ardupilot/libraries/SITL/SIM_Blimp.cpp

157 lines
4.9 KiB
C++
Raw Permalink Normal View History

2021-03-18 00:12:54 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Blimp simulator class
*/
#define ALLOW_DOUBLE_MATH_FUNCTIONS
2021-03-18 00:12:54 -03:00
#include "SIM_Blimp.h"
#include <stdio.h>
using namespace SITL;
2021-07-08 09:46:12 -03:00
extern const AP_HAL::HAL& hal;
2021-03-18 00:12:54 -03:00
Blimp::Blimp(const char *frame_str) :
Aircraft(frame_str)
{
2021-07-08 09:46:12 -03:00
mass = 0.07;
radius = 0.25;
moment_of_inertia = {0.004375, 0.004375, 0.004375}; //m*r^2 for hoop...
k_tan = 5.52e-4; //Tangential (thrust) multiplier
drag_constant = 0.05;
drag_gyr_constant = 0.08;
lock_step_scheduled = true;
2021-07-08 09:46:12 -03:00
::printf("Starting Blimp AirFish model...\n");
2021-03-18 00:12:54 -03:00
}
// calculate rotational and linear accelerations
void Blimp::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
{
2021-07-08 09:46:12 -03:00
if (!hal.scheduler->is_system_initialized()) {
return;
}
//all fin setup
for (uint8_t i=0; i<4; i++) {
fin[i].last_angle = fin[i].angle;
fin[i].angle = filtered_servo_angle(input, i)*radians(75.0f); //for servo range of -75 deg to +75 deg
if (fin[i].angle < fin[i].last_angle) fin[i].dir = 0; //thus 0 = "angle is reducing"
else fin[i].dir = 1;
fin[i].vel = (fin[i].angle - fin[i].last_angle)/delta_time; //rad/s
fin[i].vel = constrain_float(fin[i].vel, radians(-450), radians(450));
fin[i].T = pow(fin[i].vel,2) * k_tan;
fin[i].Fx = 0;
fin[i].Fy = 0;
fin[i].Fz = 0;
}
//TODO: Add normal force calculations and include roll & pitch oscillation.
//Back fin
fin[0].Fx = fin[0].T*cos(fin[0].angle); //causes forward movement
fin[0].Fz = fin[0].T*sin(fin[0].angle); //causes height change
//Front fin
fin[1].Fx = -fin[1].T*cos(fin[1].angle); //causes backward movement
fin[1].Fz = fin[1].T*sin(fin[1].angle); //causes height change
//Right fin
fin[2].Fy = -fin[2].T*cos(fin[2].angle); //causes left movement
fin[2].Fx = fin[2].T*sin(fin[2].angle); //causes yaw
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
//Left fin
fin[3].Fy = fin[3].T*cos(fin[3].angle); //causes right movement
fin[3].Fx = -fin[3].T*sin(fin[3].angle); //causes yaw
Vector3f force_bf{0,0,0};
for (uint8_t i=0; i<4; i++) {
force_bf.x = force_bf.x + fin[i].Fx;
force_bf.y = force_bf.y + fin[i].Fy;
force_bf.z = force_bf.z + fin[i].Fz;
}
//mass in kg, thus accel in m/s/s
body_accel.x = force_bf.x/mass;
body_accel.y = force_bf.y/mass;
body_accel.z = force_bf.z/mass;
Vector3f rot_T{0,0,0};
rot_T.z = fin[2].Fx * radius + fin[3].Fx * radius;//in N*m (Torque = force * lever arm)
//rot accel = torque / moment of inertia
rot_accel.x = 0;
rot_accel.y = 0;
rot_accel.z = rot_T.z / moment_of_inertia.z;
2021-03-18 00:12:54 -03:00
}
/*
update the blimp simulation by one time step
*/
void Blimp::update(const struct sitl_input &input)
{
2021-07-08 09:46:12 -03:00
delta_time = frame_time_us * 1.0e-6f;
Vector3f rot_accel = Vector3f(0,0,0);
calculate_forces(input, rot_accel, accel_body);
if (hal.scheduler->is_system_initialized()) {
float gyr_sq = gyro.length_squared();
if (is_positive(gyr_sq)) {
Vector3f force_gyr = (gyro.normalized() * drag_gyr_constant * gyr_sq);
Vector3f ef_drag_accel_gyr = -force_gyr / mass;
Vector3f bf_drag_accel_gyr = dcm.transposed() * ef_drag_accel_gyr;
rot_accel += bf_drag_accel_gyr;
}
}
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
// update rotational rates in body frame
gyro += rot_accel * delta_time;
gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f));
gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f));
gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f));
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
if (hal.scheduler->is_system_initialized()) {
float speed_sq = velocity_ef.length_squared();
if (is_positive(speed_sq)) {
Vector3f force = (velocity_ef.normalized() * drag_constant * speed_sq);
Vector3f ef_drag_accel = -force / mass;
Vector3f bf_drag_accel = dcm.transposed() * ef_drag_accel;
accel_body += bf_drag_accel;
}
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
// add lifting force exactly equal to gravity, for neutral buoyancy
accel_body += dcm.transposed() * Vector3f(0,0,-GRAVITY_MSS);
}
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS); //add gravity
velocity_ef += accel_earth * delta_time;
position += (velocity_ef * delta_time).todouble(); //update position vector
2021-03-18 00:12:54 -03:00
2021-07-08 09:46:12 -03:00
update_position(); //updates the position from the Vector3f position
time_advance();
update_mag_field_bf();
2021-03-18 00:12:54 -03:00
}