"""A flow graph representation for Python bytecode""" import dis import new import string import sys import types from compiler import misc def xxx_sort(l): l = l[:] def sorter(a, b): return cmp(a.bid, b.bid) l.sort(sorter) return l class FlowGraph: def __init__(self): self.current = self.entry = Block() self.exit = Block("exit") self.blocks = misc.Set() self.blocks.add(self.entry) self.blocks.add(self.exit) def startBlock(self, block): if self._debug: if self.current: print "end", repr(self.current) print " next", self.current.next print " ", self.current.get_children() print repr(block) self.current = block def nextBlock(self, block=None): # XXX think we need to specify when there is implicit transfer # from one block to the next. might be better to represent this # with explicit JUMP_ABSOLUTE instructions that are optimized # out when they are unnecessary. # # I think this strategy works: each block has a child # designated as "next" which is returned as the last of the # children. because the nodes in a graph are emitted in # reverse post order, the "next" block will always be emitted # immediately after its parent. # Worry: maintaining this invariant could be tricky if block is None: block = self.newBlock() # Note: If the current block ends with an unconditional # control transfer, then it is incorrect to add an implicit # transfer to the block graph. The current code requires # these edges to get the blocks emitted in the right order, # however. :-( If a client needs to remove these edges, call # pruneEdges(). self.current.addNext(block) self.startBlock(block) def newBlock(self): b = Block() self.blocks.add(b) return b def startExitBlock(self): self.startBlock(self.exit) _debug = 0 def _enable_debug(self): self._debug = 1 def _disable_debug(self): self._debug = 0 def emit(self, *inst): if self._debug: print "\t", inst if inst[0] == 'RETURN_VALUE': self.current.addOutEdge(self.exit) if len(inst) == 2 and isinstance(inst[1], Block): self.current.addOutEdge(inst[1]) self.current.emit(inst) def getBlocksInOrder(self): """Return the blocks in reverse postorder i.e. each node appears before all of its successors """ # XXX make sure every node that doesn't have an explicit next # is set so that next points to exit for b in self.blocks.elements(): if b is self.exit: continue if not b.next: b.addNext(self.exit) order = dfs_postorder(self.entry, {}) order.reverse() self.fixupOrder(order, self.exit) # hack alert if not self.exit in order: order.append(self.exit) return order def fixupOrder(self, blocks, default_next): """Fixup bad order introduced by DFS.""" # XXX This is a total mess. There must be a better way to get # the code blocks in the right order. self.fixupOrderHonorNext(blocks, default_next) self.fixupOrderForward(blocks, default_next) def fixupOrderHonorNext(self, blocks, default_next): """Fix one problem with DFS. The DFS uses child block, but doesn't know about the special "next" block. As a result, the DFS can order blocks so that a block isn't next to the right block for implicit control transfers. """ index = {} for i in range(len(blocks)): index[blocks[i]] = i for i in range(0, len(blocks) - 1): b = blocks[i] n = blocks[i + 1] if not b.next or b.next[0] == default_next or b.next[0] == n: continue # The blocks are in the wrong order. Find the chain of # blocks to insert where they belong. cur = b chain = [] elt = cur while elt.next and elt.next[0] != default_next: chain.append(elt.next[0]) elt = elt.next[0] # Now remove the blocks in the chain from the current # block list, so that they can be re-inserted. l = [] for b in chain: assert index[b] > i l.append((index[b], b)) l.sort() l.reverse() for