1912 lines
47 KiB
C
1912 lines
47 KiB
C
|
|
/* Dictionary object implementation using a hash table */
|
|
|
|
#include "Python.h"
|
|
|
|
typedef PyDictEntry dictentry;
|
|
typedef PyDictObject dictobject;
|
|
|
|
/* Define this out if you don't want conversion statistics on exit. */
|
|
#undef SHOW_CONVERSION_COUNTS
|
|
|
|
/* See large comment block below. This must be >= 1. */
|
|
#define PERTURB_SHIFT 5
|
|
|
|
/*
|
|
Major subtleties ahead: Most hash schemes depend on having a "good" hash
|
|
function, in the sense of simulating randomness. Python doesn't: its most
|
|
important hash functions (for strings and ints) are very regular in common
|
|
cases:
|
|
|
|
>>> map(hash, (0, 1, 2, 3))
|
|
[0, 1, 2, 3]
|
|
>>> map(hash, ("namea", "nameb", "namec", "named"))
|
|
[-1658398457, -1658398460, -1658398459, -1658398462]
|
|
>>>
|
|
|
|
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
|
|
the low-order i bits as the initial table index is extremely fast, and there
|
|
are no collisions at all for dicts indexed by a contiguous range of ints.
|
|
The same is approximately true when keys are "consecutive" strings. So this
|
|
gives better-than-random behavior in common cases, and that's very desirable.
|
|
|
|
OTOH, when collisions occur, the tendency to fill contiguous slices of the
|
|
hash table makes a good collision resolution strategy crucial. Taking only
|
|
the last i bits of the hash code is also vulnerable: for example, consider
|
|
[i << 16 for i in range(20000)] as a set of keys. Since ints are their own
|
|
hash codes, and this fits in a dict of size 2**15, the last 15 bits of every
|
|
hash code are all 0: they *all* map to the same table index.
|
|
|
|
But catering to unusual cases should not slow the usual ones, so we just take
|
|
the last i bits anyway. It's up to collision resolution to do the rest. If
|
|
we *usually* find the key we're looking for on the first try (and, it turns
|
|
out, we usually do -- the table load factor is kept under 2/3, so the odds
|
|
are solidly in our favor), then it makes best sense to keep the initial index
|
|
computation dirt cheap.
|
|
|
|
The first half of collision resolution is to visit table indices via this
|
|
recurrence:
|
|
|
|
j = ((5*j) + 1) mod 2**i
|
|
|
|
For any initial j in range(2**i), repeating that 2**i times generates each
|
|
int in range(2**i) exactly once (see any text on random-number generation for
|
|
proof). By itself, this doesn't help much: like linear probing (setting
|
|
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
|
|
order. This would be bad, except that's not the only thing we do, and it's
|
|
actually *good* in the common cases where hash keys are consecutive. In an
|
|
example that's really too small to make this entirely clear, for a table of
|
|
size 2**3 the order of indices is:
|
|
|
|
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
|
|
|
|
If two things come in at index 5, the first place we look after is index 2,
|
|
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
|
|
Linear probing is deadly in this case because there the fixed probe order
|
|
is the *same* as the order consecutive keys are likely to arrive. But it's
|
|
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
|
|
and certain that consecutive hash codes do not.
|
|
|
|
The other half of the strategy is to get the other bits of the hash code
|
|
into play. This is done by initializing a (unsigned) vrbl "perturb" to the
|
|
full hash code, and changing the recurrence to:
|
|
|
|
j = (5*j) + 1 + perturb;
|
|
perturb >>= PERTURB_SHIFT;
|
|
use j % 2**i as the next table index;
|
|
|
|
Now the probe sequence depends (eventually) on every bit in the hash code,
|
|
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
|
|
because it quickly magnifies small differences in the bits that didn't affect
|
|
the initial index. Note that because perturb is unsigned, if the recurrence
|
|
is executed often enough perturb eventually becomes and remains 0. At that
|
|
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
|
|
that's certain to find an empty slot eventually (since it generates every int
|
|
in range(2**i), and we make sure there's always at least one empty slot).
|
|
|
|
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
|
|
small so that the high bits of the hash code continue to affect the probe
|
|
sequence across iterations; but you want it large so that in really bad cases
|
|
the high-order hash bits have an effect on early iterations. 5 was "the
|
|
best" in minimizing total collisions across experiments Tim Peters ran (on
|
|
both normal and pathological cases), but 4 and 6 weren't significantly worse.
|
|
|
|
Historical: Reimer Behrends contributed the idea of using a polynomial-based
|
|
approach, using repeated multiplication by x in GF(2**n) where an irreducible
|
|
polynomial for each table size was chosen such that x was a primitive root.
|
|
Christian Tismer later extended that to use division by x instead, as an
|
|
efficient way to get the high bits of the hash code into play. This scheme
|
|
also gave excellent collision statistics, but was more expensive: two
|
|
if-tests were required inside the loop; computing "the next" index took about
|
|
the same number of operations but without as much potential parallelism
|
|
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
|
|
above, and then shifting perturb can be done while the table index is being
|
|
masked); and the dictobject struct required a member to hold the table's
|
|
polynomial. In Tim's experiments the current scheme ran faster, produced
|
|
equally good collision statistics, needed less code & used less memory.
|
|
*/
|
|
|
|
/* Object used as dummy key to fill deleted entries */
|
|
static PyObject *dummy; /* Initialized by first call to newdictobject() */
|
|
|
|
/* forward declarations */
|
|
static dictentry *
|
|
lookdict_string(dictobject *mp, PyObject *key, long hash);
|
|
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
static long created = 0L;
|
|
static long converted = 0L;
|
|
|
|
static void
|
|
show_counts(void)
|
|
{
|
|
fprintf(stderr, "created %ld string dicts\n", created);
|
|
fprintf(stderr, "converted %ld to normal dicts\n", converted);
|
|
fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created);
|
|
}
|
|
#endif
|
|
|
|
/* Initialization macros.
|
|
There are two ways to create a dict: PyDict_New() is the main C API
|
|
function, and the tp_new slot maps to dict_new(). In the latter case we
|
|
can save a little time over what PyDict_New does because it's guaranteed
|
|
that the PyDictObject struct is already zeroed out.
|
|
Everyone except dict_new() should use EMPTY_TO_MINSIZE (unless they have
|
|
an excellent reason not to).
