ardupilot/libraries/AP_HAL_ESP32/WiFiUdpDriver.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

368 lines
11 KiB
C++
Raw Permalink Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL_ESP32/WiFiUdpDriver.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL_ESP32/Scheduler.h>
#include <sys/param.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_log.h"
#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
#include "soc/rtc_wdt.h"
using namespace ESP32;
extern const AP_HAL::HAL& hal;
#define UDP_PORT 14550
WiFiUdpDriver::WiFiUdpDriver()
{
_state = NOT_INITIALIZED;
accept_socket = -1;
}
void WiFiUdpDriver::_begin(uint32_t b, uint16_t rxS, uint16_t txS)
{
if (_state == NOT_INITIALIZED) {
initialize_wifi();
if (!start_listen()) {
return;
}
// keep main tasks that need speed on CPU 0
// pin potentially slow stuff to CPU 1, as we have disabled the WDT on that core.
#define FASTCPU 0
#define SLOWCPU 1
if (xTaskCreatePinnedToCore(_wifi_thread2, "APM_WIFI2", Scheduler::WIFI_SS2, this, Scheduler::WIFI_PRIO2, &_wifi_task_handle,FASTCPU) != pdPASS) {
hal.console->printf("FAILED to create task _wifi_thread2 on FASTCPU\n");
} else {
hal.console->printf("OK created task _wifi_thread2 on FASTCPU\n");
}
_readbuf.set_size(RX_BUF_SIZE);
_writebuf.set_size(TX_BUF_SIZE);
_state = INITIALIZED;
}
}
void WiFiUdpDriver::_end()
{
//TODO
}
void WiFiUdpDriver::_flush()
{
}
bool WiFiUdpDriver::is_initialized()
{
return true;
}
bool WiFiUdpDriver::tx_pending()
{
return (_writebuf.available() > 0);
}
uint32_t WiFiUdpDriver::_available()
{
return _readbuf.available();
}
uint32_t WiFiUdpDriver::txspace()
{
int result = _writebuf.space();
result -= TX_BUF_SIZE / 4;
return MAX(result, 0);
}
ssize_t WiFiUdpDriver::_read(uint8_t *buf, uint16_t count)
{
if (!_read_mutex.take_nonblocking()) {
return false;
}
auto ret = _readbuf.read(buf, count);
_read_mutex.give();
return ret;
}
bool WiFiUdpDriver::start_listen()
{
accept_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (accept_socket < 0) {
accept_socket = -1;
return false;
}
int opt;
setsockopt(accept_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
struct sockaddr_in destAddr;
destAddr.sin_addr.s_addr = htonl(INADDR_ANY);
destAddr.sin_family = AF_INET;
destAddr.sin_port = htons(UDP_PORT);
int err = bind(accept_socket, (struct sockaddr *)&destAddr, sizeof(destAddr));
if (err != 0) {
close(accept_socket);
accept_socket = 0;
return false;
}
//memset(&client_addr, 0, sizeof(client_addr));
fcntl(accept_socket, F_SETFL, O_NONBLOCK);
return true;
}
bool WiFiUdpDriver::read_all()
{
_read_mutex.take_blocking();
struct sockaddr_in client_addr;
socklen_t socklen = sizeof(client_addr);
int count = recvfrom(accept_socket, _buffer, sizeof(_buffer) - 1, 0, (struct sockaddr *)&client_addr, &socklen);
if (count > 0) {
_readbuf.write(_buffer, count);
_read_mutex.give();
} else {
return false;
}
_read_mutex.give();
return true;
}
bool WiFiUdpDriver::write_data()
{
_write_mutex.take_blocking();
struct sockaddr_in dest_addr;
dest_addr.sin_addr.s_addr = inet_addr("192.168.4.255");
dest_addr.sin_family = AF_INET;
dest_addr.sin_port = htons(UDP_PORT);
int count = _writebuf.peekbytes(_buffer, sizeof(_buffer));
if (count > 0) {
count = sendto(accept_socket, _buffer, count, 0, (struct sockaddr *)&dest_addr, sizeof(dest_addr));
if (count > 0) {
_writebuf.advance(count);
} else {
_write_mutex.give();
return false;
}
}
_write_mutex.give();
return true;
}
#if WIFI_STATION
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
#ifndef ESP_STATION_MAXIMUM_RETRY
#define ESP_STATION_MAXIMUM_RETRY 10
#endif
static const char *TAG = "wifi station";
static int s_retry_num = 0;
static EventGroupHandle_t s_wifi_event_group;
static void _sta_event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
