ardupilot/libraries/SITL/examples/Morse/rover_scanner.py

96 lines
2.6 KiB
Python
Raw Permalink Normal View History

'''
This is an example builder script that sets up a rover in Morse to
be driven by ArduPilot.
The rover has the basic set of sensors that ArduPilot needs
To start the simulation use this:
morse run rover.py
Then connect with ArduPilot like this:
sim_vehicle.py --model morse --console --map
This model assumes you will setup a skid-steering rover with left throttle on
channel 1 and right throttle on channel 2, which means you need to set:
SERVO1_FUNCTION 73
SERVO3_FUNCTION 74
'''
from morse.builder import *
# use the ATRV rover
vehicle = ATRV()
vehicle.properties(Object = True, Graspable = False, Label = "Vehicle")
vehicle.translate(x=0.0, z=0.0)
vehicle.rotate(z=math.pi)
# add a camera
camera = SemanticCamera(name="Camera")
camera.translate(x=0.2, y=0.3, z=0.9)
vehicle.append(camera)
camera.properties(cam_far=800)
camera.properties(Vertical_Flip=False)
camera.rotate(z=math.pi)
# we could optionally stream the video to a port
#camera.add_stream('socket')
# add sensors needed for ArduPilot operation to a vehicle
pose = Pose()
vehicle.append(pose)
imu = IMU()
vehicle.append(imu)
gps = GPS()
gps.alter('UTM')
vehicle.append(gps)
velocity = Velocity()
vehicle.append(velocity)
# add a 360 degree laser scanner, sitting 1m above the rover
2018-12-04 01:52:57 -04:00
# this is setup to be similar to the RPLidarA2
scan = Hokuyo()
scan.translate(x=0.0, z=1.0)
vehicle.append(scan)
scan.properties(Visible_arc = True)
scan.properties(laser_range = 18.0)
2018-12-04 01:52:57 -04:00
scan.properties(resolution = 5.0)
scan.properties(scan_window = 360.0)
scan.create_laser_arc()
# create a compound sensor of all of the individual sensors and stream it
all_sensors = CompoundSensor([imu, gps, velocity, pose, scan])
all_sensors.add_stream('socket')
vehicle.append(all_sensors)
# make the vehicle controllable with speed and angular velocity
# this will be available on port 60001 by default
# an example command is:
# {"v":2, "w":1}
# which is 2m/s fwd, and rotating left at 1 radian/second
motion = MotionVW()
vehicle.append(motion)
motion.add_stream('socket')
# this would allow us to control the vehicle with a keyboard
# we don't enable it as it causes issues with sensor consistency
#keyboard = Keyboard()
#keyboard.properties(Speed=3.0)
#vehicle.append(keyboard)
# Environment
env = Environment('indoors-1/boxes', fastmode=False)
env.set_camera_location([10.0, -10.0, 10.0])
env.set_camera_rotation([1.0470, 0, 0.7854])
env.select_display_camera(camera)
env.set_camera_clip(clip_end=1000)
# startup at CMAC. A location is needed for the magnetometer
env.properties(longitude = 149.165230, latitude = -35.363261, altitude = 584.0)