/* Generic object operations; and implementation of None */ #include "Python.h" #include "frameobject.h" #ifdef __cplusplus extern "C" { #endif #ifdef Py_REF_DEBUG Py_ssize_t _Py_RefTotal; Py_ssize_t _Py_GetRefTotal(void) { PyObject *o; Py_ssize_t total = _Py_RefTotal; /* ignore the references to the dummy object of the dicts and sets because they are not reliable and not useful (now that the hash table code is well-tested) */ o = _PyDict_Dummy(); if (o != NULL) total -= o->ob_refcnt; o = _PySet_Dummy; if (o != NULL) total -= o->ob_refcnt; return total; } #endif /* Py_REF_DEBUG */ /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. These are used by the individual routines for object creation. Do not call them otherwise, they do not initialize the object! */ #ifdef Py_TRACE_REFS /* Head of circular doubly-linked list of all objects. These are linked * together via the _ob_prev and _ob_next members of a PyObject, which * exist only in a Py_TRACE_REFS build. */ static PyObject refchain = {&refchain, &refchain}; /* Insert op at the front of the list of all objects. If force is true, * op is added even if _ob_prev and _ob_next are non-NULL already. If * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. * force should be true if and only if op points to freshly allocated, * uninitialized memory, or you've unlinked op from the list and are * relinking it into the front. * Note that objects are normally added to the list via _Py_NewReference, * which is called by PyObject_Init. Not all objects are initialized that * way, though; exceptions include statically allocated type objects, and * statically allocated singletons (like Py_True and Py_None). */ void _Py_AddToAllObjects(PyObject *op, int force) { #ifdef Py_DEBUG if (!force) { /* If it's initialized memory, op must be in or out of * the list unambiguously. */ assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); } #endif if (force || op->_ob_prev == NULL) { op->_ob_next = refchain._ob_next; op->_ob_prev = &refchain; refchain._ob_next->_ob_prev = op; refchain._ob_next = op; } } #endif /* Py_TRACE_REFS */ #ifdef COUNT_ALLOCS static PyTypeObject *type_list; /* All types are added to type_list, at least when they get one object created. That makes them immortal, which unfortunately contributes to garbage itself. If unlist_types_without_objects is set, they will be removed from the type_list once the last object is deallocated. */ static int unlist_types_without_objects; extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs; extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs; extern Py_ssize_t null_strings, one_strings; void dump_counts(FILE* f) { PyTypeObject *tp; for (tp = type_list; tp; tp = tp->tp_next) fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, " "freed: %" PY_FORMAT_SIZE_T "d, " "max in use: %" PY_FORMAT_SIZE_T "d\n", tp->tp_name, tp->tp_allocs, tp->tp_frees, tp->tp_maxalloc); fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, " "empty: %" PY_FORMAT_SIZE_T "d\n", fast_tuple_allocs, tuple_zero_allocs); fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, " "neg: %" PY_FORMAT_SIZE_T "d\n", quick_int_allocs, quick_neg_int_allocs); fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, " "1-strings: %" PY_FORMAT_SIZE_T "d\n", null_strings, one_strings); } PyObject * get_counts(void) { PyTypeObject *tp; PyObject *result; PyObject *v; result = PyList_New(0); if (result == NULL) return NULL; for (tp = type_list; tp; tp = tp->tp_next) { v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs, tp->tp_frees, tp->tp_maxalloc); if (v == NULL) { Py_DECREF(result); return NULL; } if (PyList_Append(result, v) < 0) { Py_DECREF(v); Py_DECREF(result); return NULL; } Py_DECREF(v); } return result; } void inc_count(PyTypeObject *tp) { if (tp->tp_next == NULL && tp->tp_prev == NULL) { /* first time; insert in linked list */ if (tp->tp_next != NULL) /* sanity check */ Py_FatalError("XXX inc_count sanity check"); if (type_list) type_list->tp_prev = tp; tp->tp_next = type_list; /* Note that as of Python 2.2, heap-allocated type objects * can go away, but this code requires that they stay alive * until program exit. That's why we're careful with * refcounts here. type_list gets a new reference to tp, * while ownership of the reference type_list used to hold * (if any) was transferred to tp->tp_next in the line above. * tp is thus effectively immortal after this. */ Py_INCREF(tp); type_list = tp; #ifdef Py_TRACE_REFS /* Also insert in the doubly-linked list of all objects, * if not already there. */ _Py_AddToAllObjects((PyObject *)tp, 0); #endif } tp->tp_allocs++; if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; } void dec_count(PyTypeObject *tp) { tp->tp_frees++; if (unlist_types_without_objects && tp->tp_allocs == tp->tp_frees) { /* unlink the type from type_list */ if (tp->tp_prev) tp->tp_prev->tp_next = tp->tp_next; else type_list = tp->tp_next; if (tp->tp_next) tp->tp_next->tp_prev = tp->tp_prev; tp->tp_next = tp->tp_prev = NULL; Py_DECREF(tp); } } #endif #ifdef Py_REF_DEBUG /* Log a fatal error; doesn't return. */ void _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) { char buf[300]; PyOS_snprintf(buf, sizeof(buf), "%s:%i object at %p has negative ref count " "%" PY_FORMAT_SIZE_T "d", fname, lineno, op, op->ob_refcnt); Py_FatalError(buf); } #endif /* Py_REF_DEBUG */ void Py_IncRef(PyObject *o) { Py_XINCREF(o); } void Py_DecRef(PyObject *o) { Py_XDECREF(o); } PyObject * PyObject_Init(PyObject *op, PyTypeObject *tp) { if (op == NULL) return PyErr_NoMemory(); /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ Py_TYPE(op) = tp; _Py_NewReference(op); return op; } PyVarObject * PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size) { if (op == NULL) return (PyVarObject *) PyErr_NoMemory(); /* Any changes should be reflected in PyObject_INIT_VAR */ op->ob_size = size; Py_TYPE(op) = tp; _Py_NewReference((PyObject *)op); return op; } PyObject * _PyObject_New(PyTypeObject *tp) { PyObject *op; op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); if (op == NULL) return PyErr_NoMemory(); return PyObject_INIT(op, tp); } PyVarObject * _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems) { PyVarObject *op; const size_t size = _PyObject_VAR_SIZE(tp, nitems); op = (PyVarObject *) PyObject_MALLOC(size); if (op == NULL) return (PyVarObject *)PyErr_NoMemory(); return PyObject_INIT_VAR(op, tp, nitems); } void PyObject_CallFinalizer(PyObject *self) { PyTypeObject *tp = Py_TYPE(self); /* The former could happen on heaptypes created from the C API, e.g. PyType_FromSpec(). */ if (!PyType_HasFeature(tp, Py_TPFLAGS_HAVE_FINALIZE) || tp->tp_finalize == NULL) return; /* tp_finalize should only be called once. */ if (PyType_IS_GC(tp) && _PyGC_FINALIZED(self)) return; tp->tp_finalize(self); if (PyType_IS_GC(tp)) _PyGC_SET_FINALIZED(self, 1); } int PyObject_CallFinalizerFromDealloc(PyObject *self) { Py_ssize_t refcnt; /* Temporarily resurrect the object. */ if (self->ob_refcnt != 0) { Py_FatalError("PyObject_CallFinalizerFromDealloc called on " "object with a non-zero refcount"); } self->ob_refcnt = 1; PyObject_CallFinalizer(self); /* Undo the temporary resurrection; can't use DECREF here, it would * cause a recursive call. */ assert(self->ob_refcnt > 0); if (--self->ob_refcnt == 0) return 0; /* this is the normal path out */ /* tp_finalize resurrected it! Make it look like the original Py_DECREF * never happened. */ refcnt = self->ob_refcnt; _Py_NewReference(self); self->ob_refcnt = refcnt; if (PyType_IS_GC(Py_TYPE(self))) { assert(_PyGC_REFS(self) != _PyGC_REFS_UNTRACKED); } /* If Py_REF_DEBUG, _Py_NewReference bumped _Py_RefTotal, so * we need to undo that. */ _Py_DEC_REFTOTAL; /* If Py_TRACE_REFS, _Py_NewReference re-added self to the object * chain, so no more to do there. * If COUNT_ALLOCS, the original decref bumped tp_frees, and * _Py_NewReference bumped tp_allocs: both of those need to be * undone. */ #ifdef COUNT_ALLOCS --Py_TYPE(self)->tp_frees; --Py_TYPE(self)->tp_allocs; #endif return -1; } int PyObject_Print(PyObject *op, FILE *fp, int flags) { int ret = 0; if (PyErr_CheckSignals()) return -1; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "stack overflow"); return -1; } #endif clearerr(fp); /* Clear any previous error condition */ if (op == NULL) { Py_BEGIN_ALLOW_THREADS fprintf(fp, ""); Py_END_ALLOW_THREADS } else { if (op->ob_refcnt <= 0) /* XXX(twouters) cast refcount to long until %zd is universally available */ Py_BEGIN_ALLOW_THREADS fprintf(fp, "", (long)op->ob_refcnt, op); Py_END_ALLOW_THREADS else { PyObject *s; if (flags & Py_PRINT_RAW) s = PyObject_Str(op); else s = PyObject_Repr(op); if (s == NULL) ret = -1; else if (PyBytes_Check(s)) { fwrite(PyBytes_AS_STRING(s), 1, PyBytes_GET_SIZE(s), fp); } else if (PyUnicode_Check(s)) { PyObject *t; t = PyUnicode_AsEncodedString(s, "utf-8", "backslashreplace"); if (t == NULL) ret = 0; else { fwrite(PyBytes_AS_STRING(t), 1, PyBytes_GET_SIZE(t), fp); Py_DECREF(t); } } else { PyErr_Format(PyExc_TypeError, "str() or repr() returned '%.100s'", s->ob_type->tp_name); ret = -1; } Py_XDECREF(s); } } if (ret == 0) { if (ferror(fp)) { PyErr_SetFromErrno(PyExc_IOError); clearerr(fp); ret = -1; } } return ret; } /* For debugging convenience. Set a breakpoint here and call it from your DLL */ void _Py_BreakPoint(void) { } /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ void _PyObject_Dump(PyObject* op) { if (op == NULL) fprintf(stderr, "NULL\n"); else { #ifdef WITH_THREAD PyGILState_STATE gil; #endif PyObject *error_type, *error_value, *error_traceback; fprintf(stderr, "object : "); #ifdef WITH_THREAD gil = PyGILState_Ensure(); #endif PyErr_Fetch(&error_type, &error_value, &error_traceback); (void)PyObject_Print(op, stderr, 0); PyErr_Restore(error_type, error_value, error_traceback); #ifdef WITH_THREAD PyGILState_Release(gil); #endif /* XXX(twouters) cast refcount to long until %zd is universally available */ fprintf(stderr, "\n" "type : %s\n" "refcount: %ld\n" "address : %p\n", Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name, (long)op->ob_refcnt, op); } } PyObject * PyObject_Repr(PyObject *v) { PyObject *res; if (PyErr_CheckSignals()) return NULL; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "stack overflow"); return NULL; } #endif if (v == NULL) return PyUnicode_FromString(""); if (Py_TYPE(v)->tp_repr == NULL) return PyUnicode_FromFormat("<%s object at %p>", v->ob_type->tp_name, v); #ifdef Py_DEBUG /* PyObject_Repr() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller looses its exception */ assert(!PyErr_Occurred()); #endif res = (*v->ob_type->tp_repr)(v); if (res == NULL) return NULL; if (!PyUnicode_Check(res)) { PyErr_Format(PyExc_TypeError, "__repr__ returned non-string (type %.200s)", res->ob_type->tp_name); Py_DECREF(res); return NULL; } #ifndef Py_DEBUG if (PyUnicode_READY(res) < 0) return NULL; #endif return res; } PyObject * PyObject_Str(PyObject *v) { PyObject *res; if (PyErr_CheckSignals()) return NULL; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "stack overflow"); return NULL; } #endif if (v == NULL) return PyUnicode_FromString(""); if (PyUnicode_CheckExact(v)) { #ifndef Py_DEBUG if (PyUnicode_READY(v) < 0) return NULL; #endif Py_INCREF(v); return v; } if (Py_TYPE(v)->tp_str == NULL) return PyObject_Repr(v); #ifdef Py_DEBUG /* PyObject_Str() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller looses its exception */ assert(!PyErr_Occurred()); #endif /* It is possible for a type to have a tp_str representation that loops infinitely. */ if (Py_EnterRecursiveCall(" while getting the str of an object")) return NULL; res = (*Py_TYPE(v)->tp_str)(v); Py_LeaveRecursiveCall(); if (res == NULL) return NULL; if (!PyUnicode_Check(res)) { PyErr_Format(PyExc_TypeError, "__str__ returned non-string (type %.200s)", Py_TYPE(res)->tp_name); Py_DECREF(res); return NULL; } #ifndef Py_DEBUG