#include "Python.h" #ifdef MS_WINDOWS #include #endif #if defined(__APPLE__) #include /* mach_absolute_time(), mach_timebase_info() */ #endif /* To millisecond (10^-3) */ #define SEC_TO_MS 1000 /* To microseconds (10^-6) */ #define MS_TO_US 1000 #define SEC_TO_US (SEC_TO_MS * MS_TO_US) /* To nanoseconds (10^-9) */ #define US_TO_NS 1000 #define MS_TO_NS (MS_TO_US * US_TO_NS) #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) /* Conversion from nanoseconds */ #define NS_TO_MS (1000 * 1000) #define NS_TO_US (1000) static void error_time_t_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp out of range for platform time_t"); } time_t _PyLong_AsTime_t(PyObject *obj) { #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG PY_LONG_LONG val; val = PyLong_AsLongLong(obj); #else long val; assert(sizeof(time_t) <= sizeof(long)); val = PyLong_AsLong(obj); #endif if (val == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) error_time_t_overflow(); return -1; } return (time_t)val; } PyObject * _PyLong_FromTime_t(time_t t) { #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG return PyLong_FromLongLong((PY_LONG_LONG)t); #else assert(sizeof(time_t) <= sizeof(long)); return PyLong_FromLong((long)t); #endif } static int _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, double denominator, _PyTime_round_t round) { assert(denominator <= LONG_MAX); if (PyFloat_Check(obj)) { double d, intpart, err; /* volatile avoids unsafe optimization on float enabled by gcc -O3 */ volatile double floatpart; d = PyFloat_AsDouble(obj); floatpart = modf(d, &intpart); if (floatpart < 0) { floatpart = 1.0 + floatpart; intpart -= 1.0; } floatpart *= denominator; if (round == _PyTime_ROUND_CEILING) { floatpart = ceil(floatpart); if (floatpart >= denominator) { floatpart = 0.0; intpart += 1.0; } } else { floatpart = floor(floatpart); } *sec = (time_t)intpart; err = intpart - (double)*sec; if (err <= -1.0 || err >= 1.0) { error_time_t_overflow(); return -1; } *numerator = (long)floatpart; return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) return -1; *numerator = 0; return 0; } } int _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) { if (PyFloat_Check(obj)) { double d, intpart, err; d = PyFloat_AsDouble(obj); if (round == _PyTime_ROUND_CEILING) d = ceil(d); else d = floor(d); (void)modf(d, &intpart); *sec = (time_t)intpart; err = intpart - (double)*sec; if (err <= -1.0 || err >= 1.0) { error_time_t_overflow(); return -1; } return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) return -1; return 0; } } int _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round); } int _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round); } static void _PyTime_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp too large to convert to C _PyTime_t"); } _PyTime_t _PyTime_FromSeconds(int seconds) { _PyTime_t t; /* ensure that integer overflow cannot happen, int type should have 32 bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30 bits). */ assert((seconds >= 0 && seconds <= _PyTime_MAX / SEC_TO_NS) || (seconds < 0 && seconds >= _PyTime_MIN / SEC_TO_NS)); t = (_PyTime_t)seconds * SEC_TO_NS; return t; } _PyTime_t _PyTime_FromNanoseconds(PY_LONG_LONG ns) { _PyTime_t t; assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); t = Py_SAFE_DOWNCAST(ns, PY_LONG_LONG, _PyTime_t); return t; } #ifdef HAVE_CLOCK_GETTIME static int _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts, int raise) { _PyTime_t t; int res = 0; t = (_PyTime_t)ts->tv_sec * SEC_TO_NS; if (t / SEC_TO_NS != ts->tv_sec) { if (raise) _PyTime_overflow(); res = -1; } t += ts->tv_nsec; *tp = t; return res; } #elif !defined(MS_WINDOWS) static int _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv, int raise) { _PyTime_t t; int res = 0; t = (_PyTime_t)tv->tv_sec * SEC_TO_NS; if (t / SEC_TO_NS != tv->tv_sec) { if (raise) _PyTime_overflow(); res = -1; } t += (_PyTime_t)tv->tv_usec * US_TO_NS; *tp = t; return res; } #endif static int _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round, long to_nanoseconds) { if (PyFloat_Check(obj)) { /* volatile avoids unsafe optimization on float enabled by gcc -O3 */ volatile double d, err; /* convert to a number of