ardupilot/libraries/SITL/SIM_RichenPower.cpp

258 lines
7.8 KiB
C++
Raw Permalink Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Simulator for the RichenPower Hybrid generators
*/
#include <AP_Math/AP_Math.h>
#include "SIM_RichenPower.h"
#include "SITL.h"
2020-07-07 05:49:15 -03:00
#include <AP_HAL/utility/sparse-endian.h>
#include <stdio.h>
#include <errno.h>
using namespace SITL;
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo RichenPower::var_info[] = {
// @Param: ENABLE
// @DisplayName: RichenPower Generator sim enable/disable
// @Description: Allows you to enable (1) or disable (0) the RichenPower simulator
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("ENABLE", 0, RichenPower, _enabled, 0),
// @Param: CTRL_PIN
// @DisplayName: Pin RichenPower is connectred to
// @Description: The pin number that the RichenPower spinner servo is connected to. (start at 1)
// @Range: 0 15
// @User: Advanced
AP_GROUPINFO("CTRL", 2, RichenPower, _ctrl_pin, -1),
AP_GROUPEND
};
RichenPower::RichenPower() : SerialDevice::SerialDevice()
{
AP_Param::setup_object_defaults(this, var_info);
u.packet.magic1 = 0xAA;
u.packet.magic2 = 0x55;
u.packet.version_major = 0x0A;
u.packet.version_minor = 0x00;
u.packet.footermagic1 = 0x55;
u.packet.footermagic2 = 0xAA;
}
void RichenPower::set_run_state(State newstate) {
hal.console->printf("Moving to state %u from %u\n", (unsigned)newstate, (unsigned)_state);
_state = newstate;
}
void RichenPower::update(const struct sitl_input &input)
{
if (!_enabled.get()) {
return;
}
update_control_pin(input);
update_send();
}
void RichenPower::update_control_pin(const struct sitl_input &input)
{
const uint32_t now = AP_HAL::millis();
static const uint16_t INPUT_SERVO_PWM_STOP = 1200;
static const uint16_t INPUT_SERVO_PWM_IDLE = 1500;
// static const uint16_t INPUT_SERVO_PWM_RUN = 1900;
// RICHENPOWER, 13:47
// 1100~1300 for engine stop, 1300~1800 for idle, and 1800~2000 for run
const uint16_t control_pwm = _ctrl_pin >= 1 ? input.servos[_ctrl_pin-1] : -1;
if (_state != State::STOPPING) {
if (control_pwm <= INPUT_SERVO_PWM_STOP && _state != State::STOP) {
if (stop_start_ms == 0) {
stop_start_ms = now;
}
} else {
stop_start_ms = 0;
}
}
// ::fprintf(stderr, "stop_start_ms=%u\n", stop_start_ms);
State newstate;
if (control_pwm <= INPUT_SERVO_PWM_STOP) {
// stop
if (stop_start_ms == 0 || now - stop_start_ms > 30000) {
newstate = State::STOP;
} else {
newstate = State::STOPPING;
}
} else if (control_pwm <= INPUT_SERVO_PWM_IDLE) {
newstate = State::IDLE;
} else {
newstate = State::RUN;
}
if (newstate != _state) {
set_run_state(newstate);
} else {
if (_state == State::STOP) {
// pass
} else {
_runtime_ms += now - _last_runtime_ms;
}
_last_runtime_ms = now;
}
// RICHENPOWER, 13:49
// Idle RMP 4800 +-300, RUN RPM 13000 +- 1500
uint16_t desired_rpm = 0;
switch (_state) {
case State::STOP:
desired_rpm = 0;
break;
case State::IDLE:
case State::STOPPING:
desired_rpm = 4800; // +/- 300
break;
case State::RUN:
desired_rpm = 13000; // +/- 1500
break;
}
_current_current = AP::sitl()->state.battery_current;
_current_current = MIN(_current_current, max_current);