if (PyUnicode_READY(res) < 0) return NULL; #endif assert(_PyUnicode_CheckConsistency(res, 1)); return res; } PyObject * PyObject_ASCII(PyObject *v) { PyObject *repr, *ascii, *res; repr = PyObject_Repr(v); if (repr == NULL) return NULL; if (PyUnicode_IS_ASCII(repr)) return repr; /* repr is guaranteed to be a PyUnicode object by PyObject_Repr */ ascii = _PyUnicode_AsASCIIString(repr, "backslashreplace"); Py_DECREF(repr); if (ascii == NULL) return NULL; res = PyUnicode_DecodeASCII( PyBytes_AS_STRING(ascii), PyBytes_GET_SIZE(ascii), NULL); Py_DECREF(ascii); return res; } PyObject * PyObject_Bytes(PyObject *v) { PyObject *result, *func; _Py_IDENTIFIER(__bytes__); if (v == NULL) return PyBytes_FromString(""); if (PyBytes_CheckExact(v)) { Py_INCREF(v); return v; } func = _PyObject_LookupSpecial(v, &PyId___bytes__); if (func != NULL) { result = PyObject_CallFunctionObjArgs(func, NULL); Py_DECREF(func); if (result == NULL) return NULL; if (!PyBytes_Check(result)) { PyErr_Format(PyExc_TypeError, "__bytes__ returned non-bytes (type %.200s)", Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } return result; } else if (PyErr_Occurred()) return NULL; return PyBytes_FromObject(v); } /* For Python 3.0.1 and later, the old three-way comparison has been completely removed in favour of rich comparisons. PyObject_Compare() and PyObject_Cmp() are gone, and the builtin cmp function no longer exists. The old tp_compare slot has been renamed to tp_reserved, and should no longer be used. Use tp_richcompare instead. See (*) below for practical amendments. tp_richcompare gets called with a first argument of the appropriate type and a second object of an arbitrary type. We never do any kind of coercion. The tp_richcompare slot should return an object, as follows: NULL if an exception occurred NotImplemented if the requested comparison is not implemented any other false value if the requested comparison is false any other true value if the requested comparison is true The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get NotImplemented. (*) Practical amendments: - If rich comparison returns NotImplemented, == and != are decided by comparing the object pointer (i.e. falling back to the base object implementation). */ /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */ int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="}; /* Perform a rich comparison, raising TypeError when the requested comparison operator is not supported. */ static PyObject * do_richcompare(PyObject *v, PyObject *w, int op) { richcmpfunc f; PyObject *res; int checked_reverse_op = 0; if (v->ob_type != w->ob_type && PyType_IsSubtype(w->ob_type, v->ob_type) && (f = w->ob_type->tp_richcompare) != NULL) { checked_reverse_op = 1; res = (*f)(w, v, _Py_SwappedOp[op]); if (res != Py_NotImplemented) return res; Py_DECREF(res); } if ((f = v->ob_type->tp_richcompare) != NULL) { res = (*f)(v, w, op); if (res != Py_NotImplemented) return res; Py_DECREF(res); } if (!checked_reverse_op && (f = w->ob_type->tp_richcompare) != NULL) { res = (*f)(w, v, _Py_SwappedOp[op]); if (res != Py_NotImplemented) return res; Py_DECREF(res); } /* If neither object implements it, provide a sensible default for == and !=, but raise an exception for ordering. */ switch (op) { case Py_EQ: res = (v == w) ? Py_True : Py_False; break; case Py_NE: res = (v != w) ? Py_True : Py_False; break; default: /* XXX Special-case None so it doesn't show as NoneType() */ PyErr_Format(PyExc_TypeError, "unorderable types: %.100s() %s %.100s()", v->ob_type->tp_name, opstrings[op], w->ob_type->tp_name); return NULL; } Py_INCREF(res); return res; } /* Perform a rich comparison with object result. This wraps do_richcompare() with a check for NULL arguments and a recursion check. */ PyObject * PyObject_RichCompare(PyObject *v, PyObject *w, int op) { PyObject *res; assert(Py_LT <= op && op <= Py_GE); if (v == NULL || w == NULL) { if (!PyErr_Occurred()) PyErr_BadInternalCall(); return NULL; } if (Py_EnterRecursiveCall(" in comparison")) return NULL; res = do_richcompare(v, w, op); Py_LeaveRecursiveCall(); return res; } /* Perform a rich comparison with integer result. This wraps PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */ int PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) { PyObject *res; int ok; /* Quick result when objects are the same. Guarantees that identity implies equality. */ if (v == w) { if (op == Py_EQ) return 1; else if (op == Py_NE) return 0; } res = PyObject_RichCompare(v, w, op); if (res == NULL) return -1; if (PyBool_Check(res)) ok = (res == Py_True); else ok = PyObject_IsTrue(res); Py_DECREF(res); return ok; } /* Set of hash utility functions to help maintaining the invariant that if a==b then hash(a)==hash(b) All the utility functions (_Py_Hash*()) return "-1" to signify an error. */ /* For numeric types, the hash of a number x is based on the reduction of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that hash(x) == hash(y) whenever x and y are numerically equal, even if x and y have different types. A quick summary of the hashing strategy: (1) First define the 'reduction of x modulo P' for any rational number x; this is a standard extension of the usual notion of reduction modulo P for integers. If x == p/q (written in lowest terms), the reduction is interpreted as the reduction of p times the inverse of the reduction of q, all modulo P; if q is exactly divisible by P then define the reduction to be infinity. So we've got a well-defined map reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. (2) Now for a rational number x, define hash(x) by: reduce(x) if x >= 0 -reduce(-x) if x < 0 If the result of the reduction is infinity (this is impossible for integers, floats and Decimals) then use the predefined hash value _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the hashes of float and Decimal infinities and nans. A selling point for the above strategy is that it makes it