nanoseconds */ d = PyFloat_AsDouble(obj); d *= to_nanoseconds; if (round == _PyTime_ROUND_CEILING) d = ceil(d); else d = floor(d); *t = (_PyTime_t)d; err = d - (double)*t; if (fabs(err) >= 1.0) { _PyTime_overflow(); return -1; } return 0; } else { #ifdef HAVE_LONG_LONG PY_LONG_LONG sec; sec = PyLong_AsLongLong(obj); assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); #else long sec; sec = PyLong_AsLong(obj); assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); #endif if (sec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) _PyTime_overflow(); return -1; } *t = sec * to_nanoseconds; if (*t / to_nanoseconds != sec) { _PyTime_overflow(); return -1; } return 0; } } int _PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) { return _PyTime_FromObject(t, obj, round, SEC_TO_NS); } int _PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) { return _PyTime_FromObject(t, obj, round, MS_TO_NS); } double _PyTime_AsSecondsDouble(_PyTime_t t) { _PyTime_t sec, ns; /* Divide using integers to avoid rounding issues on the integer part. 1e-9 cannot be stored exactly in IEEE 64-bit. */ sec = t / SEC_TO_NS; ns = t % SEC_TO_NS; return (double)sec + (double)ns * 1e-9; } PyObject * _PyTime_AsNanosecondsObject(_PyTime_t t) { #ifdef HAVE_LONG_LONG assert(sizeof(PY_LONG_LONG) >= sizeof(_PyTime_t)); return PyLong_FromLongLong((PY_LONG_LONG)t); #else assert(sizeof(long) >= sizeof(_PyTime_t)); return PyLong_FromLong((long)t); #endif } static _PyTime_t _PyTime_Divide(const _PyTime_t t, const _PyTime_t k, const _PyTime_round_t round) { assert(k > 1); if (round == _PyTime_ROUND_CEILING) { if (t >= 0) return (t + k - 1) / k; else return t / k; } else { if (t >= 0) return t / k; else return (t - (k - 1)) / k; } } _PyTime_t _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) { return _PyTime_Divide(t, NS_TO_MS, round); } _PyTime_t _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) { return _PyTime_Divide(t, NS_TO_US, round); } static int _PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us, _PyTime_round_t round) { _PyTime_t secs, ns; int usec; int res = 0; secs = t / SEC_TO_NS; ns = t % SEC_TO_NS; usec = (int)_PyTime_Divide(ns, US_TO_NS, round); if (usec < 0) { usec += SEC_TO_US; if (secs != _PyTime_MIN) secs -= 1; else res = -1; } else if (usec >= SEC_TO_US) { usec -= SEC_TO_US; if (secs != _PyTime_MAX) secs += 1; else res = -1; } assert(0 <= usec && usec < SEC_TO_US); *p_secs = secs; *p_us = usec; return res; } static int _PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv, _PyTime_round_t round, int raise) { _PyTime_t secs; int us; int res; res = _PyTime_AsTimeval_impl(t, &secs, &us, round); #ifdef MS_WINDOWS tv->tv_sec = (long)secs; #else tv->tv_sec = secs; #endif tv->tv_usec = us; if (res < 0 || (_PyTime_t)tv->tv_sec != secs) { if (raise) error_time_t_overflow(); return -1; } return 0; } int _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) { return _PyTime_AsTimevalStruct_impl(t, tv, round, 1); } int _PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) { return _PyTime_AsTimevalStruct_impl(t, tv, round, 0); } int _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, _PyTime_round_t round) { _PyTime_t secs; int res; res = _PyTime_AsTimeval_impl(t, &secs, us, round); *p_secs = secs; if (res < 0 || (_PyTime_t)*p_secs != secs) { error_time_t_overflow(); return -1; } return 0; } #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) int _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) { _PyTime_t secs, nsec; secs = t / SEC_TO_NS; nsec = t % SEC_TO_NS; if (nsec < 0) { nsec += SEC_TO_NS; secs -= 1; } ts->tv_sec = (time_t)secs; if ((_PyTime_t)ts->tv_sec != secs) { _PyTime_overflow(); return -1; } ts->tv_nsec = nsec; assert(0 <= ts->tv_nsec && ts->tv_nsec <= 999999999); return 0; } #endif static int pygettimeofday_new(_PyTime_t *tp, _Py_clock_info_t *info, int raise) { #ifdef MS_WINDOWS FILETIME system_time; ULARGE_INTEGER large; assert(info == NULL || raise); GetSystemTimeAsFileTime(&system_time); large.u.LowPart = system_time.dwLowDateTime; large.u.HighPart = system_time.dwHighDateTime; /* 11,644,473,600,000,000,000: number of nanoseconds between the 1st january 1601 and the 1st january 1970 (369 years + 89 