|
|
*/
|
|
|
|
#define INIT_NONZERO_DICT_SLOTS(mp) do { \
|
|
(mp)->ma_table = (mp)->ma_smalltable; \
|
|
(mp)->ma_mask = PyDict_MINSIZE - 1; \
|
|
} while(0)
|
|
|
|
#define EMPTY_TO_MINSIZE(mp) do { \
|
|
memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable)); \
|
|
(mp)->ma_used = (mp)->ma_fill = 0; \
|
|
INIT_NONZERO_DICT_SLOTS(mp); \
|
|
} while(0)
|
|
|
|
PyObject *
|
|
PyDict_New(void)
|
|
{
|
|
register dictobject *mp;
|
|
if (dummy == NULL) { /* Auto-initialize dummy */
|
|
dummy = PyString_FromString("<dummy key>");
|
|
if (dummy == NULL)
|
|
return NULL;
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
Py_AtExit(show_counts);
|
|
#endif
|
|
}
|
|
mp = PyObject_NEW(dictobject, &PyDict_Type);
|
|
if (mp == NULL)
|
|
return NULL;
|
|
EMPTY_TO_MINSIZE(mp);
|
|
mp->ma_lookup = lookdict_string;
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++created;
|
|
#endif
|
|
PyObject_GC_Init(mp);
|
|
return (PyObject *)mp;
|
|
}
|
|
|
|
/*
|
|
The basic lookup function used by all operations.
|
|
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
|
|
Open addressing is preferred over chaining since the link overhead for
|
|
chaining would be substantial (100% with typical malloc overhead).
|
|
|
|
The initial probe index is computed as hash mod the table size. Subsequent
|
|
probe indices are computed as explained earlier.
|
|
|
|
All arithmetic on hash should ignore overflow.
|
|
|
|
(The details in this version are due to Tim Peters, building on many past
|
|
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
|
|
Christian Tismer).
|
|
|
|
This function must never return NULL; failures are indicated by returning
|
|
a dictentry* for which the me_value field is NULL. Exceptions are never
|
|
reported by this function, and outstanding exceptions are maintained.
|
|
*/
|
|
|
|
static dictentry *
|
|
lookdict(dictobject *mp, PyObject *key, register long hash)
|
|
{
|
|
register int i;
|
|
register unsigned int perturb;
|
|
register dictentry *freeslot;
|
|
register unsigned int mask = mp->ma_mask;
|
|
dictentry *ep0 = mp->ma_table;
|
|
register dictentry *ep;
|
|
register int restore_error;
|
|
register int checked_error;
|
|
register int cmp;
|
|
PyObject *err_type, *err_value, *err_tb;
|
|
PyObject *startkey;
|
|
|
|
i = hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key)
|
|
return ep;
|
|
|
|
restore_error = checked_error = 0;
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash) {
|
|
/* error can't have been checked yet */
|
|
checked_error = 1;
|
|
if (PyErr_Occurred()) {
|
|
restore_error = 1;
|
|
PyErr_Fetch(&err_type, &err_value, &err_tb);
|
|
}
|
|
startkey = ep->me_key;
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
if (cmp < 0)
|
|
PyErr_Clear();
|
|
if (ep0 == mp->ma_table && ep->me_key == startkey) {
|
|
if (cmp > 0)
|
|
goto Done;
|
|
}
|
|
else {
|
|
/* The compare did major nasty stuff to the
|
|
* dict: start over.
|
|
* XXX A clever adversary could prevent this
|
|
* XXX from terminating.
|
|
*/
|
|
ep = lookdict(mp, key, hash);
|
|
goto Done;
|
|
}
|
|
}
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL) {
|
|
if (freeslot != NULL)
|
|
ep = freeslot;
|
|
break;
|
|
}
|
|
if (ep->me_key == key)
|
|
break;
|
|
if (ep->me_hash == hash && ep->me_key != dummy) {
|
|
if (!checked_error) {
|
|
checked_error = 1;
|
|
if (PyErr_Occurred()) {
|
|
restore_error = 1;
|
|
PyErr_Fetch(&err_type, &err_value,
|
|
&err_tb);
|
|
}
|
|
}
|
|
startkey = ep->me_key;
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
if (cmp < 0)
|
|
PyErr_Clear();
|
|
if (ep0 == mp->ma_table && ep->me_key == startkey) {
|
|
if (cmp > 0)
|
|
break;
|
|
}
|
|
else {
|
|
/* The compare did major nasty stuff to the
|
|
* dict: start over.
|
|
* XXX A clever adversary could prevent this
|
|
* XXX from terminating.
|
|
*/
|
|
ep = lookdict(mp, key, hash);
|
|
break;
|
|
}
|
|
}
|
|
else if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
|
|
Done:
|
|
if (restore_error)
|
|
PyErr_Restore(err_type, err_value, err_tb);
|
|
return ep;
|
|
}
|
|
|
|
/*
|
|
* Hacked up version of lookdict which can assume keys are always strings;
|
|
* this assumption allows testing for errors during PyObject_Compare() to
|
|
* be dropped; string-string comparisons never raise exceptions. This also
|
|
* means we don't need to go through PyObject_Compare(); we can always use
|
|
* _PyString_Eq directly.
|
|
*
|
|
* This really only becomes meaningful if proper error handling in lookdict()
|
|
* is too expensive.
|
|
*/
|
|
static dictentry *
|
|
lookdict_string(dictobject *mp, PyObject *key, register long hash)
|
|
{
|
|
register int i;
|
|
register unsigned int perturb;
|
|
register dictentry *freeslot;
|
|
register unsigned int mask = mp->ma_mask;
|
|
dictentry *ep0 = mp->ma_table;
|
|
register dictentry *ep;
|
|
|
|
/* make sure this function doesn't have to handle non-string keys */
|
|
if (!PyString_Check(key)) {
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++converted;
|
|
#endif
|
|
mp->ma_lookup = lookdict;
|
|
return lookdict(mp, key, hash);
|
|
}
|
|
i = hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key)
|
|
return ep;
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash
|
|
&& _PyString_Eq(ep->me_key, key)) {
|
|
return ep;
|
|
}
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL)
|
|
return freeslot == NULL ? ep : freeslot;
|
|
if (ep->me_key == key
|
|
|| (ep->me_hash == hash
|
|
&& ep->me_key != dummy
|
|
&& _PyString_Eq(ep->me_key, key)))
|
|
return ep;
|
|
if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Internal routine to insert a new item into the table.
|
|
Used both by the internal resize routine and by the public insert routine.
|
|
Eats a reference to key and one to value.
|
|
*/
|
|
static void
|
|
insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value)
|
|
{
|
|
PyObject *old_value;
|
|
register dictentry *ep;
|
|
typedef PyDictEntry *(*lookupfunc)(PyDictObject *, PyObject *, long);
|
|
|
|
assert(mp->ma_lookup != NULL);
|
|
ep = mp->ma_lookup(mp, key, hash);
|
|
if (ep->me_value != NULL) {
|
|
old_value = ep->me_value;
|
|
ep->me_value = value;
|
|
Py_DECREF(old_value); /* which **CAN** re-enter */
|
|
Py_DECREF(key);
|
|
}
|
|
else {
|
|
if (ep->me_key == NULL)
|
|
mp->ma_fill++;
|
|
else
|
|
Py_DECREF(ep->me_key);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
ep->me_value = value;
|
|
mp->ma_used++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Restructure the table by allocating a new table and reinserting all
|
|
items again. When entries have been deleted, the new table may
|
|
actually be smaller than the old one.