if (s_retry_num < ESP_STATION_MAXIMUM_RETRY) {
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
} else {
xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
}
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
}
}
#endif
void WiFiUdpDriver::initialize_wifi()
{
#ifndef WIFI_PWD
#default WIFI_PWD "ardupilot1"
#endif
//Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_config_t wifi_config;
bzero(&wifi_config, sizeof(wifi_config));
/*
Acting as an Access Point (softAP)
*/
#if !WIFI_STATION
#ifndef WIFI_SSID
#define WIFI_SSID "ardupilot"
#endif
#ifndef WIFI_CHANNEL
#define WIFI_CHANNEL 1
#endif
esp_netif_create_default_wifi_ap();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
strcpy((char *)wifi_config.ap.ssid, WIFI_SSID);
strcpy((char *)wifi_config.ap.password, WIFI_PWD);
wifi_config.ap.ssid_len = strlen(WIFI_SSID),
wifi_config.ap.max_connection = WIFI_MAX_CONNECTION,
wifi_config.ap.authmode = WIFI_AUTH_WPA2_PSK;
wifi_config.ap.channel = WIFI_CHANNEL;
if (strlen(WIFI_PWD) == 0) {
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
}
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_AP));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_AP, &wifi_config));
ESP_ERROR_CHECK(esp_wifi_start());
hal.console->printf("WiFi softAP init finished. SSID: %s password: %s channel: %d\n",
wifi_config.ap.ssid, wifi_config.ap.password, wifi_config.ap.channel);
/*
Acting as a Station (WiFi Client)
*/
#else
#ifndef WIFI_SSID_STATION
#define WIFI_SSID_STATION "ardupilot"
#endif
#ifndef WIFI_HOSTNAME
#define WIFI_HOSTNAME "ArduPilotESP32"
#endif
s_wifi_event_group = xEventGroupCreate();
esp_netif_t *netif = esp_netif_create_default_wifi_sta();
esp_netif_set_hostname(netif, WIFI_HOSTNAME);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&_sta_event_handler,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&_sta_event_handler,
NULL,
&instance_got_ip));
strcpy((char *)wifi_config.sta.ssid, WIFI_SSID_STATION);
strcpy((char *)wifi_config.sta.password, WIFI_PWD);
wifi_config.sta.threshold.authmode = WIFI_AUTH_OPEN;
wifi_config.sta.sae_pwe_h2e = WPA3_SAE_PWE_BOTH;
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
hal.console->printf("WiFi Station init finished. Connecting:\n");
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
* number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE, pdFALSE, portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
* happened. */
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID: %s password: %s",
wifi_config.sta.ssid, wifi_config.sta.password);
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID: %s, password: %s",
wifi_config.sta.ssid, wifi_config.sta.password);
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
/* The event will not be processed after unregister */
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
vEventGroupDelete(s_wifi_event_group);
#endif
}
size_t WiFiUdpDriver::_write(const uint8_t *buffer, size_t size)
{
if (!_write_mutex.take_nonblocking()) {
return 0;
}
size_t ret = _writebuf.write(buffer, size);
_write_mutex.give();
return ret;
}
void WiFiUdpDriver::_wifi_thread2(void *arg)
{
WiFiUdpDriver *self = (WiFiUdpDriver *) arg;
while (true) {
struct timeval tv = {
.tv_sec = 0,
.tv_usec = 100*1000, // 10 times a sec, we try to write-all even if we read nothing , at just 1000, it floggs the APM_WIFI2 task cpu usage unecessarily, slowing APM_WIFI1 response
};
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(self->accept_socket, &rfds);
int s = select(self->accept_socket + 1, &rfds, NULL, NULL, &tv);
if (s > 0 && FD_ISSET(self->accept_socket, &rfds)) {
self->read_all();
}
self->write_data();
}
}
bool WiFiUdpDriver::_discard_input()
{
return false;
}