possible to compute hashes of decimal and binary floating-point numbers efficiently, even if the exponent of the binary or decimal number is large. The key point is that reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a binary or decimal float is never infinity, since the denominator is a power of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, for nonnegative x, reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS and reduce(10**e) can be computed efficiently by the usual modular exponentiation algorithm. For reduce(2**e) it's even better: since P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. */ Py_hash_t _Py_HashDouble(double v) { int e, sign; double m; Py_uhash_t x, y; if (!Py_IS_FINITE(v)) { if (Py_IS_INFINITY(v)) return v > 0 ? _PyHASH_INF : -_PyHASH_INF; else return _PyHASH_NAN; } m = frexp(v, &e); sign = 1; if (m < 0) { sign = -1; m = -m; } /* process 28 bits at a time; this should work well both for binary and hexadecimal floating point. */ x = 0; while (m) { x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); m *= 268435456.0; /* 2**28 */ e -= 28; y = (Py_uhash_t)m; /* pull out integer part */ m -= y; x += y; if (x >= _PyHASH_MODULUS) x -= _PyHASH_MODULUS; } /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); x = x * sign; if (x == (Py_uhash_t)-1) x = (Py_uhash_t)-2; return (Py_hash_t)x; } Py_hash_t _Py_HashPointer(void *p) { Py_hash_t x; size_t y = (size_t)p; /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid excessive hash collisions for dicts and sets */ y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); x = (Py_hash_t)y; if (x == -1) x = -2; return x; } Py_hash_t _Py_HashBytes(unsigned char *p, Py_ssize_t len) { Py_uhash_t x; Py_ssize_t i; /* We make the hash of the empty string be 0, rather than using (prefix ^ suffix), since this slightly obfuscates the hash secret */ #ifdef Py_DEBUG assert(_Py_HashSecret_Initialized); #endif if (len == 0) { return 0; } x = (Py_uhash_t) _Py_HashSecret.prefix; x ^= (Py_uhash_t) *p << 7; for (i = 0; i < len; i++) x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; x ^= (Py_uhash_t) len; x ^= (Py_uhash_t) _Py_HashSecret.suffix; if (x == -1) x = -2; return x; } Py_hash_t PyObject_HashNotImplemented(PyObject *v) { PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'", Py_TYPE(v)->tp_name); return -1; } _Py_HashSecret_t _Py_HashSecret; Py_hash_t PyObject_Hash(PyObject *v) { PyTypeObject *tp = Py_TYPE(v); if (tp->tp_hash != NULL) return (*tp->tp_hash)(v); /* To keep to the general practice that inheriting * solely from object in C code should work without * an explicit call to PyType_Ready, we implicitly call * PyType_Ready here and then check the tp_hash slot again */ if (tp->tp_dict == NULL) { if (PyType_Ready(tp) < 0) return -1; if (tp->tp_hash != NULL) return (*tp->tp_hash)(v); } /* Otherwise, the object can't be hashed */ return PyObject_HashNotImplemented(v); } PyObject * PyObject_GetAttrString(PyObject *v, const char *name) { PyObject *w, *res; if (Py_TYPE(v)->tp_getattr != NULL) return (*Py_TYPE(v)->tp_getattr)(v, (char*)name); w = PyUnicode_InternFromString(name); if (w == NULL) return NULL; res = PyObject_GetAttr(v, w); Py_DECREF(w); return res; } int PyObject_HasAttrString(PyObject *v, const char *name) { PyObject *res = PyObject_GetAttrString(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) { PyObject *s; int res; if (Py_TYPE(v)->tp_setattr != NULL) return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w); s = PyUnicode_InternFromString(name); if (s == NULL) return -1; res = PyObject_SetAttr(v, s, w); Py_XDECREF(s); return res; } int _PyObject_IsAbstract(PyObject *obj) { int res; PyObject* isabstract; _Py_IDENTIFIER(__isabstractmethod__); if (obj == NULL) return 0; isabstract = _PyObject_GetAttrId(obj, &PyId___isabstractmethod__); if (isabstract == NULL) { if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); return 0; } return -1; } res = PyObject_IsTrue(isabstract); Py_DECREF(isabstract); return res; } PyObject * _PyObject_GetAttrId(PyObject *v, _Py_Identifier *name) { PyObject *result; PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ if (!oname) return NULL; result = PyObject_GetAttr(v, oname); return result; } int _PyObject_HasAttrId(PyObject *v, _Py_Identifier *name) { int result; PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ if (!oname) return -1; result = PyObject_HasAttr(v, oname); return result; } int _PyObject_SetAttrId(PyObject *v, _Py_Identifier *name, PyObject *w) { int result; PyObject *oname = _PyUnicode_FromId(name); /* borrowed */ if (!oname) return -1; result = PyObject_SetAttr(v, oname, w); return result; } PyObject * PyObject_GetAttr(PyObject *v, PyObject *name) { PyTypeObject *tp = Py_TYPE(v); if (!PyUnicode_Check(name)) { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return NULL; } if (tp->tp_getattro != NULL) return (*tp->tp_getattro)(v, name); if (tp->tp_getattr != NULL) { char *name_str = _PyUnicode_AsString(name); if (name_str == NULL) return NULL; return (*tp->tp_getattr)(v, name_str); } PyErr_Format(PyExc_AttributeError, "'%.50s' object has no attribute '%U'", tp->tp_name, name); return NULL; } int PyObject_HasAttr(PyObject *v, PyObject *name) { PyObject *res = PyObject_GetAttr(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) { PyTypeObject *tp = Py_TYPE(v); int err; if (!PyUnicode_Check(name)) { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return -1; } Py_INCREF(name); PyUnicode_InternInPlace(&name); if (tp->tp_setattro != NULL) { err = (*tp->tp_setattro)(v, name, value); Py_DECREF(name); return err; } if (tp->tp_setattr != NULL) { char *name_str = _PyUnicode_AsString(name); if (name_str == NULL) return -1; err = (*tp->tp_setattr)(v, name_str, value); Py_DECREF(name); return err; } Py_DECREF(name); assert(name->ob_refcnt >= 1); if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) PyErr_Format(PyExc_TypeError, "'%.100s' object has no attributes " "(%s .