|
|
*/
|
|
static int
|
|
dictresize(dictobject *mp, int minused)
|
|
{
|
|
int newsize;
|
|
dictentry *oldtable, *newtable, *ep;
|
|
int i;
|
|
int is_oldtable_malloced;
|
|
dictentry small_copy[PyDict_MINSIZE];
|
|
|
|
assert(minused >= 0);
|
|
|
|
/* Find the smallest table size > minused. */
|
|
for (newsize = PyDict_MINSIZE;
|
|
newsize <= minused && newsize > 0;
|
|
newsize <<= 1)
|
|
;
|
|
if (newsize <= 0) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
/* Get space for a new table. */
|
|
oldtable = mp->ma_table;
|
|
assert(oldtable != NULL);
|
|
is_oldtable_malloced = oldtable != mp->ma_smalltable;
|
|
|
|
if (newsize == PyDict_MINSIZE) {
|
|
/* A large table is shrinking, or we can't get any smaller. */
|
|
newtable = mp->ma_smalltable;
|
|
if (newtable == oldtable) {
|
|
if (mp->ma_fill == mp->ma_used) {
|
|
/* No dummies, so no point doing anything. */
|
|
return 0;
|
|
}
|
|
/* We're not going to resize it, but rebuild the
|
|
table anyway to purge old dummy entries.
|
|
Subtle: This is *necessary* if fill==size,
|
|
as lookdict needs at least one virgin slot to
|
|
terminate failing searches. If fill < size, it's
|
|
merely desirable, as dummies slow searches. */
|
|
assert(mp->ma_fill > mp->ma_used);
|
|
memcpy(small_copy, oldtable, sizeof(small_copy));
|
|
oldtable = small_copy;
|
|
}
|
|
}
|
|
else {
|
|
newtable = PyMem_NEW(dictentry, newsize);
|
|
if (newtable == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Make the dict empty, using the new table. */
|
|
assert(newtable != oldtable);
|
|
mp->ma_table = newtable;
|
|
mp->ma_mask = newsize - 1;
|
|
memset(newtable, 0, sizeof(dictentry) * newsize);
|
|
mp->ma_used = 0;
|
|
i = mp->ma_fill;
|
|
mp->ma_fill = 0;
|
|
|
|
/* Copy the data over; this is refcount-neutral for active entries;
|
|
dummy entries aren't copied over, of course */
|
|
for (ep = oldtable; i > 0; ep++) {
|
|
if (ep->me_value != NULL) { /* active entry */
|
|
--i;
|
|
insertdict(mp, ep->me_key, ep->me_hash, ep->me_value);
|
|
}
|
|
else if (ep->me_key != NULL) { /* dummy entry */
|
|
--i;
|
|
assert(ep->me_key == dummy);
|
|
Py_DECREF(ep->me_key);
|
|
}
|
|
/* else key == value == NULL: nothing to do */
|
|
}
|
|
|
|
if (is_oldtable_malloced)
|
|
PyMem_DEL(oldtable);
|
|
return 0;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_GetItem(PyObject *op, PyObject *key)
|
|
{
|
|
long hash;
|
|
dictobject *mp = (dictobject *)op;
|
|
if (!PyDict_Check(op)) {
|
|
return NULL;
|
|
}
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1) {
|
|
PyErr_Clear();
|
|
return NULL;
|
|
}
|
|
}
|
|
return (mp->ma_lookup)(mp, key, hash)->me_value;
|
|
}
|
|
|
|
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
|
|
* dictionary if it is merely replacing the value for an existing key.
|
|
* This is means that it's safe to loop over a dictionary with
|
|
* PyDict_Next() and occasionally replace a value -- but you can't
|
|
* insert new keys or remove them.
|
|
*/
|
|
int
|
|
PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value)
|
|
{
|
|
register dictobject *mp;
|
|
register long hash;
|
|
register int n_used;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
mp = (dictobject *)op;
|
|
#ifdef CACHE_HASH
|
|
if (PyString_Check(key)) {
|
|
#ifdef INTERN_STRINGS
|
|
if (((PyStringObject *)key)->ob_sinterned != NULL) {
|
|
key = ((PyStringObject *)key)->ob_sinterned;
|
|
hash = ((PyStringObject *)key)->ob_shash;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
hash = ((PyStringObject *)key)->ob_shash;
|
|
if (hash == -1)
|
|
hash = PyObject_Hash(key);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
assert(mp->ma_fill <= mp->ma_mask); /* at least one empty slot */
|
|
n_used = mp->ma_used;
|
|
Py_INCREF(value);
|
|
Py_INCREF(key);
|
|
insertdict(mp, key, hash, value);
|
|
/* If we added a key, we can safely resize. Otherwise skip this!
|
|
* If fill >= 2/3 size, adjust size. Normally, this doubles the
|
|
* size, but it's also possible for the dict to shrink (if ma_fill is
|
|
* much larger than ma_used, meaning a lot of dict keys have been
|
|
* deleted).
|
|
*/
|
|
if (mp->ma_used > n_used && mp->ma_fill*3 >= (mp->ma_mask+1)*2) {
|
|
if (dictresize(mp, mp->ma_used*2) != 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyDict_DelItem(PyObject *op, PyObject *key)
|
|
{
|
|
register dictobject *mp;
|
|
register long hash;
|
|
register dictentry *ep;
|
|
PyObject *old_value, *old_key;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
mp = (dictobject *)op;
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep->me_value == NULL) {
|
|
PyErr_SetObject(PyExc_KeyError, key);
|
|
return -1;
|
|
}
|
|
old_key = ep->me_key;
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
old_value = ep->me_value;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
Py_DECREF(old_value);
|
|
Py_DECREF(old_key);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyDict_Clear(PyObject *op)
|
|
{
|
|
dictobject *mp;
|
|
dictentry *ep, *table;
|
|
int table_is_malloced;
|
|
int fill;
|
|
dictentry small_copy[PyDict_MINSIZE];
|
|
#ifdef Py_DEBUG
|
|
int i, n;
|
|
#endif
|
|
|
|
if (!PyDict_Check(op))
|
|
return;
|
|
mp = (dictobject *)op;
|
|
#ifdef Py_DEBUG
|
|
n = mp->ma_mask + 1;
|
|
i = 0;
|
|
#endif
|
|
|
|
table = mp->ma_table;
|
|
assert(table != NULL);
|
|
table_is_malloced = table != mp->ma_smalltable;
|
|
|
|
/* This is delicate. During the process of clearing the dict,
|
|
* decrefs can cause the dict to mutate. To avoid fatal confusion
|
|
* (voice of experience), we have to make the dict empty before
|
|
* clearing the slots, and never refer to anything via mp->xxx while
|
|
* clearing.
|
|
*/
|
|
fill = mp->ma_fill;
|
|
if (table_is_malloced)
|
|
EMPTY_TO_MINSIZE(mp);
|
|
|
|
else if (fill > 0) {
|
|
/* It's a small table with something that needs to be cleared.
|
|
* Afraid the only safe way is to copy the dict entries into
|
|
* another small table first.
