/* * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include #include #include #include #include "constants.h" #include "memory.h" #include "typearith.h" #include "basearith.h" /*********************************************************************/ /* Calculations in base MPD_RADIX */ /*********************************************************************/ /* * Knuth, TAOCP, Volume 2, 4.3.1: * w := sum of u (len m) and v (len n) * n > 0 and m >= n * The calling function has to handle a possible final carry. */ mpd_uint_t _mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, mpd_size_t m, mpd_size_t n) { mpd_uint_t s; mpd_uint_t carry = 0; mpd_size_t i; assert(n > 0 && m >= n); /* add n members of u and v */ for (i = 0; i < n; i++) { s = u[i] + (v[i] + carry); carry = (s < u[i]) | (s >= MPD_RADIX); w[i] = carry ? s-MPD_RADIX : s; } /* if there is a carry, propagate it */ for (; carry && i < m; i++) { s = u[i] + carry; carry = (s == MPD_RADIX); w[i] = carry ? 0 : s; } /* copy the rest of u */ for (; i < m; i++) { w[i] = u[i]; } return carry; } /* * Add the contents of u to w. Carries are propagated further. The caller * has to make sure that w is big enough. */ void _mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n) { mpd_uint_t s; mpd_uint_t carry = 0; mpd_size_t i; if (n == 0) return; /* add n members of u to w */ for (i = 0; i < n; i++) { s = w[i] + (u[i] + carry); carry = (s < w[i]) | (s >= MPD_RADIX); w[i] = carry ? s-MPD_RADIX : s; } /* if there is a carry, propagate it */ for (; carry; i++) { s = w[i] + carry; carry = (s == MPD_RADIX); w[i] = carry ? 0 : s; } } /* * Add v to w (len m). The calling function has to handle a possible * final carry. Assumption: m > 0. */ mpd_uint_t _mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v) { mpd_uint_t s; mpd_uint_t carry; mpd_size_t i; assert(m > 0); /* add v to w */ s = w[0] + v; carry = (s < v) | (s >= MPD_RADIX); w[0] = carry ? s-MPD_RADIX : s; /* if there is a carry, propagate it */ for (i = 1; carry && i < m; i++) { s = w[i] + carry; carry = (s == MPD_RADIX); w[i] = carry ? 0 : s; } return carry; } /* Increment u. The calling function has to handle a possible carry. */ mpd_uint_t _mpd_baseincr(mpd_uint_t *u, mpd_size_t n) { mpd_uint_t s; mpd_uint_t carry = 1; mpd_size_t i; assert(n > 0); /* if there is a carry, propagate it */ for (i = 0; carry && i < n; i++) { s = u[i] + carry; carry = (s == MPD_RADIX); u[i] = carry ? 0 : s; } return carry; } /* * Knuth, TAOCP, Volume 2, 4.3.1: * w := difference of u (len m) and v (len n). * number in u >= number in v; */ void _mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, mpd_size_t m, mpd_size_t n) { mpd_uint_t d; mpd_uint_t borrow = 0; mpd_size_t i; assert(m > 0 && n > 0); /* subtract n members of v from u */ for (i = 0; i < n; i++) { d = u[i] - (v[i] + borrow); borrow = (u[i] < d); w[i] = borrow ? d + MPD_RADIX : d; } /* if there is a borrow, propagate it */ for (; borrow && i < m; i++) { d = u[i] - borrow; borrow = (u[i] == 0); w[i] = borrow ? MPD_RADIX-1 : d; } /* copy the rest of u */ for (; i < m; i++) { w[i] = u[i]; } } /* * Subtract the contents of u from w. w is larger than u. Borrows are * propagated further, but eventually w can absorb the final borrow. */ void _mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n) { mpd_uint_t d; mpd_uint_t borrow = 0; mpd_size_t i; if (n == 0) return; /* subtract n members of u from w */ for (i = 0; i < n; i++) { d = w[i] - (u[i] + borrow); borrow = (w[i] < d); w[i] = borrow ? d + MPD_RADIX : d; } /* if there is a borrow, propagate it */ for (; borrow; i++) { d = w[i] - borrow; borrow = (w[i] == 0); w[i] = borrow ? MPD_RADIX-1 : d; } } /* w := product of u (len n) and v (single word) */ void _mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v) { mpd_uint_t hi, lo; mpd_uint_t carry = 0; mpd_size_t i; assert(n > 0); for (i=0; i < n; i++) { _mpd_mul_words(&hi, &lo, u[i], v); lo = carry + lo; if (lo < carry) hi++; _mpd_div_words_r(&carry, &w[i], hi, lo); } w[i] = carry; } /* * Knuth, TAOCP, Volume 2, 4.3.1: * w := product of u (len m) and v (len n) * w must be initialized to zero */ void _mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v, mpd_size_t m, mpd_size_t n) { mpd_uint_t hi, lo; mpd_uint_t carry; mpd_size_t i, j; assert(m > 0 && n > 0); for (j=0; j < n; j++) { carry = 0; for (i=0; i < m; i++) { _mpd_mul_words(&hi, &lo, u[i], v[j]); lo = w[i+j] + lo; if (lo < w[i+j]) hi++; lo = carry + lo; if (lo < carry) hi++; _mpd_div_words_r(&carry, &w[i+j], hi, lo); } w[j+m] = carry; } } /* * Knuth, TAOCP Volume 2, 4.3.1, exercise 16: * w := quotient of u (len n) divided by a single word v */ mpd_uint_t _mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v) { mpd_uint_t hi, lo; mpd_uint_t rem = 0; mpd_size_t i; assert(n > 0); for (i=n-1; i != MPD_SIZE_MAX; i--) { _mpd_mul_words(&hi, &lo, rem, MPD_RADIX); lo = u[i] + lo; if (lo < u[i]) hi++; _mpd_div_words(&w[i], &rem, hi, lo, v); } return rem; } /* * Knuth, TAOCP Volume 2, 4.3.1: * q, r := quotient and remainder of uconst (len nplusm) * divided by vconst (len n) * nplusm >= n * * If r is not NULL, r will contain the remainder. If r is NULL, the * return value indicates if there is a remainder: 1 for true, 0 for * false. A return value of -1 indicates an error. */ int _mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r, const mpd_uint_t *uconst, const mpd_uint_t *vconst, mpd_size_t nplusm, mpd_size_t n) { mpd_uint_t ustatic[MPD_MINALLOC_MAX]; mpd_uint_t vstatic[MPD_MINALLOC_MAX]; mpd_uint_t *u = ustatic; mpd_uint_t *v = vstatic; mpd_uint_t d, qhat, rhat, w2[2]; mpd_uint_t hi, lo, x; mpd_uint_t carry; mpd_size_t i, j, m; int retval = 0; assert(n > 1 && nplusm >= n); m = sub_size_t(nplusm, n); /* D1: normalize */ d = MPD_RADIX / (vconst[n-1] + 1); if (nplusm >= MPD_MINALLOC_MAX) { if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) { return -1; } } if (n >= MPD_MINALLOC_MAX) { if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) { mpd_free(u); return -1; } } _mpd_shortmul(u, uconst, nplusm, d); _mpd_shortmul(v, vconst, n, d); /* D2: loop */ for (j=m; j != MPD_SIZE_MAX; j--) { /* D3: calculate qhat and rhat */ rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]); qhat = w2[1] * MPD_RADIX + w2[0]; while (1) { if (qhat < MPD_RADIX) { _mpd_singlemul(w2, qhat, v[n-2]); if (w2[1] <= rhat) { if (w2[1] != rhat || w2[0] <= u[j+n-2]) { break; } } } qhat -= 1; rhat += v[n-1]; if (rhat < v[n-1] || rhat >= MPD_RADIX) { break; } } /* D4: multiply and subtract */ carry = 0; for (i=0; i <= n; i++) { _mpd_mul_words(&hi, &lo, qhat, v[i]); lo = carry + lo; if (lo < carry) hi++; _mpd_div_words_r(&hi, &lo, hi, lo); x = u[i+j] - lo; carry = (u[i+j] < x); u[i+j] = carry ? x+MPD_RADIX : x; carry += hi; } q[j] = qhat; /* D5: test remainder */ if (carry) { q[j] -= 1; /* D6: add back */ (void)_mpd_baseadd(u+j, u+j, v, n+1, n); } } /* D8: unnormalize */ if (r != NULL) { _mpd_shortdiv(r, u, n, d); /* we are not interested in the return value here */ retval = 0; } else { retval = !_mpd_isallzero(u, n); } if (u != ustatic) mpd_free(u); if (v != vstatic) mpd_free(v); return retval; } /* * Left shift of src by 'shift' digits; src may equal dest. * * dest := area of n mpd_uint_t with space for srcdigits+shift digits. * src := coefficient with length m. * * The case splits in the function are non-obvious. The following * equations might help: * * Let msdigits denote the number of digits in the most significant * word of src. Then 1 <= msdigits <= rdigits. * * 1) shift = q * rdigits + r * 2) srcdigits = qsrc * rdigits + msdigits * 3) destdigits = shift + srcdigits * = q * rdigits + r + qsrc * rdigits + msdigits * = q * rdigits + (qsrc * rdigits + (r + msdigits)) * * The result has q zero words, followed by the coefficient that * is left-shifted by r. The case r == 0 is trivial. For r > 0, it * is important to keep in mind that we always read m source words, * but write m+1 destination words if r + msdigits > rdigits, m words * otherwise. */ void _mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m, mpd_size_t