%U)", tp->tp_name, value==NULL ? "del" : "assign to", name); else PyErr_Format(PyExc_TypeError, "'%.100s' object has only read-only attributes " "(%s .%U)", tp->tp_name, value==NULL ? "del" : "assign to", name); return -1; } /* Helper to get a pointer to an object's __dict__ slot, if any */ PyObject ** _PyObject_GetDictPtr(PyObject *obj) { Py_ssize_t dictoffset; PyTypeObject *tp = Py_TYPE(obj); dictoffset = tp->tp_dictoffset; if (dictoffset == 0) return NULL; if (dictoffset < 0) { Py_ssize_t tsize; size_t size; tsize = ((PyVarObject *)obj)->ob_size; if (tsize < 0) tsize = -tsize; size = _PyObject_VAR_SIZE(tp, tsize); dictoffset += (long)size; assert(dictoffset > 0); assert(dictoffset % SIZEOF_VOID_P == 0); } return (PyObject **) ((char *)obj + dictoffset); } PyObject * PyObject_SelfIter(PyObject *obj) { Py_INCREF(obj); return obj; } /* Convenience function to get a builtin from its name */ PyObject * _PyObject_GetBuiltin(const char *name) { PyObject *mod, *attr; mod = PyImport_ImportModule("builtins"); if (mod == NULL) return NULL; attr = PyObject_GetAttrString(mod, name); Py_DECREF(mod); return attr; } /* Helper used when the __next__ method is removed from a type: tp_iternext is never NULL and can be safely called without checking on every iteration. */ PyObject * _PyObject_NextNotImplemented(PyObject *self) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not iterable", Py_TYPE(self)->tp_name); return NULL; } /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ PyObject * _PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict) { PyTypeObject *tp = Py_TYPE(obj); PyObject *descr = NULL; PyObject *res = NULL; descrgetfunc f; Py_ssize_t dictoffset; PyObject **dictptr; if (!PyUnicode_Check(name)){ PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return NULL; } else Py_INCREF(name); if (tp->tp_dict == NULL) { if (PyType_Ready(tp) < 0) goto done; } descr = _PyType_Lookup(tp, name); Py_XINCREF(descr); f = NULL; if (descr != NULL) { f = descr->ob_type->tp_descr_get; if (f != NULL && PyDescr_IsData(descr)) { res = f(descr, obj, (PyObject *)obj->ob_type); goto done; } } if (dict == NULL) { /* Inline _PyObject_GetDictPtr */ dictoffset = tp->tp_dictoffset; if (dictoffset != 0) { if (dictoffset < 0) { Py_ssize_t tsize; size_t size; tsize = ((PyVarObject *)obj)->ob_size; if (tsize < 0) tsize = -tsize; size = _PyObject_VAR_SIZE(tp, tsize); dictoffset += (long)size; assert(dictoffset > 0); assert(dictoffset % SIZEOF_VOID_P == 0); } dictptr = (PyObject **) ((char *)obj + dictoffset); dict = *dictptr; } } if (dict != NULL) { Py_INCREF(dict); res = PyDict_GetItem(dict, name); if (res != NULL) { Py_INCREF(res); Py_DECREF(dict); goto done; } Py_DECREF(dict); } if (f != NULL) { res = f(descr, obj, (PyObject *)Py_TYPE(obj)); goto done; } if (descr != NULL) { res = descr; descr = NULL; goto done; } PyErr_Format(PyExc_AttributeError, "'%.50s' object has no attribute '%U'", tp->tp_name, name); done: Py_XDECREF(descr); Py_DECREF(name); return res; } PyObject * PyObject_GenericGetAttr(PyObject *obj, PyObject *name) { return _PyObject_GenericGetAttrWithDict(obj, name, NULL); } int _PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name, PyObject *value, PyObject *dict) { PyTypeObject *tp = Py_TYPE(obj); PyObject *descr; descrsetfunc f; PyObject **dictptr; int res = -1; if (!PyUnicode_Check(name)){ PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return -1; } if (tp->tp_dict == NULL && PyType_Ready(tp) < 0) return -1; Py_INCREF(name); descr = _PyType_Lookup(tp, name); Py_XINCREF(descr); f = NULL; if (descr != NULL) { f = descr->ob_type->tp_descr_set; if (f != NULL && PyDescr_IsData(descr)) { res = f(descr, obj, value); goto done; } } if (dict == NULL) { dictptr = _PyObject_GetDictPtr(obj); if (dictptr != NULL) { res = _PyObjectDict_SetItem(Py_TYPE(obj), dictptr, name, value); if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) PyErr_SetObject(PyExc_AttributeError, name); goto done; } } if (dict != NULL) { Py_INCREF(dict); if (value == NULL) res = PyDict_DelItem(dict, name); else res = PyDict_SetItem(dict, name, value); Py_DECREF(dict); if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) PyErr_SetObject(PyExc_AttributeError, name); goto done; } if (f != NULL) { res = f(descr, obj, value); goto done; } if (descr == NULL) { PyErr_Format(PyExc_AttributeError, "'%.100s' object has no attribute '%U'", tp->tp_name, name); goto done; } PyErr_Format(PyExc_AttributeError, "'%.50s' object attribute '%U' is read-only", tp->tp_name, name); done: Py_XDECREF(descr); Py_DECREF(name); return res; } int PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) { return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL); } int PyObject_GenericSetDict(PyObject *obj, PyObject *value, void *context) { PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj); if (dictptr == NULL) { PyErr_SetString(PyExc_AttributeError, "This object has no __dict__"); return -1; } if (value == NULL) { PyErr_SetString(PyExc_TypeError, "cannot delete __dict__"); return -1; } if (!PyDict_Check(value)) { PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, " "not a '%.200s'", Py_TYPE(value)->tp_name); return -1; } dict = *dictptr; Py_XINCREF(value); *dictptr = value; Py_XDECREF(dict); return 0; } /* Test a value used as condition, e.g., in a for or if statement. Return -1 if an error occurred */ int PyObject_IsTrue(PyObject *v) { Py_ssize_t res; if (v == Py_True) return 1; if (v == Py_False) return 0; if (v == Py_None) return 0; else if (v->ob_type->tp_as_number != NULL && v->ob_type->tp_as_number->nb_bool != NULL) res = (*v->ob_type->tp_as_number->nb_bool)(v); else if (v->ob_type->tp_as_mapping != NULL && v->ob_type->tp_as_mapping->mp_length != NULL) res = (*v->ob_type->tp_as_mapping->mp_length)(v); else if (v->ob_type->tp_as_sequence != NULL && v->ob_type->tp_as_sequence->sq_length != NULL) res = (*v->ob_type->tp_as_sequence->sq_length)(v); else return 