ardupilot/libraries/AP_OpticalFlow/AP_OpticalFlow_HereFlow.cpp

108 lines
3.6 KiB
C++
Raw Permalink Normal View History

#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include "AP_OpticalFlow_HereFlow.h"
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <com/hex/equipment/flow/Measurement.hpp>
extern const AP_HAL::HAL& hal;
#define debug_flow_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { hal.console->printf(fmt, ##args); }} while (0)
//UAVCAN Frontend Registry Binder
UC_REGISTRY_BINDER(MeasurementCb, com::hex::equipment::flow::Measurement);
uint8_t AP_OpticalFlow_HereFlow::_node_id = 0;
AP_OpticalFlow_HereFlow* AP_OpticalFlow_HereFlow::_driver = nullptr;
AP_UAVCAN* AP_OpticalFlow_HereFlow::_ap_uavcan = nullptr;
/*
constructor - registers instance at top Flow driver
*/
AP_OpticalFlow_HereFlow::AP_OpticalFlow_HereFlow(OpticalFlow &flow) :
OpticalFlow_backend(flow)
{
if (_driver) {
AP_HAL::panic("Only one instance of Flow supported!");
}
_driver = this;
}
//links the HereFlow messages to the backend
void AP_OpticalFlow_HereFlow::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<com::hex::equipment::flow::Measurement, MeasurementCb> *measurement_listener;
measurement_listener = new uavcan::Subscriber<com::hex::equipment::flow::Measurement, MeasurementCb>(*node);
// Register method to handle incoming HereFlow measurement
const int measurement_listener_res = measurement_listener->start(MeasurementCb(ap_uavcan, &handle_measurement));
if (measurement_listener_res < 0) {
AP_HAL::panic("UAVCAN Flow subscriber start problem\n\r");
return;
}
}
//updates driver states based on received HereFlow messages
void AP_OpticalFlow_HereFlow::handle_measurement(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MeasurementCb &cb)
{
if (_driver == nullptr) {
return;
}
//protect from data coming from duplicate sensors,
//as we only handle one Here Flow at a time as of now
if (_ap_uavcan == nullptr) {
_ap_uavcan = ap_uavcan;
_node_id = node_id;
}
if (_ap_uavcan == ap_uavcan && _node_id == node_id) {
WITH_SEMAPHORE(_driver->_sem);
_driver->new_data = true;
_driver->flowRate = Vector2f(cb.msg->flow_integral[0], cb.msg->flow_integral[1]);
_driver->bodyRate = Vector2f(cb.msg->rate_gyro_integral[0], cb.msg->rate_gyro_integral[1]);
_driver->integral_time = cb.msg->integration_interval;
_driver->surface_quality = cb.msg->quality;
}
}
void AP_OpticalFlow_HereFlow::update()
{
_push_state();
}
// Read the sensor
void AP_OpticalFlow_HereFlow::_push_state(void)
{
WITH_SEMAPHORE(_sem);
if (!new_data) {
return;
}
struct OpticalFlow::OpticalFlow_state state;
const Vector2f flowScaler = _flowScaler();
//setup scaling based on parameters
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
float integralToRate = 1.0f / integral_time;
//Convert to Raw Flow measurement to Flow Rate measurement
state.flowRate = Vector2f(flowRate.x * flowScaleFactorX,
flowRate.y * flowScaleFactorY) * integralToRate;
state.bodyRate = bodyRate * integralToRate;
state.surface_quality = surface_quality;
_applyYaw(state.flowRate);
_applyYaw(state.bodyRate);
// hal.console->printf("DRV: %u %f %f\n", state.surface_quality, flowRate.length(), bodyRate.length());
_update_frontend(state);
new_data = false;
}
#endif // HAL_WITH_UAVCAN