"Usage: unparse.py " import sys import ast import tokenize import io import os # Large float and imaginary literals get turned into infinities in the AST. # We unparse those infinities to INFSTR. INFSTR = "1e" + repr(sys.float_info.max_10_exp + 1) def interleave(inter, f, seq): """Call f on each item in seq, calling inter() in between. """ seq = iter(seq) try: f(next(seq)) except StopIteration: pass else: for x in seq: inter() f(x) class Unparser: """Methods in this class recursively traverse an AST and output source code for the abstract syntax; original formatting is disregarded. """ def __init__(self, tree, file = sys.stdout): """Unparser(tree, file=sys.stdout) -> None. Print the source for tree to file.""" self.f = file self._indent = 0 self.dispatch(tree) print("", file=self.f) self.f.flush() def fill(self, text = ""): "Indent a piece of text, according to the current indentation level" self.f.write("\n"+" "*self._indent + text) def write(self, text): "Append a piece of text to the current line." self.f.write(text) def enter(self): "Print ':', and increase the indentation." self.write(":") self._indent += 1 def leave(self): "Decrease the indentation level." self._indent -= 1 def dispatch(self, tree): "Dispatcher function, dispatching tree type T to method _T." if isinstance(tree, list): for t in tree: self.dispatch(t) return meth = getattr(self, "_"+tree.__class__.__name__) meth(tree) ############### Unparsing methods ###################### # There should be one method per concrete grammar type # # Constructors should be grouped by sum type. Ideally, # # this would follow the order in the grammar, but # # currently doesn't. # ######################################################## def _Module(self, tree): for stmt in tree.body: self.dispatch(stmt) # stmt def _Expr(self, tree): self.fill() self.dispatch(tree.value) def _NamedExpr(self, tree): self.write("(") self.dispatch(tree.target) self.write(" := ") self.dispatch(tree.value) self.write(")") def _Import(self, t): self.fill("import ") interleave(lambda: self.write(", "), self.dispatch, t.names) def _ImportFrom(self, t): self.fill("from ") self.write("." * t.level) if t.module: self.write(t.module) self.write(" import ") interleave(lambda: self.write(", "), self.dispatch, t.names) def _Assign(self, t): self.fill() for target in t.targets: self.dispatch(target) self.write(" = ") self.dispatch(t.value) def _AugAssign(self, t): self.fill() self.dispatch(t.target) self.write(" "+self.binop[t.op.__class__.__name__]+"= ") self.dispatch(t.value) def _AnnAssign(self, t): self.fill() if not t.simple and isinstance(t.target, ast.Name): self.write('(') self.dispatch(t.target) if not t.simple and isinstance(t.target, ast.Name): self.write(')') self.write(": ") self.dispatch(t.annotation) if t.value: self.write(" = ") self.dispatch(t.value) def _Return(self, t): self.fill("return") if t.value: self.write(" ") self.dispatch(t.value) def _Pass(self, t): self.fill("pass") def _Break(self, t): self.fill("break") def _Continue(self, t): self.fill("continue") def _Delete(self, t): self.fill("del ") interleave(lambda: self.write(", "), self.dispatch, t.targets) def _Assert(self, t): self.fill("assert ") self.dispatch(t.test) if t.msg: self.write(", ") self.dispatch(t.msg) def _Global(self, t): self.fill("global ") interleave(lambda: self.write(", "), self.write, t.names) def _Nonlocal(self, t): self.fill("nonlocal ") interleave(lambda: self.write(", "), self.write, t.names) def _Await(self, t): self.write("(") self.write("await") if t.value: self.write(" ") self.dispatch(t.value) self.write(")") def _Yield(self, t): self.write("(") self.write("yield") if