1; /* if it is negative, it should be either -1 or -2 */ return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int); } /* equivalent of 'not v' Return -1 if an error occurred */ int PyObject_Not(PyObject *v) { int res; res = PyObject_IsTrue(v); if (res < 0) return res; return res == 0; } /* Test whether an object can be called */ int PyCallable_Check(PyObject *x) { if (x == NULL) return 0; return x->ob_type->tp_call != NULL; } /* Helper for PyObject_Dir without arguments: returns the local scope. */ static PyObject * _dir_locals(void) { PyObject *names; PyObject *locals; locals = PyEval_GetLocals(); if (locals == NULL) return NULL; names = PyMapping_Keys(locals); if (!names) return NULL; if (!PyList_Check(names)) { PyErr_Format(PyExc_TypeError, "dir(): expected keys() of locals to be a list, " "not '%.200s'", Py_TYPE(names)->tp_name); Py_DECREF(names); return NULL; } if (PyList_Sort(names)) { Py_DECREF(names); return NULL; } /* the locals don't need to be DECREF'd */ return names; } /* Helper for PyObject_Dir: object introspection. */ static PyObject * _dir_object(PyObject *obj) { PyObject *result, *sorted; _Py_IDENTIFIER(__dir__); PyObject *dirfunc = _PyObject_LookupSpecial(obj, &PyId___dir__); assert(obj); if (dirfunc == NULL) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_TypeError, "object does not provide __dir__"); return NULL; } /* use __dir__ */ result = PyObject_CallFunctionObjArgs(dirfunc, NULL); Py_DECREF(dirfunc); if (result == NULL) return NULL; /* return sorted(result) */ sorted = PySequence_List(result); Py_DECREF(result); if (sorted == NULL) return NULL; if (PyList_Sort(sorted)) { Py_DECREF(sorted); return NULL; } return sorted; } /* Implementation of dir() -- if obj is NULL, returns the names in the current (local) scope. Otherwise, performs introspection of the object: returns a sorted list of attribute names (supposedly) accessible from the object */ PyObject * PyObject_Dir(PyObject *obj) { return (obj == NULL) ? _dir_locals() : _dir_object(obj); } /* None is a non-NULL undefined value. There is (and should be!) no way to create other objects of this type, so there is exactly one (which is indestructible, by the way). */ /* ARGSUSED */ static PyObject * none_repr(PyObject *op) { return PyUnicode_FromString("None"); } /* ARGUSED */ static void none_dealloc(PyObject* ignore) { /* This should never get called, but we also don't want to SEGV if * we accidentally decref None out of existence. */ Py_FatalError("deallocating None"); } static PyObject * none_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) { if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) { PyErr_SetString(PyExc_TypeError, "NoneType takes no arguments"); return NULL; } Py_RETURN_NONE; } static int none_bool(PyObject *v) { return 0; } static PyNumberMethods none_as_number = { 0, /* nb_add */ 0, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ (inquiry)none_bool, /* nb_bool */ 0, /* nb_invert */ 0, /* nb_lshift */ 0, /* nb_rshift */ 0, /* nb_and */ 0, /* nb_xor */ 0, /* nb_or */ 0, /* nb_int */ 0, /* nb_reserved */ 0, /* nb_float */ 0, /* nb_inplace_add */ 0, /* nb_inplace_subtract */ 0, /* nb_inplace_multiply */ 0, /* nb_inplace_remainder */ 0, /* nb_inplace_power */ 0, /* nb_inplace_lshift */ 0, /* nb_inplace_rshift */ 0, /* nb_inplace_and */ 0, /* nb_inplace_xor */ 0, /* nb_inplace_or */ 0, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ 0, /* nb_index */ }; static PyTypeObject PyNone_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "NoneType", 0, 0, none_dealloc, /*tp_dealloc*/ /*never called*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ none_repr, /*tp_repr*/ &none_as_number, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call */ 0, /*tp_str */ 0, /*tp_getattro */ 0, /*tp_setattro */ 0, /*tp_as_buffer */ Py_TPFLAGS_DEFAULT, /*tp_flags */ 0, /*tp_doc */ 0, /*tp_traverse */ 0, /*tp_clear */ 0, /*tp_richcompare */ 0, /*tp_weaklistoffset */ 0, /*tp_iter */ 0, /*tp_iternext */ 0, /*tp_methods */ 0, /*tp_members */ 0, /*tp_getset */ 0, /*tp_base */ 0, /*tp_dict */ 0, /*tp_descr_get */ 0, /*tp_descr_set */ 0, /*tp_dictoffset */ 0, /*tp_init */ 0, /*tp_alloc */ none_new, /*tp_new */ }; PyObject _Py_NoneStruct = { _PyObject_EXTRA_INIT 1, &PyNone_Type }; /* NotImplemented is an object that can be used to signal that an operation is not implemented for the given type combination. */ static PyObject * NotImplemented_repr(PyObject *op) { return PyUnicode_FromString("NotImplemented"); } static PyObject * notimplemented_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) { if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) { PyErr_SetString(PyExc_TypeError, "NotImplementedType takes no arguments"); return NULL; } Py_RETURN_NOTIMPLEMENTED; } static void notimplemented_dealloc(PyObject* ignore) { /* This should never get called, but we also don't want to SEGV if * we accidentally decref NotImplemented out of existence. */ Py_FatalError("deallocating NotImplemented"); } static PyTypeObject PyNotImplemented_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "NotImplementedType", 0, 0, notimplemented_dealloc, /*tp_dealloc*/ /*never called*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ NotImplemented_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call */ 0, /*tp_str */ 0, /*tp_getattro */ 0, /*tp_setattro */ 0, /*tp_as_buffer */ Py_TPFLAGS_DEFAULT, /*tp_flags */ 0, /*tp_doc */ 0, /*tp_traverse */ 0, /*tp_clear */ 0, /*tp_richcompare */ 0, /*tp_weaklistoffset */ 0, /*tp_iter */ 0, /*tp_iternext */ 0, /*tp_methods */ 0, /*tp_members */ 0, /*tp_getset */ 0, /*tp_base */ 0, /*tp_dict */ 0, /*tp_descr_get */ 0, /*tp_descr_set */ 0, /*tp_dictoffset */ 0, /*tp_init */ 0, /*tp_alloc */ notimplemented_new, /*tp_new */ }; PyObject _Py_NotImplementedStruct = { _PyObject_EXTRA_INIT 1, &PyNotImplemented_Type }; void _Py_ReadyTypes(void) { if (PyType_Ready(&PyType_Type) < 0) Py_FatalError("Can't initialize type