|
|
*/
|
|
memcpy(small_copy, table, sizeof(small_copy));
|
|
table = small_copy;
|
|
EMPTY_TO_MINSIZE(mp);
|
|
}
|
|
/* else it's a small table that's already empty */
|
|
|
|
/* Now we can finally clear things. If C had refcounts, we could
|
|
* assert that the refcount on table is 1 now, i.e. that this function
|
|
* has unique access to it, so decref side-effects can't alter it.
|
|
*/
|
|
for (ep = table; fill > 0; ++ep) {
|
|
#ifdef Py_DEBUG
|
|
assert(i < n);
|
|
++i;
|
|
#endif
|
|
if (ep->me_key) {
|
|
--fill;
|
|
Py_DECREF(ep->me_key);
|
|
Py_XDECREF(ep->me_value);
|
|
}
|
|
#ifdef Py_DEBUG
|
|
else
|
|
assert(ep->me_value == NULL);
|
|
#endif
|
|
}
|
|
|
|
if (table_is_malloced)
|
|
PyMem_DEL(table);
|
|
}
|
|
|
|
/* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
|
|
* mutates the dict. One exception: it is safe if the loop merely changes
|
|
* the values associated with the keys (but doesn't insert new keys or
|
|
* delete keys), via PyDict_SetItem().
|
|
*/
|
|
int
|
|
PyDict_Next(PyObject *op, int *ppos, PyObject **pkey, PyObject **pvalue)
|
|
{
|
|
int i;
|
|
register dictobject *mp;
|
|
if (!PyDict_Check(op))
|
|
return 0;
|
|
mp = (dictobject *)op;
|
|
i = *ppos;
|
|
if (i < 0)
|
|
return 0;
|
|
while (i <= mp->ma_mask && mp->ma_table[i].me_value == NULL)
|
|
i++;
|
|
*ppos = i+1;
|
|
if (i > mp->ma_mask)
|
|
return 0;
|
|
if (pkey)
|
|
*pkey = mp->ma_table[i].me_key;
|
|
if (pvalue)
|
|
*pvalue = mp->ma_table[i].me_value;
|
|
return 1;
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
dict_dealloc(register dictobject *mp)
|
|
{
|
|
register dictentry *ep;
|
|
int fill = mp->ma_fill;
|
|
Py_TRASHCAN_SAFE_BEGIN(mp)
|
|
PyObject_GC_Fini(mp);
|
|
for (ep = mp->ma_table; fill > 0; ep++) {
|
|
if (ep->me_key) {
|
|
--fill;
|
|
Py_DECREF(ep->me_key);
|
|
Py_XDECREF(ep->me_value);
|
|
}
|
|
}
|
|
if (mp->ma_table != mp->ma_smalltable)
|
|
PyMem_DEL(mp->ma_table);
|
|
mp = (dictobject *) PyObject_AS_GC(mp);
|
|
PyObject_DEL(mp);
|
|
Py_TRASHCAN_SAFE_END(mp)
|
|
}
|
|
|
|
static int
|
|
dict_print(register dictobject *mp, register FILE *fp, register int flags)
|
|
{
|
|
register int i;
|
|
register int any;
|
|
|
|
i = Py_ReprEnter((PyObject*)mp);
|
|
if (i != 0) {
|
|
if (i < 0)
|
|
return i;
|
|
fprintf(fp, "{...}");
|
|
return 0;
|
|
}
|
|
|
|
fprintf(fp, "{");
|
|
any = 0;
|
|
for (i = 0; i <= mp->ma_mask; i++) {
|
|
dictentry *ep = mp->ma_table + i;
|
|
PyObject *pvalue = ep->me_value;
|
|
if (pvalue != NULL) {
|
|
/* Prevent PyObject_Repr from deleting value during
|
|
key format */
|
|
Py_INCREF(pvalue);
|
|
if (any++ > 0)
|
|
fprintf(fp, ", ");
|
|
if (PyObject_Print((PyObject *)ep->me_key, fp, 0)!=0) {
|
|
Py_DECREF(pvalue);
|
|
Py_ReprLeave((PyObject*)mp);
|
|
return -1;
|
|
}
|
|
fprintf(fp, ": ");
|
|
if (PyObject_Print(pvalue, fp, 0) != 0) {
|
|
Py_DECREF(pvalue);
|
|
Py_ReprLeave((PyObject*)mp);
|
|
return -1;
|
|
}
|
|
Py_DECREF(pvalue);
|
|
}
|
|
}
|
|
fprintf(fp, "}");
|
|
Py_ReprLeave((PyObject*)mp);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_repr(dictobject *mp)
|
|
{
|
|
int i;
|
|
PyObject *s, *temp, *colon = NULL;
|
|
PyObject *pieces = NULL, *result = NULL;
|
|
PyObject *key, *value;
|
|
|
|
i = Py_ReprEnter((PyObject *)mp);
|
|
if (i != 0) {
|
|
return i > 0 ? PyString_FromString("{...}") : NULL;
|
|
}
|
|
|
|
if (mp->ma_used == 0) {
|
|
result = PyString_FromString("{}");
|
|
goto Done;
|
|
}
|
|
|
|
pieces = PyList_New(0);
|
|
if (pieces == NULL)
|
|
goto Done;
|
|
|
|
colon = PyString_FromString(": ");
|
|
if (colon == NULL)
|
|
goto Done;
|
|
|
|
/* Do repr() on each key+value pair, and insert ": " between them.