t.value: self.write(" ") self.dispatch(t.value) self.write(")") def _YieldFrom(self, t): self.write("(") self.write("yield from") if t.value: self.write(" ") self.dispatch(t.value) self.write(")") def _Raise(self, t): self.fill("raise") if not t.exc: assert not t.cause return self.write(" ") self.dispatch(t.exc) if t.cause: self.write(" from ") self.dispatch(t.cause) def _Try(self, t): self.fill("try") self.enter() self.dispatch(t.body) self.leave() for ex in t.handlers: self.dispatch(ex) if t.orelse: self.fill("else") self.enter() self.dispatch(t.orelse) self.leave() if t.finalbody: self.fill("finally") self.enter() self.dispatch(t.finalbody) self.leave() def _ExceptHandler(self, t): self.fill("except") if t.type: self.write(" ") self.dispatch(t.type) if t.name: self.write(" as ") self.write(t.name) self.enter() self.dispatch(t.body) self.leave() def _ClassDef(self, t): self.write("\n") for deco in t.decorator_list: self.fill("@") self.dispatch(deco) self.fill("class "+t.name) self.write("(") comma = False for e in t.bases: if comma: self.write(", ") else: comma = True self.dispatch(e) for e in t.keywords: if comma: self.write(", ") else: comma = True self.dispatch(e) self.write(")") self.enter() self.dispatch(t.body) self.leave() def _FunctionDef(self, t): self.__FunctionDef_helper(t, "def") def _AsyncFunctionDef(self, t): self.__FunctionDef_helper(t, "async def") def __FunctionDef_helper(self, t, fill_suffix): self.write("\n") for deco in t.decorator_list: self.fill("@") self.dispatch(deco) def_str = fill_suffix+" "+t.name + "(" self.fill(def_str) self.dispatch(t.args) self.write(")") if t.returns: self.write(" -> ") self.dispatch(t.returns) self.enter() self.dispatch(t.body) self.leave() def _For(self, t): self.__For_helper("for ", t) def _AsyncFor(self, t): self.__For_helper("async for ", t) def __For_helper(self, fill, t): self.fill(fill) self.dispatch(t.target) self.write(" in ") self.dispatch(t.iter) self.enter() self.dispatch(t.body) self.leave() if t.orelse: self.fill("else") self.enter() self.dispatch(t.orelse) self.leave() def _If(self, t): self.fill("if ") self.dispatch(t.test) self.enter() self.dispatch(t.body) self.leave() # collapse nested ifs into equivalent elifs. while (t.orelse and len(t.orelse) == 1 and isinstance(t.orelse[0], ast.If)): t = t.orelse[0] self.fill("elif ") self.dispatch(t.test) self.enter() self.dispatch(t.body) self.leave() # final else if t.orelse: self.fill("else") self.enter() self.dispatch(t.orelse) self.leave() def _While(self, t): self.fill("while ") self.dispatch(t.test) self.enter() self.dispatch(t.body) self.leave() if t.orelse: self.fill("else") self.enter() self.dispatch(t.orelse) self.leave() def _With(self, t): self.fill("with ") interleave(lambda: self.write(", "), self.dispatch, t.items) self.enter() self.dispatch(t.body) self.leave() def _AsyncWith(self, t): self.fill("async with ") interleave(lambda: self.write(", "), self.dispatch, t.items) self.enter() self.dispatch(t.body) self.leave() # expr def _JoinedStr(self, t): self.write("f") string = io.StringIO() self._fstring_JoinedStr(t, string.write) self.write(repr(string.getvalue())) def _FormattedValue(self, t): self.write("f") string = io.StringIO() self._fstring_FormattedValue(t, string.write) self.write(repr(string.getvalue())) def _fstring_JoinedStr(self, t, write): for value in t.values: meth = getattr(self, "_fstring_" + type(value).