if (_current_current > 1 && _state != State::RUN) {
AP_HAL::panic("Generator stalled due to high current demand");
} else if (_current_current > max_current) {
AP_HAL::panic("Generator stalled due to high current demand (run)");
}
// linear degradation in RPM up to maximum load
if (desired_rpm) {
desired_rpm -= 1500 * (_current_current/max_current);
}
const float max_slew_rpm_per_second = 2000;
const float max_slew_rpm = max_slew_rpm_per_second * ((now - last_rpm_update_ms) / 1000.0f);
last_rpm_update_ms = now;
const float rpm_delta = _current_rpm - desired_rpm;
if (rpm_delta > 0) {
_current_rpm -= MIN(max_slew_rpm, rpm_delta);
} else {
_current_rpm += MIN(max_slew_rpm, abs(rpm_delta));
}
// if (!is_zero(rpm_delta)) {
// ::fprintf(stderr, "richenpower pwm: %f\n", _current_rpm);
// }
}
void RichenPower::RichenUnion::update_checksum()
{
packet.checksum = 0;
for (uint8_t i=1; i<6; i++) {
packet.checksum += htobe16(checksum_buffer[i]);
}
packet.checksum = htobe16(packet.checksum);
}
void RichenPower::update_send()
{
// just send a chunk of data at 1Hz:
const uint32_t now = AP_HAL::millis();
if (now - last_sent_ms < 1000) {
return;
}
last_sent_ms = now;
u.packet.rpm = htobe16(_current_rpm);
uint32_t runtime_seconds_remainder = _runtime_ms / 1000;
u.packet.runtime_hours = runtime_seconds_remainder / 3600;
runtime_seconds_remainder %= 3600;
u.packet.runtime_minutes = runtime_seconds_remainder / 60;
runtime_seconds_remainder %= 60;
u.packet.runtime_seconds = runtime_seconds_remainder;
u.packet.runtime_seconds = runtime_seconds_remainder;
const int32_t seconds_until_maintenance = (original_seconds_until_maintenance - _runtime_ms/1000.0f);
uint16_t errors = htobe16(u.packet.errors);
if (seconds_until_maintenance <= 0) {
u.packet.seconds_until_maintenance = htobe32(0);
errors |= (1U<<(uint8_t(Errors::MaintenanceRequired)));
} else {
u.packet.seconds_until_maintenance = htobe32(seconds_until_maintenance);
errors &= ~(1U<<(uint8_t(Errors::MaintenanceRequired)));
}
u.packet.errors = htobe16(errors);
switch (_state) {
case State::IDLE:
case State::RUN:
u.packet.output_current = htobe16(_current_current * 100);
// +/- 3V, depending on draw
u.packet.output_voltage = htobe16(100*base_supply_voltage - 3 * (_current_current / max_current));
break;
case State::STOP:
default:
u.packet.output_current = 0;
u.packet.output_voltage = 0;
break;
}
enum class Mode {
IDLE = 0,
RUN = 1,
CHARGE = 2,
BALANCE = 3,
OFF = 4,
};
switch (_state) {
case State::STOP:
u.packet.mode = (uint8_t)Mode::OFF;
break;
case State::STOPPING:
case State::IDLE:
u.packet.mode = (uint8_t)Mode::IDLE;
break;
case State::RUN:
u.packet.mode = (uint8_t)Mode::RUN;
break;
}
u.update_checksum();
// const uint8_t data[] = {
// 0xAA, 0x55, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x1E, 0xB0, 0x00, 0x10, 0x00, 0x00, 0x23, 0x7A, 0x23,
// 0x7A, 0x11, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1E, 0xBE, 0x55, 0xAA,
// };
if (write_to_autopilot((char*)u.parse_buffer, ARRAY_SIZE(u.parse_buffer)) != ARRAY_SIZE(u.parse_buffer)) {
AP_HAL::panic("Failed to write to autopilot: %s", strerror(errno));
}
}