|
|
Note that repr may mutate the dict. */
|
|
i = 0;
|
|
while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
|
|
int status;
|
|
/* Prevent repr from deleting value during key format. */
|
|
Py_INCREF(value);
|
|
s = PyObject_Repr(key);
|
|
PyString_Concat(&s, colon);
|
|
PyString_ConcatAndDel(&s, PyObject_Repr(value));
|
|
Py_DECREF(value);
|
|
if (s == NULL)
|
|
goto Done;
|
|
status = PyList_Append(pieces, s);
|
|
Py_DECREF(s); /* append created a new ref */
|
|
if (status < 0)
|
|
goto Done;
|
|
}
|
|
|
|
/* Add "{}" decorations to the first and last items. */
|
|
assert(PyList_GET_SIZE(pieces) > 0);
|
|
s = PyString_FromString("{");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, 0);
|
|
PyString_ConcatAndDel(&s, temp);
|
|
PyList_SET_ITEM(pieces, 0, s);
|
|
if (s == NULL)
|
|
goto Done;
|
|
|
|
s = PyString_FromString("}");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
|
|
PyString_ConcatAndDel(&temp, s);
|
|
PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
|
|
if (temp == NULL)
|
|
goto Done;
|
|
|
|
/* Paste them all together with ", " between. */
|
|
s = PyString_FromString(", ");
|
|
if (s == NULL)
|
|
goto Done;
|
|
result = _PyString_Join(s, pieces);
|
|
Py_DECREF(s);
|
|
|
|
Done:
|
|
Py_XDECREF(pieces);
|
|
Py_XDECREF(colon);
|
|
Py_ReprLeave((PyObject *)mp);
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
dict_length(dictobject *mp)
|
|
{
|
|
return mp->ma_used;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_subscript(dictobject *mp, register PyObject *key)
|
|
{
|
|
PyObject *v;
|
|
long hash;
|
|
assert(mp->ma_table != NULL);
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
v = (mp->ma_lookup)(mp, key, hash) -> me_value;
|
|
if (v == NULL)
|
|
PyErr_SetObject(PyExc_KeyError, key);
|
|
else
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
|
|
static int
|
|
dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w)
|
|
{
|
|
if (w == NULL)
|
|
return PyDict_DelItem((PyObject *)mp, v);
|
|
else
|
|
return PyDict_SetItem((PyObject *)mp, v, w);
|
|
}
|
|
|
|
static PyMappingMethods dict_as_mapping = {
|
|
(inquiry)dict_length, /*mp_length*/
|
|
(binaryfunc)dict_subscript, /*mp_subscript*/
|
|
(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
|
|
};
|
|
|
|
static PyObject *
|
|
dict_keys(register dictobject *mp, PyObject *args)
|
|
{
|
|
register PyObject *v;
|
|
register int i, j, n;
|
|
|
|
if (!PyArg_NoArgs(args))
|
|
return NULL;
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) {
|
|
if (mp->ma_table[i].me_value != NULL) {
|
|
PyObject *key = mp->ma_table[i].me_key;
|
|
Py_INCREF(key);
|
|
PyList_SET_ITEM(v, j, key);
|
|
j++;
|
|
}
|
|
}
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_values(register dictobject *mp, PyObject *args)
|
|
{
|
|
register PyObject *v;
|
|
register int i, j, n;
|
|
|
|
if (!PyArg_NoArgs(args))
|
|
return NULL;
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) {
|
|
if (mp->ma_table[i].me_value != NULL) {
|
|
PyObject *value = mp->ma_table[i].me_value;
|
|
Py_INCREF(value);
|
|
PyList_SET_ITEM(v, j, value);
|
|
j++;
|
|
}
|
|
}
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_items(register dictobject *mp, PyObject *args)
|
|
{
|
|
register PyObject *v;
|
|
register int i, j, n;
|
|
PyObject *item, *key, *value;
|
|
|
|
if (!PyArg_NoArgs(args))
|
|
return NULL;
|
|
/* Preallocate the list of tuples, to avoid allocations during
|
|
* the loop over the items, which could trigger GC, which
|
|
* could resize the dict. :-(
|
|
*/
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
for (i = 0; i < n; i++) {
|
|
item = PyTuple_New(2);
|
|
if (item == NULL) {
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
PyList_SET_ITEM(v, i, item);
|
|
}
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
/* Nothing we do below makes any function calls. */
|
|
for (i = 0, j = 0; i <= mp->ma_mask; i++) {
|
|
if (mp->ma_table[i].me_value != NULL) {
|
|
key = mp->ma_table[i].me_key;
|
|
value = mp->ma_table[i].me_value;
|
|
item = PyList_GET_ITEM(v, j);
|
|
Py_INCREF(key);
|
|
PyTuple_SET_ITEM(item, 0, key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(item, 1, value);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_update(PyObject *mp, PyObject *args)
|
|
{
|
|
PyObject *other;
|
|
|
|
if (!PyArg_ParseTuple(args, "O:update", &other))
|
|
return NULL;
|
|
if (PyDict_Update(mp, other) < 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
int
|
|
PyDict_Update(PyObject *a, PyObject *b)
|
|
{
|
|
register PyDictObject *mp, *other;
|
|
register int i;
|
|
dictentry *entry;
|
|
|
|
/* We accept for the argument either a concrete dictionary object,
|
|
* or an abstract "mapping" object. For the former, we can do
|
|
* things quite efficiently. For the latter, we only require that
|
|
* PyMapping_Keys() and PyObject_GetItem() be supported.
|
|
*/
|
|
if (a == NULL || !PyDict_Check(a) || b == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
mp = (dictobject*)a;
|
|
if (PyDict_Check(b)) {
|
|
other = (dictobject*)b;
|
|
if (other == mp || other->ma_used == 0)
|
|
/* a.update(a) or a.update({}); nothing to do */
|
|
return 0;
|
|
/* Do one big resize at the start, rather than
|
|
* incrementally resizing as we insert new items. Expect
|
|
* that there will be no (or few) overlapping keys.
|
|
*/
|
|
if ((mp->ma_fill + other->ma_used)*3 >= (mp->ma_mask+1)*2) {
|
|
if (dictresize(mp, (mp->ma_used + other->ma_used)*3/2) != 0)
|
|
return -1;
|
|
}
|
|
for (i = 0; i <= other->ma_mask; i++) {
|
|
entry = &other->ma_table[i];
|
|
if (entry->me_value != NULL) {
|
|
Py_INCREF(entry->me_key);
|
|
Py_INCREF(entry->me_value);
|
|
insertdict(mp, entry->me_key, entry->me_hash,
|
|
entry->me_value);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Do it the generic, slower way */
|
|
PyObject *keys = PyMapping_Keys(b);
|
|
PyObject *iter;
|
|
PyObject *key, *value;
|
|
int status;
|
|
|
|
if (keys == NULL)
|
|
/* Docstring says this is equivalent to E.keys() so
|
|
* if E doesn't have a .keys() method we want
|
|
* AttributeError to percolate up. Might as well
|
|
* do the same for any other error.