j, b in l: del blocks[index[b]] # Insert the chain in the proper location blocks[i:i + 1] = [cur] + chain # Finally, re-compute the block indexes for i in range(len(blocks)): index[blocks[i]] = i def fixupOrderForward(self, blocks, default_next): """Make sure all JUMP_FORWARDs jump forward""" index = {} chains = [] cur = [] for b in blocks: index[b] = len(chains) cur.append(b) if b.next and b.next[0] == default_next: chains.append(cur) cur = [] chains.append(cur) while 1: constraints = [] for i in range(len(chains)): l = chains[i] for b in l: for c in b.get_children(): if index[c] < i: forward_p = 0 for inst in b.insts: if inst[0] == 'JUMP_FORWARD': if inst[1] == c: forward_p = 1 if not forward_p: continue constraints.append((index[c], i)) if not constraints: break # XXX just do one for now # do swaps to get things in the right order goes_before, a_chain = constraints[0] assert a_chain > goes_before c = chains[a_chain] chains.remove(c) chains.insert(goes_before, c) del blocks[:] for c in chains: for b in c: blocks.append(b) def getBlocks(self): return self.blocks.elements() def getRoot(self): """Return nodes appropriate for use with dominator""" return self.entry def getContainedGraphs(self): l = [] for b in self.getBlocks(): l.extend(b.getContainedGraphs()) return l def dfs_postorder(b, seen): """Depth-first search of tree rooted at b, return in postorder""" order = [] seen[b] = b for c in b.get_children(): if seen.has_key(c): continue order = order + dfs_postorder(c, seen) order.append(b) return order class Block: _count = 0 def __init__(self, label=''): self.insts = [] self.inEdges = misc.Set() self.outEdges = misc.Set() self.label = label self.bid = Block._count self.next = [] Block._count = Block._count + 1 def __repr__(self): if self.label: return "" % (self.label, self.bid) else: return "" % (self.bid) def __str__(self): insts = map(str, self.insts) return "" % (self.label, self.bid, string.join(insts, '\n')) def emit(self, inst): op = inst[0] if op[:4] == 'JUMP': self.outEdges.add(inst[1]) self.insts.append(inst) def getInstructions(self): return self.insts def addInEdge(self, block): self.inEdges.add(block) def addOutEdge(self, block): self.outEdges.add(block) def addNext(self, block): self.next.append(block) assert len(self.next) == 1, map(str, self.next) _uncond_transfer = ('RETURN_VALUE', 'RAISE_VARARGS', 'JUMP_ABSOLUTE', 'JUMP_FORWARD') def pruneNext(self): """Remove bogus edge for unconditional transfers Each block has a next edge that accounts for implicit control transfers, e.g. from a JUMP_IF_FALSE to the block that will be executed if the test is true. These edges must remain for the current assembler code to work. If they are removed, the dfs_postorder gets things in weird orders. However, they shouldn't be there for other purposes, e.g. conversion to SSA form. This method will remove the next edge when it follows an unconditional control transfer. """ try: op, arg = self.insts[-1] except (IndexError, ValueError): return if op in self._uncond_transfer: self.next = [] def get_children(self): if self.next and self.next[0] in self.outEdges: self.outEdges.remove(self.next[0]) return self.outEdges.elements() + self.next def getContainedGraphs(self): """Return all graphs contained within this block. For example, a MAKE_FUNCTION block will contain a reference to the graph for the function body. """ contained = [] for inst in self.insts: if len(inst) == 1: continue op = inst[1] if hasattr(op, 'graph'): contained.append(op.graph) return contained # flags for code objects CO_OPTIMIZED = 0x0001 CO_NEWLOCALS = 0x0002 CO_VARARGS = 0x0004 CO_VARKEYWORDS = 0x0008 CO_NESTED = 0x0010 # the FlowGraph is transformed in place; it exists in one of these states RAW = "RAW" FLAT = "FLAT" CONV = "CONV" DONE = "DONE" class PyFlowGraph(FlowGraph): super_init = FlowGraph.