leap days). */ *tp = large.QuadPart * 100 - 11644473600000000000; if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetSystemTimeAsFileTime()"; info->monotonic = 0; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 1; } #else /* MS_WINDOWS */ int err; #ifdef HAVE_CLOCK_GETTIME struct timespec ts; #else struct timeval tv; #endif assert(info == NULL || raise); #ifdef HAVE_CLOCK_GETTIME err = clock_gettime(CLOCK_REALTIME, &ts); if (err) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (_PyTime_FromTimespec(tp, &ts, raise) < 0) return -1; if (info) { struct timespec res; info->implementation = "clock_gettime(CLOCK_REALTIME)"; info->monotonic = 0; info->adjustable = 1; if (clock_getres(CLOCK_REALTIME, &res) == 0) info->resolution = res.tv_sec + res.tv_nsec * 1e-9; else info->resolution = 1e-9; } #else /* HAVE_CLOCK_GETTIME */ /* test gettimeofday() */ #ifdef GETTIMEOFDAY_NO_TZ err = gettimeofday(&tv); #else err = gettimeofday(&tv, (struct timezone *)NULL); #endif if (err) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (_PyTime_FromTimeval(tp, &tv, raise) < 0) return -1; if (info) { info->implementation = "gettimeofday()"; info->resolution = 1e-6; info->monotonic = 0; info->adjustable = 1; } #endif /* !HAVE_CLOCK_GETTIME */ #endif /* !MS_WINDOWS */ return 0; } _PyTime_t _PyTime_GetSystemClock(void) { _PyTime_t t; if (pygettimeofday_new(&t, NULL, 0) < 0) { /* should not happen, _PyTime_Init() checked the clock at startup */ assert(0); /* use a fixed value instead of a random value from the stack */ t = 0; } return t; } int _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) { return pygettimeofday_new(t, info, 1); } static int pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise) { #if defined(MS_WINDOWS) ULONGLONG result; assert(info == NULL || raise); result = GetTickCount64(); *tp = result * MS_TO_NS; if (*tp / MS_TO_NS != result) { if (raise) { _PyTime_overflow(); return -1; } /* Hello, time traveler! */ assert(0); } if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetTickCount64()"; info->monotonic = 1; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 0; } #elif defined(__APPLE__) static mach_timebase_info_data_t timebase; uint64_t time; if (timebase.denom == 0) { /* According to the Technical Q&A QA1398, mach_timebase_info() cannot fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ (void)mach_timebase_info(&timebase); } time = mach_absolute_time(); /* apply timebase factor */ time *= timebase.numer; time /= timebase.denom; *tp = time; if (info) { info->implementation = "mach_absolute_time()"; info->resolution = (double)timebase.numer / timebase.denom * 1e-9; info->monotonic = 1; info->adjustable = 0; } #else struct timespec ts; #ifdef CLOCK_HIGHRES const clockid_t clk_id = CLOCK_HIGHRES; const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; #else const clockid_t clk_id = CLOCK_MONOTONIC; const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; #endif assert(info == NULL || raise); if (clock_gettime(clk_id, &ts) != 0) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); return -1; } return -1; } if (info) { struct timespec res; info->monotonic = 1; info->implementation = implementation; info->adjustable = 0; if (clock_getres(clk_id, &res) != 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } if (_PyTime_FromTimespec(tp, &ts, raise) < 0) return -1; #endif return 0; } _PyTime_t _PyTime_GetMonotonicClock(void) { _PyTime_t t; if (pymonotonic(&t, NULL, 0) < 0) { /* should not happen, _PyTime_Init() checked that monotonic clock at startup */ assert(0); /* use a fixed value instead of a random value from the stack */ t = 0; } return t; } int _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) { return pymonotonic(tp, info, 1); } int _PyTime_Init(void) { _PyTime_t t; /* ensure that the system clock works */ if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) return -1; /* ensure that the operating system provides a monotonic clock */ if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) return -1; /* check that _PyTime_FromSeconds() cannot overflow */ assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS); assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS); return 0; }