|
|
*/
|
|
return -1;
|
|
|
|
iter = PyObject_GetIter(keys);
|
|
Py_DECREF(keys);
|
|
if (iter == NULL)
|
|
return -1;
|
|
|
|
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
|
|
value = PyObject_GetItem(b, key);
|
|
if (value == NULL) {
|
|
Py_DECREF(iter);
|
|
Py_DECREF(key);
|
|
return -1;
|
|
}
|
|
status = PyDict_SetItem((PyObject*)mp, key, value);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (status < 0) {
|
|
Py_DECREF(iter);
|
|
return -1;
|
|
}
|
|
}
|
|
Py_DECREF(iter);
|
|
if (PyErr_Occurred())
|
|
/* Iterator completed, via error */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_copy(register dictobject *mp, PyObject *args)
|
|
{
|
|
if (!PyArg_Parse(args, ""))
|
|
return NULL;
|
|
return PyDict_Copy((PyObject*)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Copy(PyObject *o)
|
|
{
|
|
register dictobject *mp;
|
|
register int i;
|
|
dictobject *copy;
|
|
dictentry *entry;
|
|
|
|
if (o == NULL || !PyDict_Check(o)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
mp = (dictobject *)o;
|
|
copy = (dictobject *)PyDict_New();
|
|
if (copy == NULL)
|
|
return NULL;
|
|
if (mp->ma_used > 0) {
|
|
if (dictresize(copy, mp->ma_used*3/2) != 0)
|
|
return NULL;
|
|
for (i = 0; i <= mp->ma_mask; i++) {
|
|
entry = &mp->ma_table[i];
|
|
if (entry->me_value != NULL) {
|
|
Py_INCREF(entry->me_key);
|
|
Py_INCREF(entry->me_value);
|
|
insertdict(copy, entry->me_key, entry->me_hash,
|
|
entry->me_value);
|
|
}
|
|
}
|
|
}
|
|
return (PyObject *)copy;
|
|
}
|
|
|
|
int
|
|
PyDict_Size(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return 0;
|
|
}
|
|
return ((dictobject *)mp)->ma_used;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Keys(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_keys((dictobject *)mp, (PyObject *)NULL);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Values(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_values((dictobject *)mp, (PyObject *)NULL);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Items(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_items((dictobject *)mp, (PyObject *)NULL);
|
|
}
|
|
|
|
/* Subroutine which returns the smallest key in a for which b's value
|
|
is different or absent. The value is returned too, through the
|
|
pval argument. Both are NULL if no key in a is found for which b's status
|
|
differs. The refcounts on (and only on) non-NULL *pval and function return
|
|
values must be decremented by the caller (characterize() increments them
|
|
to ensure that mutating comparison and PyDict_GetItem calls can't delete
|
|
them before the caller is done looking at them). */
|
|
|
|
static PyObject *
|
|
characterize(dictobject *a, dictobject *b, PyObject **pval)
|
|
{
|
|
PyObject *akey = NULL; /* smallest key in a s.t. a[akey] != b[akey] */
|
|
PyObject *aval = NULL; /* a[akey] */
|
|
int i, cmp;
|
|
|
|
for (i = 0; i <= a->ma_mask; i++) {
|
|
PyObject *thiskey, *thisaval, *thisbval;
|
|
if (a->ma_table[i].me_value == NULL)
|
|
continue;
|
|
thiskey = a->ma_table[i].me_key;
|
|
Py_INCREF(thiskey); /* keep alive across compares */
|
|
if (akey != NULL) {
|
|
cmp = PyObject_RichCompareBool(akey, thiskey, Py_LT);
|
|
if (cmp < 0) {
|
|
Py_DECREF(thiskey);
|
|
goto Fail;
|
|
}
|
|
if (cmp > 0 ||
|
|
i > a->ma_mask ||
|
|
a->ma_table[i].me_value == NULL)
|
|
{
|
|
/* Not the *smallest* a key; or maybe it is
|
|
* but the compare shrunk the dict so we can't
|
|
* find its associated value anymore; or
|
|
* maybe it is but the compare deleted the
|
|
* a[thiskey] entry.
|
|
*/
|
|
Py_DECREF(thiskey);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Compare a[thiskey] to b[thiskey]; cmp <- true iff equal. */
|
|
thisaval = a->ma_table[i].me_value;
|
|
assert(thisaval);
|
|
Py_INCREF(thisaval); /* keep alive */
|
|
thisbval = PyDict_GetItem((PyObject *)b, thiskey);
|
|
if (thisbval == NULL)
|
|
cmp = 0;
|
|
else {
|
|
/* both dicts have thiskey: same values? */
|
|
cmp = PyObject_RichCompareBool(
|
|
thisaval, thisbval, Py_EQ);
|
|
if (cmp < 0) {
|
|
Py_DECREF(thiskey);
|
|
Py_DECREF(thisaval);
|
|
goto Fail;
|
|
}
|
|
}
|
|
if (cmp == 0) {
|
|
/* New winner. */
|
|
Py_XDECREF(akey);
|
|
Py_XDECREF(aval);
|
|
akey = thiskey;
|
|
aval = thisaval;
|
|
}
|
|
else {
|
|
Py_DECREF(thiskey);
|
|
Py_DECREF(thisaval);
|
|
}
|
|
}
|
|
*pval = aval;
|
|
return akey;
|
|
|
|
Fail:
|
|
Py_XDECREF(akey);
|
|
Py_XDECREF(aval);
|
|
*pval = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
dict_compare(dictobject *a, dictobject *b)
|
|
{
|
|
PyObject *adiff, *bdiff, *aval, *bval;
|
|
int res;
|
|
|
|
/* Compare lengths first */
|
|
if (a->ma_used < b->ma_used)
|
|
return -1; /* a is shorter */
|
|
else if (a->ma_used > b->ma_used)
|
|
return 1; /* b is shorter */
|
|
|
|
/* Same length -- check all keys */
|
|
bdiff = bval = NULL;
|
|
adiff = characterize(a, b, &aval);
|
|
if (adiff == NULL) {
|
|
assert(!aval);
|
|
/* Either an error, or a is a subset with the same length so
|
|
* must be equal.
|
|
*/
|
|
res = PyErr_Occurred() ? -1 : 0;
|
|
goto Finished;
|
|
}
|
|
bdiff = characterize(b, a, &bval);
|
|
if (bdiff == NULL && PyErr_Occurred()) {
|
|
assert(!bval);
|
|
res = -1;
|
|
goto Finished;
|
|
}
|
|
res = 0;
|
|
if (bdiff) {
|
|
/* bdiff == NULL "should be" impossible now, but perhaps
|
|
* the last comparison done by the characterize() on a had
|
|
* the side effect of making the dicts equal!
|
|
*/
|
|
res = PyObject_Compare(adiff, bdiff);
|
|
}
|
|
if (res == 0 && bval != NULL)
|
|
res = PyObject_Compare(aval, bval);
|
|
|
|
Finished:
|
|
Py_XDECREF(adiff);
|
|
Py_XDECREF(bdiff);
|
|
Py_XDECREF(aval);
|
|
Py_XDECREF(bval);
|
|
return res;
|
|
}
|
|
|
|
/* Return 1 if dicts equal, 0 if not, -1 if error.
|
|
* Gets out as soon as any difference is detected.
|
|
* Uses only Py_EQ comparison.