__init__ def __init__(self, name, filename, args=(), optimized=0): self.super_init() self.name = name self.filename = filename self.docstring = None self.args = args # XXX self.argcount = getArgCount(args) if optimized: self.flags = CO_OPTIMIZED | CO_NEWLOCALS else: self.flags = 0 self.consts = [] self.names = [] # Free variables found by the symbol table scan, including # variables used only in nested scopes, are included here. self.freevars = [] self.cellvars = [] # The closure list is used to track the order of cell # variables and free variables in the resulting code object. # The offsets used by LOAD_CLOSURE/LOAD_DEREF refer to both # kinds of variables. self.closure = [] self.varnames = list(args) or [] for i in range(len(self.varnames)): var = self.varnames[i] if isinstance(var, TupleArg): self.varnames[i] = var.getName() self.stage = RAW def setDocstring(self, doc): self.docstring = doc def setFlag(self, flag): self.flags = self.flags | flag if flag == CO_VARARGS: self.argcount = self.argcount - 1 def setFreeVars(self, names): self.freevars = list(names) def setCellVars(self, names): self.cellvars = names def getCode(self): """Get a Python code object""" if self.stage == RAW: self.flattenGraph() if self.stage == FLAT: self.convertArgs() if self.stage == CONV: self.makeByteCode() if self.stage == DONE: return self.newCodeObject() raise RuntimeError, "inconsistent PyFlowGraph state" def dump(self, io=None): if io: save = sys.stdout sys.stdout = io pc = 0 for t in self.insts: opname = t[0] if opname == "SET_LINENO": print if len(t) == 1: print "\t", "%3d" % pc, opname pc = pc + 1 else: print "\t", "%3d" % pc, opname, t[1] pc = pc + 3 if io: sys.stdout = save def flattenGraph(self): """Arrange the blocks in order and resolve jumps""" assert self.stage == RAW self.insts = insts = [] pc = 0 begin = {} end = {} for b in self.getBlocksInOrder(): begin[b] = pc for inst in b.getInstructions(): insts.append(inst) if len(inst) == 1: pc = pc + 1 else: # arg takes 2 bytes pc = pc + 3 end[b] = pc pc = 0 for i in range(len(insts)): inst = insts[i] if len(inst) == 1: pc = pc + 1 else: pc = pc + 3 opname = inst[0] if self.hasjrel.has_elt(opname): oparg = inst[1] offset = begin[oparg] - pc insts[i] = opname, offset elif self.hasjabs.has_elt(opname): insts[i] = opname, begin[inst[1]] self.stacksize = findDepth(self.insts) self.stage = FLAT hasjrel = misc.Set() for i in dis.hasjrel: hasjrel.add(dis.opname[i]) hasjabs = misc.Set() for i in dis.hasjabs: hasjabs.add(dis.opname[i]) def convertArgs(self): """Convert arguments from symbolic to concrete form""" assert self.stage == FLAT self.consts.insert(0, self.docstring) self.sort_cellvars() for i in range(len(self.insts)): t = self.insts[i] if len(t) == 2: opname = t[0] oparg = t[1] conv = self._converters.get(opname, None) if conv: self.insts[i] = opname, conv(self, oparg) self.stage = CONV def sort_cellvars(self): """Sort cellvars in the order of varnames and prune from freevars. """ cells = {} for name in self.cellvars: cells[name] = 1 self.cellvars = [name for name in self.varnames if cells.has_key(name)] for name in self.cellvars: del cells[name] self.cellvars = self.cellvars + cells.keys() self.closure = self.cellvars + self.freevars def _lookupName(self, name, list): """Return index of name in list, appending if necessary""" t = type(name) for i in range(len(list)): # must do a comparison on type first to prevent UnicodeErrors if t == type(list[i]) and list[i] == name: return i end = len(list) list.append(name) return end _converters = {} def _convert_LOAD_CONST(self, arg): if hasattr(arg, 'getCode'): arg = arg.getCode() return self._lookupName(arg, self.consts) def _convert_LOAD_FAST(self, arg): self._lookupName(arg, self.names) return self._lookupName(arg, self.varnames) _convert_STORE_FAST = _convert_LOAD_FAST _convert_DELETE_FAST = _convert_LOAD_FAST def _convert_NAME(self, arg): return self._lookupName(arg, self.names) _convert_LOAD_NAME = _convert_NAME _convert_STORE_NAME = _convert_NAME _convert_DELETE_NAME = _convert_NAME _convert_IMPORT_NAME = _convert_NAME _convert_IMPORT_FROM = _convert_NAME _convert_STORE_ATTR = _convert_NAME _convert_LOAD_ATTR = _convert_NAME _convert_DELETE_ATTR = _convert_NAME _convert_LOAD_GLOBAL = _convert_NAME _convert_STORE_GLOBAL = _convert_NAME _convert_DELETE_GLOBAL = _convert_NAME def _convert_DEREF(self, arg): self._lookupName(arg, self.names) self._lookupName(arg, self.varnames) return self._lookupName(arg, self.closure) _convert_LOAD_DEREF = _convert_DEREF _convert_STORE_DEREF = _convert_DEREF def _convert_LOAD_CLOSURE(self, arg): self._lookupName(arg, self.varnames) return self._lookupName(arg, self.closure) _cmp = list(dis.cmp_op) def _convert_COMPARE_OP(self, arg): return self._cmp.index(arg) # similarly for other opcodes... for name, obj in locals().items(): if name[:9] == "_convert_": opname = name[9:] _converters[opname] = obj del name, obj, opname def makeByteCode(self): assert self.stage == CONV self.lnotab = lnotab = LineAddrTable() for t in self.insts: opname = t[0] if len(t) == 1: lnotab.addCode(self.opnum[opname]) else: oparg = t[1] if opname == "SET_LINENO": lnotab.nextLine(oparg) hi, lo = twobyte(oparg) try: lnotab.addCode(self.opnum[opname], lo, hi) except ValueError: print opname, oparg print self.opnum[opname], lo, hi raise self.stage = DONE opnum = {} for num in range(len(dis.opname)): opnum[dis.opname[num]] = num del num def newCodeObject(self): assert self.stage == DONE if self.flags == 0: nlocals = 0 else: nlocals = len(self.varnames) argcount = self.argcount if self.flags & CO_VARKEYWORDS: argcount = argcount - 1 return new.code(argcount, nlocals, self.stacksize, self.flags, self.lnotab.getCode(), self.getConsts(), tuple(self.names), tuple(self.varnames), self.filename, self.name, self.lnotab.firstline, self.lnotab.getTable(), tuple(self.freevars), tuple(self.cellvars)) def getConsts(self): """Return a tuple for the const slot of the code object Must convert references to code (MAKE_FUNCTION) to code objects recursively. """ l = [] for elt in self.consts: if isinstance(elt, PyFlowGraph): elt = elt.getCode() l.append(elt) return tuple(l) def isJump(opname): if opname[:4] == 'JUMP': return 1 class TupleArg: """Helper for marking func defs with nested tuples in arglist""" def __init__(self, count, names): self.count = count self.names = names def __repr__(self): return "TupleArg(%s, %s)" % (self.count, self.names) def getName(self): return ".%d" % self.count def getArgCount(args): argcount = len(args) if args: for arg in args: if isinstance(arg, TupleArg): numNames = len(misc.flatten(arg.names)) argcount = argcount - numNames return argcount def twobyte(val): """Convert an int argument into high and low bytes""" assert type(val) == types.IntType return divmod(val, 256) class LineAddrTable: """lnotab This class builds the lnotab, which is undocumented but described by com_set_lineno in compile.c. Here's an attempt at explanation: For each SET_LINENO instruction after the first one, two bytes are added to lnotab. (In some cases, multiple two-byte entries are added.) The first byte is the distance