# Tests for the correctly-rounded string -> float conversions # introduced in Python 2.7 and 3.1. import random import struct import unittest import re import sys from test import test_support # Correctly rounded str -> float in pure Python, for comparison. strtod_parser = re.compile(r""" # A numeric string consists of: (?P[-+])? # an optional sign, followed by (?=\d|\.\d) # a number with at least one digit (?P\d*) # having a (possibly empty) integer part (?:\.(?P\d*))? # followed by an optional fractional part (?:E(?P[-+]?\d+))? # and an optional exponent \Z """, re.VERBOSE | re.IGNORECASE).match def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024): """Convert a finite decimal string to a hex string representing an IEEE 754 binary64 float. Return 'inf' or '-inf' on overflow. This function makes no use of floating-point arithmetic at any stage.""" # parse string into a pair of integers 'a' and 'b' such that # abs(decimal value) = a/b, along with a boolean 'negative'. m = strtod_parser(s) if m is None: raise ValueError('invalid numeric string') fraction = m.group('frac') or '' intpart = int(m.group('int') + fraction) exp = int(m.group('exp') or '0') - len(fraction) negative = m.group('sign') == '-' a, b = intpart*10**max(exp, 0), 10**max(0, -exp) # quick return for zeros if not a: return '-0x0.0p+0' if negative else '0x0.0p+0' # compute exponent e for result; may be one too small in the case # that the rounded value of a/b lies in a different binade from a/b d = a.bit_length() - b.bit_length() d += (a >> d if d >= 0 else a << -d) >= b e = max(d, min_exp) - mant_dig # approximate a/b by number of the form q * 2**e; adjust e if necessary a, b = a << max(-e, 0), b << max(e, 0) q, r = divmod(a, b) if 2*r > b or 2*r == b and q & 1: q += 1 if q.bit_length() == mant_dig+1: q //= 2 e += 1 # double check that (q, e) has the right form assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig assert q.bit_length() == mant_dig or e == min_exp - mant_dig # check for overflow and underflow if e + q.bit_length() > max_exp: return '-inf' if negative else 'inf' if not q: return '-0x0.0p+0' if negative else '0x0.0p+0' # for hex representation, shift so # bits after point is a multiple of 4 hexdigs = 1 + (mant_dig-2)//4 shift = 3 - (mant_dig-2)%4 q, e = q << shift, e - shift return '{}0x{:x}.{:0{}x}p{:+d}'.format( '-' if negative else '', q // 16**hexdigs, q % 16**hexdigs, hexdigs, e + 4*hexdigs) TEST_SIZE = 10 @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short', "applies only when using short float repr style") class StrtodTests(unittest.TestCase): def check_strtod(self, s): """Compare the result of Python's builtin correctly rounded string->float conversion (using float) to a pure Python correctly rounded string->float implementation. Fail if the two methods give different results.""" try: fs = float(s) except OverflowError: got = '-inf' if s[0] == '-' else 'inf' else: got = fs.hex() expected = strtod(s) self.assertEqual(expected, got, "Incorrectly rounded str->float conversion for {}: " "expected {}, got {}".format(s, expected, got)) def test_halfway_cases(self): # test halfway cases for the round-half-to-even rule for i in xrange(1000): for j in xrange(TEST_SIZE): # bit pattern for a random finite positive (or +0.0) float bits = random.randrange(2047*2**52) # convert bit pattern to a number of the form m * 2**e e, m = divmod(bits, 2**52) if e: m, e = m + 2**52, e - 1 e -= 1074 # add 0.5 ulps m, e = 2*m + 1, e - 1 # convert to a decimal string if e >= 0: digits = m << e exponent = 0 else: # m * 2**e = (m * 5**-e) * 10**e digits = m * 5**-e exponent = e s = '{}e{}'.format(digits, exponent) # for the moment, ignore errors from trailing zeros if digits % 10 == 0: continue self.check_strtod(s) # get expected answer via struct, to triple check #fs = struct.unpack('scale != 0 (issue 7632, bug 6). '104308485241983990666713401708072175773165034278685' #... '682646111762292409330928739751702404658197872319129' #... '036519947435319418387839758990478549477777586673075' #... '945844895981012024387992135617064532141489278815239' #... '849108105951619997829153633535314849999674266169258' #... '928940692239684771590065027025835804863585454872499' #... '320500023126142553932654370362024104462255244034053' #... '203998964360882487378334860197725139151265590832887' #... '433736189468858614521708567646743455601905935595381' #... '852723723645799866672558576993978025033590728687206' #... '296379801363024094048327273913079612469982585674824' #... '156000783167963081616214710691759864332339239688734' #... '656548790656486646106983450809073750535624894296242' #... '072010195710276073042036425579852459556183541199012' #... '652571123898996574563824424330960027873516082763671875e-1075', # demonstration that original fix for issue 7632 bug 1 was # buggy; the exit condition was too strong '247032822920623295e-341', # issue 7632 bug 5: the following 2 strings convert differently '1000000000000000000000000000000000000000e-16', #'10000000000000000000000000000000000000000e-17', # issue 7632 bug 8: the following produced 10.0 '10.900000000000000012345678912345678912345', ] for s in test_strings: self.check_strtod(s) def test_main(): test_support.run_unittest(StrtodTests) if __name__ == "__main__": test_main()