type"); if (PyType_Ready(&_PyWeakref_RefType) < 0) Py_FatalError("Can't initialize weakref type"); if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0) Py_FatalError("Can't initialize callable weakref proxy type"); if (PyType_Ready(&_PyWeakref_ProxyType) < 0) Py_FatalError("Can't initialize weakref proxy type"); if (PyType_Ready(&PyBool_Type) < 0) Py_FatalError("Can't initialize bool type"); if (PyType_Ready(&PyByteArray_Type) < 0) Py_FatalError("Can't initialize bytearray type"); if (PyType_Ready(&PyBytes_Type) < 0) Py_FatalError("Can't initialize 'str'"); if (PyType_Ready(&PyList_Type) < 0) Py_FatalError("Can't initialize list type"); if (PyType_Ready(&PyNone_Type) < 0) Py_FatalError("Can't initialize None type"); if (PyType_Ready(&PyNotImplemented_Type) < 0) Py_FatalError("Can't initialize NotImplemented type"); if (PyType_Ready(&PyTraceBack_Type) < 0) Py_FatalError("Can't initialize traceback type"); if (PyType_Ready(&PySuper_Type) < 0) Py_FatalError("Can't initialize super type"); if (PyType_Ready(&PyBaseObject_Type) < 0) Py_FatalError("Can't initialize object type"); if (PyType_Ready(&PyRange_Type) < 0) Py_FatalError("Can't initialize range type"); if (PyType_Ready(&PyDict_Type) < 0) Py_FatalError("Can't initialize dict type"); if (PyType_Ready(&PySet_Type) < 0) Py_FatalError("Can't initialize set type"); if (PyType_Ready(&PyUnicode_Type) < 0) Py_FatalError("Can't initialize str type"); if (PyType_Ready(&PySlice_Type) < 0) Py_FatalError("Can't initialize slice type"); if (PyType_Ready(&PyStaticMethod_Type) < 0) Py_FatalError("Can't initialize static method type"); if (PyType_Ready(&PyComplex_Type) < 0) Py_FatalError("Can't initialize complex type"); if (PyType_Ready(&PyFloat_Type) < 0) Py_FatalError("Can't initialize float type"); if (PyType_Ready(&PyLong_Type) < 0) Py_FatalError("Can't initialize int type"); if (PyType_Ready(&PyFrozenSet_Type) < 0) Py_FatalError("Can't initialize frozenset type"); if (PyType_Ready(&PyProperty_Type) < 0) Py_FatalError("Can't initialize property type"); if (PyType_Ready(&_PyManagedBuffer_Type) < 0) Py_FatalError("Can't initialize managed buffer type"); if (PyType_Ready(&PyMemoryView_Type) < 0) Py_FatalError("Can't initialize memoryview type"); if (PyType_Ready(&PyTuple_Type) < 0) Py_FatalError("Can't initialize tuple type"); if (PyType_Ready(&PyEnum_Type) < 0) Py_FatalError("Can't initialize enumerate type"); if (PyType_Ready(&PyReversed_Type) < 0) Py_FatalError("Can't initialize reversed type"); if (PyType_Ready(&PyStdPrinter_Type) < 0) Py_FatalError("Can't initialize StdPrinter"); if (PyType_Ready(&PyCode_Type) < 0) Py_FatalError("Can't initialize code type"); if (PyType_Ready(&PyFrame_Type) < 0) Py_FatalError("Can't initialize frame type"); if (PyType_Ready(&PyCFunction_Type) < 0) Py_FatalError("Can't initialize builtin function type"); if (PyType_Ready(&PyMethod_Type) < 0) Py_FatalError("Can't initialize method type"); if (PyType_Ready(&PyFunction_Type) < 0) Py_FatalError("Can't initialize function type"); if (PyType_Ready(&PyDictProxy_Type) < 0) Py_FatalError("Can't initialize dict proxy type"); if (PyType_Ready(&PyGen_Type) < 0) Py_FatalError("Can't initialize generator type"); if (PyType_Ready(&PyGetSetDescr_Type) < 0) Py_FatalError("Can't initialize get-set descriptor type"); if (PyType_Ready(&PyWrapperDescr_Type) < 0) Py_FatalError("Can't initialize wrapper type"); if (PyType_Ready(&_PyMethodWrapper_Type) < 0) Py_FatalError("Can't initialize method wrapper type"); if (PyType_Ready(&PyEllipsis_Type) < 0) Py_FatalError("Can't initialize ellipsis type"); if (PyType_Ready(&PyMemberDescr_Type) < 0) Py_FatalError("Can't initialize member descriptor type"); if (PyType_Ready(&_PyNamespace_Type) < 0) Py_FatalError("Can't initialize namespace type"); if (PyType_Ready(&PyCapsule_Type) < 0) Py_FatalError("Can't initialize capsule type"); if (PyType_Ready(&PyLongRangeIter_Type) < 0) Py_FatalError("Can't initialize long range iterator type"); if (PyType_Ready(&PyCell_Type) < 0) Py_FatalError("Can't initialize cell type"); if (PyType_Ready(&PyInstanceMethod_Type) < 0) Py_FatalError("Can't initialize instance method type"); if (PyType_Ready(&PyClassMethodDescr_Type) < 0) Py_FatalError("Can't initialize class method descr type"); if (PyType_Ready(&PyMethodDescr_Type) < 0) Py_FatalError("Can't initialize method descr type"); if (PyType_Ready(&PyCallIter_Type) < 0) Py_FatalError("Can't initialize call iter type"); if (PyType_Ready(&PySeqIter_Type) < 0) Py_FatalError("Can't initialize sequence iterator type"); } #ifdef Py_TRACE_REFS void _Py_NewReference(PyObject *op) { _Py_INC_REFTOTAL; op->ob_refcnt = 1; _Py_AddToAllObjects(op, 1); _Py_INC_TPALLOCS(op); } void _Py_ForgetReference(PyObject *op) { #ifdef SLOW_UNREF_CHECK PyObject *p; #endif if (op->ob_refcnt < 0) Py_FatalError("UNREF negative refcnt"); if (op == &refchain || op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) { fprintf(stderr, "* ob\n"); _PyObject_Dump(op); fprintf(stderr, "* op->_ob_prev->_ob_next\n"); _PyObject_Dump(op->_ob_prev->_ob_next); fprintf(stderr, "* op->_ob_next->_ob_prev\n"); _PyObject_Dump(op->_ob_next->_ob_prev); Py_FatalError("UNREF invalid object"); } #ifdef SLOW_UNREF_CHECK for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { if (p == op) break; } if (p == &refchain) /* Not found */ Py_FatalError("UNREF unknown object"); #endif op->_ob_next->_ob_prev = op->_ob_prev; op->_ob_prev->_ob_next = op->_ob_next; op->_ob_next = op->_ob_prev = NULL; _Py_INC_TPFREES(op); } void _Py_Dealloc(PyObject *op) { destructor dealloc = Py_TYPE(op)->tp_dealloc; _Py_ForgetReference(op); (*dealloc)(op); } /* Print all live objects. Because PyObject_Print is called, the * interpreter must be in a healthy state. */ void _Py_PrintReferences(FILE *fp) { PyObject *op; fprintf(fp, "Remaining objects:\n"); for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt); if (PyObject_Print(op, fp, 0) != 