ardupilot/libraries/AP_Avoidance/AP_Avoidance.h

213 lines
8.0 KiB
C
Raw Permalink Normal View History

#pragma once
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Situational awareness for ArduPilot
- record a series of moving points in space which should be avoided
- produce messages for GCS if a collision risk is detected
Peter Barker, May 2016
based on AP_ADSB, Tom Pittenger, November 2015
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_ADSB/AP_ADSB.h>
// F_RCVRY possible parameter values
#define AP_AVOIDANCE_RECOVERY_REMAIN_IN_AVOID_ADSB 0
#define AP_AVOIDANCE_RECOVERY_RESUME_PREVIOUS_FLIGHTMODE 1
#define AP_AVOIDANCE_RECOVERY_RTL 2
#define AP_AVOIDANCE_RECOVERY_RESUME_IF_AUTO_ELSE_LOITER 3
#define AP_AVOIDANCE_STATE_RECOVERY_TIME_MS 2000 // we will not downgrade state any faster than this (2 seconds)
#define AP_AVOIDANCE_ESCAPE_TIME_SEC 2 // vehicle runs from thread for 2 seconds
class AP_Avoidance {
public:
// obstacle class to hold latest information for a known obstacles
class Obstacle {
public:
MAV_COLLISION_SRC src;
uint32_t src_id;
uint32_t timestamp_ms;
Location _location;
Vector3f _velocity;
// fields relating to this being a threat. These would be the reason to have a separate list of threats:
MAV_COLLISION_THREAT_LEVEL threat_level;
float closest_approach_xy; // metres
float closest_approach_z; // metres
float time_to_closest_approach; // seconds, 3D approach
float distance_to_closest_approach; // metres, 3D
uint32_t last_gcs_report_time; // millis
};
// add obstacle to the list of known obstacles
void add_obstacle(uint32_t obstacle_timestamp_ms,
const MAV_COLLISION_SRC src,
uint32_t src_id,
const Location &loc,
const Vector3f &vel_ned);
void add_obstacle(uint32_t obstacle_timestamp_ms,
const MAV_COLLISION_SRC src,
uint32_t src_id,
const Location &loc,
float cog,
float hspeed,
float vspeed);
// update should be called at 10hz or higher
void update();
// enable or disable avoidance
void enable() { _enabled = true; };
void disable() { _enabled = false; };
// current overall threat level
MAV_COLLISION_THREAT_LEVEL current_threat_level() const;
// add obstacles into the Avoidance system from MAVLink messages
void handle_msg(const mavlink_message_t &msg);
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
protected:
// constructor
AP_Avoidance(AP_AHRS &ahrs, class AP_ADSB &adsb);
// top level avoidance handler. This calls the vehicle specific handle_avoidance with requested action
void handle_avoidance_local(AP_Avoidance::Obstacle *threat);
// avoid the most significant threat. child classes must override this method
// function returns the action that it is actually taking
virtual MAV_COLLISION_ACTION handle_avoidance(const AP_Avoidance::Obstacle *obstacle, MAV_COLLISION_ACTION requested_action) = 0;
// recover after all threats have cleared. child classes must override this method
// recovery_action is from F_RCVRY parameter
virtual void handle_recovery(uint8_t recovery_action) = 0;
uint32_t _last_state_change_ms = 0;
MAV_COLLISION_THREAT_LEVEL _threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
// gcs notification
// specifies how long we should continue sending messages about a threat after it has cleared
static const uint8_t _gcs_cleared_messages_duration = 5; // seconds
uint32_t _gcs_cleared_messages_first_sent;
void handle_threat_gcs_notify(AP_Avoidance::Obstacle *threat);
AP_Avoidance::Obstacle *most_serious_threat();
// returns an entry from the MAV_COLLISION_ACTION representative
// of what the current avoidance handler is up to.
MAV_COLLISION_ACTION mav_avoidance_action() { return _latest_action; }
// get target destination that best gets vehicle away from the nearest obstacle
bool get_destination_perpendicular(const AP_Avoidance::Obstacle *obstacle, Vector3f &newdest_neu, const float wp_speed_xy, const float wp_speed_z, const uint8_t _minimum_avoid_height);
// get unit vector away from the nearest obstacle
bool get_vector_perpendicular(const AP_Avoidance::Obstacle *obstacle, Vector3f &vec_neu);
// helper functions to calculate destination to get us away from obstacle
// Note: v1 is NED
static Vector3f perpendicular_xyz(const Location &p1, const Vector3f &v1, const Location &p2);
static Vector2f perpendicular_xy(const Location &p1, const Vector3f &v1, const Location &p2);
// reference to AHRS, so we can ask for our position, heading and speed
const AP_AHRS &_ahrs;
private:
// constants
const uint32_t MAX_OBSTACLE_AGE_MS = 5000; // obstacles that have not been heard from for 5 seconds are removed from the list
const static uint8_t _gcs_notify_interval = 1; // seconds
// speed below which we will fly directly away from a threat
// rather than perpendicular to its velocity:
const uint8_t _low_velocity_threshold = 1; // meters/second
// check to see if we are initialised (and possibly do initialisation)
bool check_startup();
// initialize _obstacle_list
void init();
// free _obstacle_list
void deinit();
// get unique id for adsb
uint32_t src_id_for_adsb_vehicle(AP_ADSB::adsb_vehicle_t vehicle) const;
void check_for_threats();
void update_threat_level(const Location &my_loc,
const Vector3f &my_vel,
AP_Avoidance::Obstacle &obstacle);
// calls into the AP_ADSB library to retrieve vehicle data
void get_adsb_samples();
// returns true if the obstacle should be considered more of a
// threat than the current most serious threat
bool obstacle_is_more_serious_threat(const AP_Avoidance::Obstacle &obstacle) const;
// internal variables
AP_Avoidance::Obstacle *_obstacles;
uint8_t _obstacles_allocated;
uint8_t _obstacle_count;
int8_t _current_most_serious_threat;
MAV_COLLISION_ACTION _latest_action = MAV_COLLISION_ACTION_NONE;
// external references
class AP_ADSB &_adsb;
// parameters
AP_Int8 _enabled;
AP_Int8 _obstacles_max;
AP_Int8 _fail_action;
AP_Int8 _fail_recovery;
AP_Int8 _fail_time_horizon;
AP_Int16 _fail_distance_xy;
AP_Int16 _fail_distance_z;
AP_Int16 _fail_altitude_minimum;
AP_Int8 _warn_action;
AP_Int8 _warn_time_horizon;
AP_Float _warn_distance_xy;
AP_Float _warn_distance_z;
};
float closest_distance_between_radial_and_point(const Vector2f &w,
const Vector2f &p);
float closest_approach_xy(const Location &my_loc,
const Vector3f &my_vel,
const Location &obstacle_loc,
const Vector3f &obstacle_vel,
uint8_t time_horizon);
float closest_approach_z(const Location &my_loc,
const Vector3f &my_vel,
const Location &obstacle_loc,
const Vector3f &obstacle_vel,
uint8_t time_horizon);