|
|
*/
|
|
static int
|
|
dict_equal(dictobject *a, dictobject *b)
|
|
{
|
|
int i;
|
|
|
|
if (a->ma_used != b->ma_used)
|
|
/* can't be equal if # of entries differ */
|
|
return 0;
|
|
|
|
/* Same # of entries -- check all of 'em. Exit early on any diff. */
|
|
for (i = 0; i <= a->ma_mask; i++) {
|
|
PyObject *aval = a->ma_table[i].me_value;
|
|
if (aval != NULL) {
|
|
int cmp;
|
|
PyObject *bval;
|
|
PyObject *key = a->ma_table[i].me_key;
|
|
/* temporarily bump aval's refcount to ensure it stays
|
|
alive until we're done with it */
|
|
Py_INCREF(aval);
|
|
bval = PyDict_GetItem((PyObject *)b, key);
|
|
if (bval == NULL) {
|
|
Py_DECREF(aval);
|
|
return 0;
|
|
}
|
|
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
|
|
Py_DECREF(aval);
|
|
if (cmp <= 0) /* error or not equal */
|
|
return cmp;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
int cmp;
|
|
PyObject *res;
|
|
|
|
if (!PyDict_Check(v) || !PyDict_Check(w)) {
|
|
res = Py_NotImplemented;
|
|
}
|
|
else if (op == Py_EQ || op == Py_NE) {
|
|
cmp = dict_equal((dictobject *)v, (dictobject *)w);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
|
|
}
|
|
else
|
|
res = Py_NotImplemented;
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_has_key(register dictobject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
long hash;
|
|
register long ok;
|
|
if (!PyArg_ParseTuple(args, "O:has_key", &key))
|
|
return NULL;
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ok = (mp->ma_lookup)(mp, key, hash)->me_value != NULL;
|
|
return PyInt_FromLong(ok);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_get(register dictobject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *failobj = Py_None;
|
|
PyObject *val = NULL;
|
|
long hash;
|
|
|
|
if (!PyArg_ParseTuple(args, "O|O:get", &key, &failobj))
|
|
return NULL;
|
|
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
val = (mp->ma_lookup)(mp, key, hash)->me_value;
|
|
|
|
if (val == NULL)
|
|
val = failobj;
|
|
Py_INCREF(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_setdefault(register dictobject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *failobj = Py_None;
|
|
PyObject *val = NULL;
|
|
long hash;
|
|
|
|
if (!PyArg_ParseTuple(args, "O|O:setdefault", &key, &failobj))
|
|
return NULL;
|
|
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
val = (mp->ma_lookup)(mp, key, hash)->me_value;
|
|
if (val == NULL) {
|
|
val = failobj;
|
|
if (PyDict_SetItem((PyObject*)mp, key, failobj))
|
|
val = NULL;
|
|
}
|
|
Py_XINCREF(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_clear(register dictobject *mp, PyObject *args)
|
|
{
|
|
if (!PyArg_NoArgs(args))
|
|
return NULL;
|
|
PyDict_Clear((PyObject *)mp);
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_popitem(dictobject *mp, PyObject *args)
|
|
{
|
|
int i = 0;
|
|
dictentry *ep;
|
|
PyObject *res;
|
|
|
|
if (!PyArg_NoArgs(args))
|
|
return NULL;
|
|
/* Allocate the result tuple before checking the size. Believe it
|
|
* or not, this allocation could trigger a garbage collection which
|
|
* could empty the dict, so if we checked the size first and that
|
|
* happened, the result would be an infinite loop (searching for an
|
|
* entry that no longer exists). Note that the usual popitem()
|
|
* idiom is "while d: k, v = d.popitem()". so needing to throw the
|
|
* tuple away if the dict *is* empty isn't a significant
|
|
* inefficiency -- possible, but unlikely in practice.
|
|
*/
|
|
res = PyTuple_New(2);
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (mp->ma_used == 0) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_KeyError,
|
|
"popitem(): dictionary is empty");
|
|
return NULL;
|
|
}
|
|
/* Set ep to "the first" dict entry with a value. We abuse the hash
|
|
* field of slot 0 to hold a search finger:
|
|
* If slot 0 has a value, use slot 0.
|
|
* Else slot 0 is being used to hold a search finger,
|
|
* and we use its hash value as the first index to look.
|
|
*/
|
|
ep = &mp->ma_table[0];
|
|
if (ep->me_value == NULL) {
|
|
i = (int)ep->me_hash;
|
|
/* The hash field may be a real hash value, or it may be a
|
|
* legit search finger, or it may be a once-legit search
|
|
* finger that's out of bounds now because it wrapped around
|
|
* or the table shrunk -- simply make sure it's in bounds now.
|
|
*/
|
|
if (i > mp->ma_mask || i < 1)
|
|
i = 1; /* skip slot 0 */
|
|
while ((ep = &mp->ma_table[i])->me_value == NULL) {
|
|
i++;
|
|
if (i > mp->ma_mask)
|
|
i = 1;
|
|
}
|
|
}
|
|
PyTuple_SET_ITEM(res, 0, ep->me_key);
|
|
PyTuple_SET_ITEM(res, 1, ep->me_value);
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
assert(mp->ma_table[0].me_value == NULL);
|
|
mp->ma_table[0].me_hash = i + 1; /* next place to start */
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
dict_traverse(PyObject *op, visitproc visit, void *arg)
|
|
{
|
|
int i = 0, err;
|
|
PyObject *pk;
|
|
PyObject *pv;
|
|
|
|
while (PyDict_Next(op, &i, &pk, &pv)) {
|
|
err = visit(pk, arg);
|
|
if (err)
|
|
return err;
|
|
err = visit(pv, arg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dict_tp_clear(PyObject *op)
|
|
{
|
|
PyDict_Clear(op);
|
|
return 0;
|
|
}
|
|
|
|
|
|
staticforward PyObject *dictiter_new(dictobject *, binaryfunc);
|
|
|
|
static PyObject *
|
|
select_key(PyObject *key, PyObject *value)
|
|
{
|
|
Py_INCREF(key);
|
|
return key;
|
|
}
|
|
|
|
static PyObject *
|
|
select_value(PyObject *key, PyObject *value)
|
|
{
|
|
Py_INCREF(value);
|
|
return value;
|
|
}
|
|
|
|
static PyObject *
|
|
select_item(PyObject *key, PyObject *value)
|
|
{
|
|
PyObject *res = PyTuple_New(2);
|
|
|
|
if (res != NULL) {
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(res, 0, key);
|
|
PyTuple_SET_ITEM(res, 1, value);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iterkeys(dictobject *dict, PyObject *args)
|
|
{
|
|
if (!PyArg_ParseTuple(args, ""))
|
|
return NULL;
|
|
return dictiter_new(dict, select_key);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_itervalues(dictobject *dict, PyObject *args)
|
|
{
|
|
if (!PyArg_ParseTuple(args, ""))
|
|
return NULL;
|
|
return dictiter_new(dict, select_value);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iteritems(dictobject *dict, PyObject *args)
|
|
{
|
|
if (!PyArg_ParseTuple(args, ""))
|
|
return NULL;
|
|
return dictiter_new(dict, select_item);
|
|
}
|
|
|
|
|
|
static char has_key__doc__[] =
|
|
"D.has_key(k) -> 1 if D has a key k, else 0";
|
|
|
|
static char get__doc__[] =
|
|
"D.get(k[,d]) -> D[k] if D.has_key(k), else d. d defaults to None.";
|
|
|
|
static char setdefault_doc__[] =
|
|
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if not D.has_key(k)";
|
|
|
|
static char popitem__doc__[] =
|
|
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
|
|
2-tuple; but raise KeyError if D is empty";
|
|
|
|
static char keys__doc__[] =
|
|
"D.keys() -> list of D's keys";
|
|
|
|
static char items__doc__[] =
|
|
"D.items() -> list of D's (key, value) pairs, as 2-tuples";
|