0) PyErr_Clear(); putc('\n', fp); } } /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this * doesn't make any calls to the Python C API, so is always safe to call. */ void _Py_PrintReferenceAddresses(FILE *fp) { PyObject *op; fprintf(fp, "Remaining object addresses:\n"); for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op, op->ob_refcnt, Py_TYPE(op)->tp_name); } PyObject * _Py_GetObjects(PyObject *self, PyObject *args) { int i, n; PyObject *t = NULL; PyObject *res, *op; if (!PyArg_ParseTuple(args, "i|O", &n, &t)) return NULL; op = refchain._ob_next; res = PyList_New(0); if (res == NULL) return NULL; for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { while (op == self || op == args || op == res || op == t || (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) { op = op->_ob_next; if (op == &refchain) return res; } if (PyList_Append(res, op) < 0) { Py_DECREF(res); return NULL; } op = op->_ob_next; } return res; } #endif /* Hack to force loading of pycapsule.o */ PyTypeObject *_PyCapsule_hack = &PyCapsule_Type; /* Hack to force loading of abstract.o */ Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size; void _PyObject_DebugTypeStats(FILE *out) { _PyCFunction_DebugMallocStats(out); _PyDict_DebugMallocStats(out); _PyFloat_DebugMallocStats(out); _PyFrame_DebugMallocStats(out); _PyList_DebugMallocStats(out); _PyMethod_DebugMallocStats(out); _PyTuple_DebugMallocStats(out); } /* These methods are used to control infinite recursion in repr, str, print, etc. Container objects that may recursively contain themselves, e.g. builtin dictionaries and lists, should used Py_ReprEnter() and Py_ReprLeave() to avoid infinite recursion. Py_ReprEnter() returns 0 the first time it is called for a particular object and 1 every time thereafter. It returns -1 if an exception occurred. Py_ReprLeave() has no return value. See dictobject.c and listobject.c for examples of use. */ #define KEY "Py_Repr" int Py_ReprEnter(PyObject *obj) { PyObject *dict; PyObject *list; Py_ssize_t i; dict = PyThreadState_GetDict(); if (dict == NULL) return 0; list = PyDict_GetItemString(dict, KEY); if (list == NULL) { list = PyList_New(0); if (list == NULL) return -1; if (PyDict_SetItemString(dict, KEY, list) < 0) return -1; Py_DECREF(list); } i = PyList_GET_SIZE(list); while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) return 1; } if (PyList_Append(list, obj) < 0) return -1; return 0; } void Py_ReprLeave(PyObject *obj) { PyObject *dict; PyObject *list; Py_ssize_t i; PyObject *error_type, *error_value, *error_traceback; PyErr_Fetch(&error_type, &error_value, &error_traceback); dict = PyThreadState_GetDict(); if (dict == NULL) goto finally; list = PyDict_GetItemString(dict, KEY); if (list == NULL || !PyList_Check(list)) goto finally; i = PyList_GET_SIZE(list); /* Count backwards because we always expect obj to be list[-1] */ while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) { PyList_SetSlice(list, i, i + 1, NULL); break; } } finally: /* ignore exceptions because there is no way to report them. */ PyErr_Restore(error_type, error_value, error_traceback); } /* Trashcan support. */ /* Current call-stack depth of tp_dealloc calls. */ int _PyTrash_delete_nesting = 0; /* List of objects that still need to be cleaned up, singly linked via their * gc headers' gc_prev pointers. */ PyObject *_PyTrash_delete_later = NULL; /* Add op to the _PyTrash_delete_later list. Called when the current * call-stack depth gets large. op must be a currently untracked gc'ed * object, with refcount 0. Py_DECREF must already have been called on it. */ void _PyTrash_deposit_object(PyObject *op) { assert(PyObject_IS_GC(op)); assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED); assert(op->ob_refcnt == 0); _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; _PyTrash_delete_later = op; } /* The equivalent API, using per-thread state recursion info */ void _PyTrash_thread_deposit_object(PyObject *op) { PyThreadState *tstate = PyThreadState_GET(); assert(PyObject_IS_GC(op)); assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED); assert(op->ob_refcnt == 0); _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *) tstate->trash_delete_later; tstate->trash_delete_later = op; } /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when * the call-stack unwinds again. */ void _PyTrash_destroy_chain(void) { while (_PyTrash_delete_later) { PyObject *op = _PyTrash_delete_later; destructor dealloc = Py_TYPE(op)->tp_dealloc; _PyTrash_delete_later = (PyObject*) _Py_AS_GC(op)->gc.gc_prev; /* Call the deallocator directly. This used to try to * fool Py_DECREF into calling it indirectly, but * Py_DECREF was already called on this object, and in * assorted non-release builds calling Py_DECREF again ends * up distorting allocation statistics. */ assert(op->ob_refcnt == 0); ++_PyTrash_delete_nesting; (*dealloc)(op); --_PyTrash_delete_nesting; } } /* The equivalent API, using per-thread state recursion info */ void _PyTrash_thread_destroy_chain(void) { PyThreadState *tstate = PyThreadState_GET(); while (tstate->trash_delete_later) { PyObject *op = tstate->trash_delete_later; destructor dealloc = Py_TYPE(op)->tp_dealloc; tstate->trash_delete_later = (PyObject*) _Py_AS_GC(op)->gc.gc_prev; /* Call the deallocator directly. This used to try to * fool Py_DECREF into calling it indirectly, but * Py_DECREF was already called on this object, and in * assorted non-release builds calling Py_DECREF again ends * up distorting allocation statistics. */ assert(op->ob_refcnt == 0); ++tstate->trash_delete_nesting; (*dealloc)(op); --tstate->trash_delete_nesting; } } #ifndef Py_TRACE_REFS /* For Py_LIMITED_API, we need an out-of-line version of _Py_Dealloc. Define this here, so we can undefine the macro. */ #undef _Py_Dealloc PyAPI_FUNC(void) _Py_Dealloc(PyObject *); void _Py_Dealloc(PyObject *op) { _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA (*Py_TYPE(op)->tp_dealloc)(op); } #endif #ifdef __cplusplus } #endif