * powf(10, -2);
}
uint32_t SITL::TSYS01::calculate_adc(float temperature) const
{
// bisect to find the adc24 value:
uint32_t min_adc = 0;
uint32_t max_adc = 1<<24;
uint32_t current_adc = (min_adc+(uint64_t)max_adc)/2;
float current_error = fabsf(temperature_for_adc(current_adc) - temperature);
bool bisect_down = false;
// temperature_for_adc(9378708); // should be 10.59
while (labs(int32_t(max_adc - min_adc)) > 1 && current_error > 0.05) {
uint32_t candidate_adc;
if (bisect_down) {
candidate_adc = (min_adc+(uint64_t)current_adc)/2;
} else {
candidate_adc = (max_adc+(uint64_t)current_adc)/2;
}
const float candidate_temp = temperature_for_adc(candidate_adc);
const float candidate_error = fabsf(candidate_temp - temperature);
if (candidate_error > current_error) {
// worse result
if (bisect_down) {
min_adc = candidate_adc;
bisect_down = false;
} else {
max_adc = candidate_adc;
bisect_down = true;
}
} else {
// better result
if (bisect_down) {
max_adc = current_adc;
bisect_down = false;
} else {
min_adc = current_adc;
bisect_down = true;
}
current_adc = candidate_adc;
current_error = candidate_error;
}
}
return current_adc;
}
void SITL::TSYS01::update(const class Aircraft &aircraft)
{
switch (state) {
case State::UNKNOWN:
break;
case State::RESET:
if (time_in_state_ms() > 10) {
set_state(State::READ_PROM);
}
break;
case State::READ_PROM:
break;
case State::IDLE:
break;
case State::CONVERTING:
if (time_in_state_ms() > 5) {
const float temperature = get_sim_temperature();
if (!is_equal(last_temperature, temperature)) {
last_temperature = temperature;
adc = calculate_adc(temperature);
}
set_state(State::CONVERTED);
}
break;
case State::CONVERTED:
break;
}
}
float SITL::TSYS01::get_sim_temperature() const
{
float sim_alt = AP::sitl()->state.altitude;
sim_alt += 2 * rand_float();
float sigma, delta, theta;
AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
// To Do: Add a sensor board temperature offset parameter
return (KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta)) + 25.0;
}