|
|
|
static char values__doc__[] =
|
|
"D.values() -> list of D's values";
|
|
|
|
static char update__doc__[] =
|
|
"D.update(E) -> None. Update D from E: for k in E.keys(): D[k] = E[k]";
|
|
|
|
static char clear__doc__[] =
|
|
"D.clear() -> None. Remove all items from D.";
|
|
|
|
static char copy__doc__[] =
|
|
"D.copy() -> a shallow copy of D";
|
|
|
|
static char iterkeys__doc__[] =
|
|
"D.iterkeys() -> an iterator over the keys of D";
|
|
|
|
static char itervalues__doc__[] =
|
|
"D.itervalues() -> an iterator over the values of D";
|
|
|
|
static char iteritems__doc__[] =
|
|
"D.iteritems() -> an iterator over the (key, value) items of D";
|
|
|
|
static PyMethodDef mapp_methods[] = {
|
|
{"has_key", (PyCFunction)dict_has_key, METH_VARARGS,
|
|
has_key__doc__},
|
|
{"get", (PyCFunction)dict_get, METH_VARARGS,
|
|
get__doc__},
|
|
{"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS,
|
|
setdefault_doc__},
|
|
{"popitem", (PyCFunction)dict_popitem, METH_OLDARGS,
|
|
popitem__doc__},
|
|
{"keys", (PyCFunction)dict_keys, METH_OLDARGS,
|
|
keys__doc__},
|
|
{"items", (PyCFunction)dict_items, METH_OLDARGS,
|
|
items__doc__},
|
|
{"values", (PyCFunction)dict_values, METH_OLDARGS,
|
|
values__doc__},
|
|
{"update", (PyCFunction)dict_update, METH_VARARGS,
|
|
update__doc__},
|
|
{"clear", (PyCFunction)dict_clear, METH_OLDARGS,
|
|
clear__doc__},
|
|
{"copy", (PyCFunction)dict_copy, METH_OLDARGS,
|
|
copy__doc__},
|
|
{"iterkeys", (PyCFunction)dict_iterkeys, METH_VARARGS,
|
|
iterkeys__doc__},
|
|
{"itervalues", (PyCFunction)dict_itervalues, METH_VARARGS,
|
|
itervalues__doc__},
|
|
{"iteritems", (PyCFunction)dict_iteritems, METH_VARARGS,
|
|
iteritems__doc__},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static int
|
|
dict_contains(dictobject *mp, PyObject *key)
|
|
{
|
|
long hash;
|
|
|
|
#ifdef CACHE_HASH
|
|
if (!PyString_Check(key) ||
|
|
(hash = ((PyStringObject *) key)->ob_shash) == -1)
|
|
#endif
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
return (mp->ma_lookup)(mp, key, hash)->me_value != NULL;
|
|
}
|
|
|
|
/* Hack to implement "key in dict" */
|
|
static PySequenceMethods dict_as_sequence = {
|
|
0, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)dict_contains, /* sq_contains */
|
|
0, /* sq_inplace_concat */
|
|
0, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyObject *
|
|
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *self;
|
|
|
|
assert(type != NULL && type->tp_alloc != NULL);
|
|
self = type->tp_alloc(type, 0);
|
|
if (self != NULL) {
|
|
PyDictObject *d = (PyDictObject *)self;
|
|
/* It's guaranteed that tp->alloc zeroed out the struct. */
|
|
assert(d->ma_table == NULL && d->ma_fill == 0 && d->ma_used == 0);
|
|
INIT_NONZERO_DICT_SLOTS(d);
|
|
d->ma_lookup = lookdict_string;
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++created;
|
|
#endif
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iter(dictobject *dict)
|
|
{
|
|
return dictiter_new(dict, select_key);
|
|
}
|
|
|
|
PyTypeObject PyDict_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"dictionary",
|
|
sizeof(dictobject) + PyGC_HEAD_SIZE,
|
|
0,
|
|
(destructor)dict_dealloc, /* tp_dealloc */
|
|
(printfunc)dict_print, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
(cmpfunc)dict_compare, /* tp_compare */
|
|
(reprfunc)dict_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dict_as_sequence, /* tp_as_sequence */
|
|
&dict_as_mapping, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC |
|
|
Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
"dictionary type", /* tp_doc */
|
|
(traverseproc)dict_traverse, /* tp_traverse */
|
|
(inquiry)dict_tp_clear, /* tp_clear */
|
|
dict_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dict_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
mapp_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
dict_new, /* tp_new */
|
|
};
|
|
|
|
/* For backward compatibility with old dictionary interface */
|
|
|
|
PyObject *
|
|
PyDict_GetItemString(PyObject *v, char *key)
|
|
{
|
|
PyObject *kv, *rv;
|
|
kv = PyString_FromString(key);
|
|
if (kv == NULL)
|
|
return NULL;
|
|
rv = PyDict_GetItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
PyDict_SetItemString(PyObject *v, char *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyString_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
PyString_InternInPlace(&kv); /* XXX Should we really? */
|
|
err = PyDict_SetItem(v, kv, item);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
PyDict_DelItemString(PyObject *v, char *key)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyString_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
err = PyDict_DelItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
/* Dictionary iterator type */
|
|
|
|
extern PyTypeObject PyDictIter_Type; /* Forward */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
dictobject *di_dict;
|
|
int di_used;
|
|
int di_pos;
|
|
binaryfunc di_select;
|
|
} dictiterobject;
|
|
|
|
static PyObject *
|
|
dictiter_new(dictobject *dict, binaryfunc select)
|
|
{
|
|
dictiterobject *di;
|
|
di = PyObject_NEW(dictiterobject, &PyDictIter_Type);
|
|
if (di == NULL)
|
|
return NULL;
|
|
Py_INCREF(dict);
|
|
di->di_dict = dict;
|
|
di->di_used = dict->ma_used;
|
|
di->di_pos = 0;
|
|
di->di_select = select;
|
|
return (PyObject *)di;
|
|
}
|
|
|
|
static void
|
|
dictiter_dealloc(dictiterobject *di)
|
|
{
|
|
Py_DECREF(di->di_dict);
|
|
PyObject_DEL(di);
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_next(dictiterobject *di, PyObject *args)
|
|
{
|
|
PyObject *key, *value;
|
|
|
|
if (di->di_used != di->di_dict->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
return NULL;
|
|
}
|
|
if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) {
|
|
return (*di->di_select)(key, value);
|
|
}
|
|
PyErr_SetObject(PyExc_StopIteration, Py_None);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_getiter(PyObject *it)
|
|
{
|
|
Py_INCREF(it);
|
|
return it;
|
|
}
|
|
|
|
static PyMethodDef dictiter_methods[] = {
|
|
{"next", (PyCFunction)dictiter_next, METH_VARARGS,
|
|
"it.next() -- get the next value, or raise StopIteration"},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *dictiter_iternext(dictiterobject *di)
|
|
{
|
|
PyObject *key, *value;
|
|
|
|
if (di->di_used != di->di_dict->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
return NULL;
|
|
}
|
|
if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) {
|
|
return (*di->di_select)(key, value);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIter_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0, /* ob_size */
|
|
"dictionary-iterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_compare */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT, /* tp_flags */
|
|
0, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictiter_getiter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternext, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
};
|