__name__) meth(value, write) def _fstring_Constant(self, t, write): assert isinstance(t.value, str) value = t.value.replace("{", "{{").replace("}", "}}") write(value) def _fstring_FormattedValue(self, t, write): write("{") expr = io.StringIO() Unparser(t.value, expr) expr = expr.getvalue().rstrip("\n") if expr.startswith("{"): write(" ") # Separate pair of opening brackets as "{ {" write(expr) if t.conversion != -1: conversion = chr(t.conversion) assert conversion in "sra" write(f"!{conversion}") if t.format_spec: write(":") meth = getattr(self, "_fstring_" + type(t.format_spec).__name__) meth(t.format_spec, write) write("}") def _Name(self, t): self.write(t.id) def _write_constant(self, value): if isinstance(value, (float, complex)): # Substitute overflowing decimal literal for AST infinities. self.write(repr(value).replace("inf", INFSTR)) else: self.write(repr(value)) def _Constant(self, t): value = t.value if isinstance(value, tuple): self.write("(") if len(value) == 1: self._write_constant(value[0]) self.write(",") else: interleave(lambda: self.write(", "), self._write_constant, value) self.write(")") elif value is ...: self.write("...") else: self._write_constant(t.value) def _List(self, t): self.write("[") interleave(lambda: self.write(", "), self.dispatch, t.elts) self.write("]") def _ListComp(self, t): self.write("[") self.dispatch(t.elt) for gen in t.generators: self.dispatch(gen) self.write("]") def _GeneratorExp(self, t): self.write("(") self.dispatch(t.elt) for gen in t.generators: self.dispatch(gen) self.write(")") def _SetComp(self, t): self.write("{") self.dispatch(t.elt) for gen in t.generators: self.dispatch(gen) self.write("}") def _DictComp(self, t): self.write("{") self.dispatch(t.key) self.write(": ") self.dispatch(t.value) for gen in t.generators: self.dispatch(gen) self.write("}") def _comprehension(self, t): if t.is_async: self.write(" async for ") else: self.write(" for ") self.dispatch(t.target) self.write(" in ") self.dispatch(t.iter) for if_clause in t.ifs: self.write(" if ") self.dispatch(if_clause) def _IfExp(self, t): self.write("(") self.dispatch(t.body) self.write(" if ") self.dispatch(t.test) self.write(" else ") self.dispatch(t.orelse) self.write(")") def _Set(self, t): assert(t.elts) # should be at least one element self.write("{") interleave(lambda: self.write(", "), self.dispatch, t.elts) self.write("}") def _Dict(self, t): self.write("{") def write_key_value_pair(k, v): self.dispatch(k) self.write(": ") self.dispatch(v) def write_item(item): k, v = item if k is None: # for dictionary unpacking operator in dicts {**{'y': 2}} # see PEP 448 for details self.write("**") self.dispatch(v) else: write_key_value_pair(k, v) interleave(lambda: self.write(", "), write_item, zip(t.keys, t.values)) self.write("}") def _Tuple(self, t): self.write("(") if len(t.elts) == 1: elt = t.elts[0] self.dispatch(elt) self.write(",") else: interleave(lambda: self.write(", "), self.dispatch, t.elts) self.write(")") unop = {"Invert":"~", "Not": "not", "UAdd":"+", "USub":"-"} def _UnaryOp(self, t): self.write("(") self.write(self.unop[t.op.__class__.__name__]) self.write(" ") self.dispatch(t.operand) self.write(")") binop = { "Add":"+", "Sub":"-", "Mult":"*", "MatMult":"@", "Div":"/", "Mod":"%", "LShift":"<<", "RShift":">>", "BitOr":"|", "BitXor":"^", "BitAnd":"&", "FloorDiv":"//", "Pow": "**"} def _BinOp(self, t): self.write("(") self.dispatch(t.left) self.write(" " + self.binop[t.op.__class__.__name__] + " ") self.dispatch(t.right) self.write(")") cmpops = {"Eq":"==", "NotEq":"!=", "Lt":"<", "LtE":"<=", "Gt":">", "GtE":">=", "Is":"is", "IsNot":"is not", "In":"in", "NotIn":"not in"} def _Compare(self, t): self.write("(") self.dispatch(t.left) for o, e in zip(t.ops, t.comparators): self.write(" " + self.cmpops[o.__class__.