in bytes between the instruction for the last SET_LINENO and the current SET_LINENO. The second byte is offset in line numbers. If either offset is greater than 255, multiple two-byte entries are added -- one entry for each factor of 255. """ def __init__(self): self.code = [] self.codeOffset = 0 self.firstline = 0 self.lastline = 0 self.lastoff = 0 self.lnotab = [] def addCode(self, *args): for arg in args: self.code.append(chr(arg)) self.codeOffset = self.codeOffset + len(args) def nextLine(self, lineno): if self.firstline == 0: self.firstline = lineno self.lastline = lineno else: # compute deltas addr = self.codeOffset - self.lastoff line = lineno - self.lastline # Python assumes that lineno always increases with # increasing bytecode address (lnotab is unsigned char). # Depending on when SET_LINENO instructions are emitted # this is not always true. Consider the code: # a = (1, # b) # In the bytecode stream, the assignment to "a" occurs # after the loading of "b". This works with the C Python # compiler because it only generates a SET_LINENO instruction # for the assignment. if line > 0: while addr > 0 or line > 0: # write the values in 1-byte chunks that sum # to desired value trunc_addr = addr trunc_line = line if trunc_addr > 255: trunc_addr = 255 if trunc_line > 255: trunc_line = 255 self.lnotab.append(trunc_addr) self.lnotab.append(trunc_line) addr = addr - trunc_addr line = line - trunc_line self.lastline = lineno self.lastoff = self.codeOffset def getCode(self): return string.join(self.code, '') def getTable(self): return string.join(map(chr, self.lnotab), '') class StackDepthTracker: # XXX 1. need to keep track of stack depth on jumps # XXX 2. at least partly as a result, this code is broken def findDepth(self, insts): depth = 0 maxDepth = 0 for i in insts: opname = i[0] delta = self.effect.get(opname, 0) if delta > 1: depth = depth + delta elif delta < 0: if depth > maxDepth: maxDepth = depth depth = depth + delta else: if depth > maxDepth: maxDepth = depth # now check patterns for pat, pat_delta in self.patterns: if opname[:len(pat)] == pat: delta = pat_delta depth = depth + delta break # if we still haven't found a match if delta == 0: meth = getattr(self, opname, None) if meth is not None: depth = depth + meth(i[1]) if depth < 0: depth = 0 return maxDepth effect = { 'POP_TOP': -1, 'DUP_TOP': 1, 'SLICE+1': -1, 'SLICE+2': -1, 'SLICE+3': -2, 'STORE_SLICE+0': -1, 'STORE_SLICE+1': -2, 'STORE_SLICE+2': -2, 'STORE_SLICE+3': -3, 'DELETE_SLICE+0': -1, 'DELETE_SLICE+1': -2, 'DELETE_SLICE+2': -2, 'DELETE_SLICE+3': -3, 'STORE_SUBSCR': -3, 'DELETE_SUBSCR': -2, # PRINT_EXPR? 'PRINT_ITEM': -1, 'LOAD_LOCALS': 1, 'RETURN_VALUE': -1, 'EXEC_STMT': -2, 'BUILD_CLASS': -2, 'STORE_NAME': -1, 'STORE_ATTR': -2, 'DELETE_ATTR': -1, 'STORE_GLOBAL': -1, 'BUILD_MAP': 1, 'COMPARE_OP': -1, 'STORE_FAST': -1, 'IMPORT_STAR': -1, 'IMPORT_NAME': 0, 'IMPORT_FROM': 1, } # use pattern match patterns = [ ('BINARY_', -1), ('LOAD_', 1), ] # special cases: # UNPACK_SEQUENCE, BUILD_TUPLE, # BUILD_LIST, CALL_FUNCTION, MAKE_FUNCTION, BUILD_SLICE def UNPACK_SEQUENCE(self, count): return count def BUILD_TUPLE(self, count): return -count def BUILD_LIST(self, count): return -count def CALL_FUNCTION(self, argc): hi, lo = divmod(argc, 256) return lo + hi * 2 def CALL_FUNCTION_VAR(self, argc): return self.CALL_FUNCTION(argc)+1 def CALL_FUNCTION_KW(self, argc): return self.CALL_FUNCTION(argc)+1 def CALL_FUNCTION_VAR_KW(self, argc): return self.CALL_FUNCTION(argc)+2 def MAKE_FUNCTION(self, argc): return -argc def BUILD_SLICE(self, argc): if argc == 2: return -1 elif argc == 3: return -2 findDepth = StackDepthTracker().findDepth