shift) { #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__) /* spurious uninitialized warnings */ mpd_uint_t l=l, lprev=lprev, h=h; #else mpd_uint_t l, lprev, h; #endif mpd_uint_t q, r; mpd_uint_t ph; assert(m > 0 && n >= m); _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS); if (r != 0) { ph = mpd_pow10[r]; --m; --n; _mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r); if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */ dest[n--] = h; } /* write m-1 shifted words */ for (; m != MPD_SIZE_MAX; m--,n--) { _mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r); dest[n] = ph * lprev + h; lprev = l; } /* write least significant word */ dest[q] = ph * lprev; } else { while (--m != MPD_SIZE_MAX) { dest[m+q] = src[m]; } } mpd_uint_zero(dest, q); } /* * Right shift of src by 'shift' digits; src may equal dest. * Assumption: srcdigits-shift > 0. * * dest := area with space for srcdigits-shift digits. * src := coefficient with length 'slen'. * * The case splits in the function rely on the following equations: * * Let msdigits denote the number of digits in the most significant * word of src. Then 1 <= msdigits <= rdigits. * * 1) shift = q * rdigits + r * 2) srcdigits = qsrc * rdigits + msdigits * 3) destdigits = srcdigits - shift * = qsrc * rdigits + msdigits - (q * rdigits + r) * = (qsrc - q) * rdigits + msdigits - r * * Since destdigits > 0 and 1 <= msdigits <= rdigits: * * 4) qsrc >= q * 5) qsrc == q ==> msdigits > r * * The result has slen-q words if msdigits > r, slen-q-1 words otherwise. */ mpd_uint_t _mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen, mpd_size_t shift) { #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__) /* spurious uninitialized warnings */ mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */ #else mpd_uint_t l, h, hprev; /* low, high, previous high */ #endif mpd_uint_t rnd, rest; /* rounding digit, rest */ mpd_uint_t q, r; mpd_size_t i, j; mpd_uint_t ph; assert(slen > 0); _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS); rnd = rest = 0; if (r != 0) { ph = mpd_pow10[MPD_RDIGITS-r]; _mpd_divmod_pow10(&hprev, &rest, src[q], r); _mpd_divmod_pow10(&rnd, &rest, rest, r-1); if (rest == 0 && q > 0) { rest = !_mpd_isallzero(src, q); } /* write slen-q-1 words */ for (j=0,i=q+1; i 0) { _mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1); /* is there any non-zero digit below rnd? */ if (rest == 0) rest = !_mpd_isallzero(src, q-1); } for (j = 0; j < slen-q; j++) { dest[j] = src[q+j]; } } /* 0-4 ==> rnd+rest < 0.5 */ /* 5 ==> rnd+rest == 0.5 */ /* 6-9 ==> rnd+rest > 0.5 */ return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd; } /*********************************************************************/ /* Calculations in base b */ /*********************************************************************/ /* * Add v to w (len m). The calling function has to handle a possible * final carry. Assumption: m > 0. */ mpd_uint_t _mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b) { mpd_uint_t s; mpd_uint_t carry; mpd_size_t i; assert(m > 0); /* add v to w */ s = w[0] + v; carry = (s < v) | (s >= b); w[0] = carry ? s-b : s; /* if there is a carry, propagate it */ for (i = 1; carry && i < m; i++) { s = w[i] + carry; carry = (s == b); w[i] = carry ? 0 : s; } return carry; } /* w := product of u (len n) and v (single word) */ void _mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v, mpd_uint_t b) { mpd_uint_t hi, lo; mpd_uint_t carry = 0; mpd_size_t i; assert(n > 0); for (i=0; i < n; i++) { _mpd_mul_words(&hi, &lo, u[i], v); lo = carry + lo; if (lo < carry) hi++; _mpd_div_words(&carry, &w[i], hi, lo, b); } w[i] = carry; } /* * Knuth, TAOCP Volume 2, 4.3.1, exercise 16: * w := quotient of u (len n) divided by a single word v */ mpd_uint_t _mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v, mpd_uint_t b) { mpd_uint_t hi, lo; mpd_uint_t rem = 0; mpd_size_t i; assert(n > 0); for (i=n-1; i != MPD_SIZE_MAX; i--) { _mpd_mul_words(&hi, &lo, rem, b); lo = u[i] + lo; if (lo < u[i]) hi++; _mpd_div_words(&w[i], &rem, hi, lo, v); } return rem; }