__name__] + " ") self.dispatch(e) self.write(")") boolops = {ast.And: 'and', ast.Or: 'or'} def _BoolOp(self, t): self.write("(") s = " %s " % self.boolops[t.op.__class__] interleave(lambda: self.write(s), self.dispatch, t.values) self.write(")") def _Attribute(self,t): self.dispatch(t.value) # Special case: 3.__abs__() is a syntax error, so if t.value # is an integer literal then we need to either parenthesize # it or add an extra space to get 3 .__abs__(). if isinstance(t.value, ast.Constant) and isinstance(t.value.value, int): self.write(" ") self.write(".") self.write(t.attr) def _Call(self, t): self.dispatch(t.func) self.write("(") comma = False for e in t.args: if comma: self.write(", ") else: comma = True self.dispatch(e) for e in t.keywords: if comma: self.write(", ") else: comma = True self.dispatch(e) self.write(")") def _Subscript(self, t): self.dispatch(t.value) self.write("[") self.dispatch(t.slice) self.write("]") def _Starred(self, t): self.write("*") self.dispatch(t.value) # slice def _Ellipsis(self, t): self.write("...") def _Index(self, t): self.dispatch(t.value) def _Slice(self, t): if t.lower: self.dispatch(t.lower) self.write(":") if t.upper: self.dispatch(t.upper) if t.step: self.write(":") self.dispatch(t.step) def _ExtSlice(self, t): interleave(lambda: self.write(', '), self.dispatch, t.dims) # argument def _arg(self, t): self.write(t.arg) if t.annotation: self.write(": ") self.dispatch(t.annotation) # others def _arguments(self, t): first = True # normal arguments defaults = [None] * (len(t.args) - len(t.defaults)) + t.defaults for a, d in zip(t.args, defaults): if first:first = False else: self.write(", ") self.dispatch(a) if d: self.write("=") self.dispatch(d) # varargs, or bare '*' if no varargs but keyword-only arguments present if t.vararg or t.kwonlyargs: if first:first = False else: self.write(", ") self.write("*") if t.vararg: self.write(t.vararg.arg) if t.vararg.annotation: self.write(": ") self.dispatch(t.vararg.annotation) # keyword-only arguments if t.kwonlyargs: for a, d in zip(t.kwonlyargs, t.kw_defaults): if first:first = False else: self.write(", ") self.dispatch(a), if d: self.write("=") self.dispatch(d) # kwargs if t.kwarg: if first:first = False else: self.write(", ") self.write("**"+t.kwarg.arg) if t.kwarg.annotation: self.write(": ") self.dispatch(t.kwarg.annotation) def _keyword(self, t): if t.arg is None: self.write("**") else: self.write(t.arg) self.write("=") self.dispatch(t.value) def _Lambda(self, t): self.write("(") self.write("lambda ") self.dispatch(t.args) self.write(": ") self.dispatch(t.body) self.write(")") def _alias(self, t): self.write(t.name) if t.asname: self.write(" as "+t.asname) def _withitem(self, t): self.dispatch(t.context_expr) if t.optional_vars: self.write(" as ") self.dispatch(t.optional_vars) def roundtrip(filename, output=sys.stdout): with open(filename, "rb") as pyfile: encoding = tokenize.detect_encoding(pyfile.readline)[0] with open(filename, "r", encoding=encoding) as pyfile: source = pyfile.read() tree = compile(source, filename, "exec", ast.PyCF_ONLY_AST) Unparser(tree, output) def testdir(a): try: names = [n for n in os.listdir(a) if n.endswith('.py')] except OSError: print("Directory not readable: %s" % a, file=sys.stderr) else: for n in names: fullname = os.path.join(a, n) if os.path.isfile(fullname): output = io.StringIO() print('Testing %s' % fullname) try: roundtrip(fullname, output) except Exception as e: print(' Failed to compile, exception is %s' % repr(e)) elif os.path.isdir(fullname): testdir(fullname) def main(args): if args[0] == '--testdir': for a in args[1:]: testdir(a) else: for a in args: roundtrip(a) if __name__=='__main__': main(sys.argv[1:])