ardupilot/libraries/AP_Notify/AP_BoardLED2.cpp

273 lines
8.0 KiB
C++
Raw Permalink Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_BoardLED2.h"
#include "AP_Notify.h"
// show all status on only 2 leds
#if defined(HAL_GPIO_A_LED_PIN) || defined(HAL_GPIO_B_LED_PIN)
#ifndef HAL_GPIO_A_LED_PIN
#define HAL_GPIO_A_LED_PIN -1
#endif
#ifndef HAL_GPIO_B_LED_PIN
#define HAL_GPIO_B_LED_PIN -1
#endif
extern const AP_HAL::HAL& hal;
bool AP_BoardLED2::init(void)
{
// setup the main LEDs as outputs
hal.gpio->pinMode(HAL_GPIO_A_LED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->pinMode(HAL_GPIO_B_LED_PIN, HAL_GPIO_OUTPUT);
// turn all lights off
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF);
_sat_cnt=0;
save_trim_counter = 0;
arm_counter = 0;
return true;
}
/*
main update function called at 50Hz
*/
void AP_BoardLED2::update(void)
{
_counter++;
// we never want to update LEDs at a higher than 16Hz rate
if (_counter % 3 != 0) {
return;
}
// counter2 used to drop frequency down to 16hz
uint8_t counter2 = _counter / 3;
// initialising
if (AP_Notify::flags.initialising) {
// blink LEDs A at 8Hz (full cycle) during initialisation
hal.gpio->write(HAL_GPIO_A_LED_PIN, (counter2 & 1) ? HAL_GPIO_LED_ON : HAL_GPIO_LED_OFF);
return;
}
if ((counter2 & 0x2) == 0) {
save_trim_counter++;
}
bool led_a_used=false;
// save trim and ESC calibration
if (AP_Notify::flags.save_trim || AP_Notify::flags.esc_calibration) {
switch(save_trim_counter) {
case 0:
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF);
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
break;
case 1:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_ON);
break;
default:
save_trim_counter = -1;
break;
}
return;
}
if(AP_Notify::flags.compass_cal_running){ // compass calibration
switch(save_trim_counter) {
case 0:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short blinks by both LEDs
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_ON);
break;
case 1:
case 2:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF);
break;
case 3:
case 4:
case 5:
case 6:
case 7:
break;
default:
// reset counter to restart the sequence
save_trim_counter = -1;
break;
}
return;
}
if(AP_Notify::events.autotune_complete){
switch(save_trim_counter) {
case 0:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short darkening
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
case 7:
break;
default:
// reset counter to restart the sequence
save_trim_counter = -1;
break;
}
led_a_used=true;
}
if(AP_Notify::events.autotune_failed){
switch(save_trim_counter) {
case 0:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short double darkening
break;
case 1:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
case 2:
case 3:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
break;
case 4:
case 5:
case 6:
case 7:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
default:
// reset counter to restart the sequence
save_trim_counter = -1;
break;
}
led_a_used=true;
}
// arming light
if(!led_a_used) {
if (AP_Notify::flags.armed) {
if(AP_Notify::flags.failsafe_battery){// blink slowly (around 2Hz)
if ((counter2 & 0x7) == 0) {
hal.gpio->toggle(HAL_GPIO_A_LED_PIN);
}
}else if(AP_Notify::flags.failsafe_radio){// blink fast (around 4Hz)
if ((counter2 & 0x3) == 0) {
hal.gpio->toggle(HAL_GPIO_A_LED_PIN);
}
} else {
// ARM led solid
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
}
}else{
if ((counter2 & 0x2) == 0) {
arm_counter++;
}
if (AP_Notify::flags.pre_arm_check) {
// passed pre-arm checks so slower single flash
switch(arm_counter) {
case 0:
case 1:
case 2:
case 3:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
break;
case 4:
case 5:
case 6:
case 7:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
default:
// reset counter to restart the sequence
arm_counter = -1;
break;
}
}else{
// failed pre-arm checks so double flash
switch(arm_counter) {
case 0:
case 1:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
break;
case 2:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
case 3:
case 4:
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON);
break;
case 5:
case 6:
case 7: // add one tick to do period be a multiple of the second
hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF);
break;
default:
arm_counter = -1;
break;
}
}
}
}
// gps light
switch (AP_Notify::flags.gps_status) {
case 0:
case 1:
// no GPS attached or no lock - be dark
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF);
break;
case 2: // 2d lock
case 3:// 3d lock
default: // show number of sats
if ((counter2 & 0x2) == 0) {
_sat_cnt++;
}
uint16_t sats = AP_Notify::flags.gps_num_sats;
if(_sat_cnt<8) { // pause between pulses
hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF);
} else if(_sat_cnt< (8 + (sats-6)*2) ) {
hal.gpio->toggle(HAL_GPIO_B_LED_PIN); // 2Hz
} else {
_sat_cnt=-1;
}
break;
}
}
#else
bool AP_BoardLED2::init(void) {return true;}
void AP_BoardLED2::update(void) {return;}
#endif