import unittest, doctest from test import test_support from collections import namedtuple, Counter, Mapping import pickle, cPickle, copy from random import randrange import operator from collections import Hashable, Iterable, Iterator from collections import Sized, Container, Callable from collections import Set, MutableSet from collections import Mapping, MutableMapping from collections import Sequence, MutableSequence TestNT = namedtuple('TestNT', 'x y z') # type used for pickle tests class TestNamedTuple(unittest.TestCase): def test_factory(self): Point = namedtuple('Point', 'x y') self.assertEqual(Point.__name__, 'Point') self.assertEqual(Point.__doc__, 'Point(x, y)') self.assertEqual(Point.__slots__, ()) self.assertEqual(Point.__module__, __name__) self.assertEqual(Point.__getitem__, tuple.__getitem__) self.assertEqual(Point._fields, ('x', 'y')) self.assertRaises(ValueError, namedtuple, 'abc%', 'efg ghi') # type has non-alpha char self.assertRaises(ValueError, namedtuple, 'class', 'efg ghi') # type has keyword self.assertRaises(ValueError, namedtuple, '9abc', 'efg ghi') # type starts with digit self.assertRaises(ValueError, namedtuple, 'abc', 'efg g%hi') # field with non-alpha char self.assertRaises(ValueError, namedtuple, 'abc', 'abc class') # field has keyword self.assertRaises(ValueError, namedtuple, 'abc', '8efg 9ghi') # field starts with digit self.assertRaises(ValueError, namedtuple, 'abc', '_efg ghi') # field with leading underscore self.assertRaises(ValueError, namedtuple, 'abc', 'efg efg ghi') # duplicate field namedtuple('Point0', 'x1 y2') # Verify that numbers are allowed in names namedtuple('_', 'a b c') # Test leading underscores in a typename nt = namedtuple('nt', u'the quick brown fox') # check unicode input self.assert_("u'" not in repr(nt._fields)) nt = namedtuple('nt', (u'the', u'quick')) # check unicode input self.assert_("u'" not in repr(nt._fields)) self.assertRaises(TypeError, Point._make, [11]) # catch too few args self.assertRaises(TypeError, Point._make, [11, 22, 33]) # catch too many args def test_name_fixer(self): for spec, renamed in [ [('efg', 'g%hi'), ('efg', '_2')], # field with non-alpha char [('abc', 'class'), ('abc', '_2')], # field has keyword [('8efg', '9ghi'), ('_1', '_2')], # field starts with digit [('abc', '_efg'), ('abc', '_2')], # field with leading underscore [('abc', 'efg', 'efg', 'ghi'), ('abc', 'efg', '_3', 'ghi')], # duplicate field [('abc', '', 'x'), ('abc', '_2', 'x')], # fieldname is a space ]: self.assertEqual(namedtuple('NT', spec, rename=True)._fields, renamed) def test_instance(self): Point = namedtuple('Point', 'x y') p = Point(11, 22) self.assertEqual(p, Point(x=11, y=22)) self.assertEqual(p, Point(11, y=22)) self.assertEqual(p, Point(y=22, x=11)) self.assertEqual(p, Point(*(11, 22))) self.assertEqual(p, Point(**dict(x=11, y=22))) self.assertRaises(TypeError, Point, 1) # too few args self.assertRaises(TypeError, Point, 1, 2, 3) # too many args self.assertRaises(TypeError, eval, 'Point(XXX=1, y=2)', locals()) # wrong keyword argument self.assertRaises(TypeError, eval, 'Point(x=1)', locals()) # missing keyword argument self.assertEqual(repr(p), 'Point(x=11, y=22)') self.assert_('__dict__' not in dir(p)) # verify instance has no dict self.assert_('__weakref__' not in dir(p)) self.assertEqual(p, Point._make([11, 22])) # test _make classmethod self.assertEqual(p._fields, ('x', 'y')) # test _fields attribute self.assertEqual(p._replace(x=1), (1, 22)) # test _replace method self.assertEqual(p._asdict(), dict(x=11, y=22)) # test _asdict method try: p._replace(x=1, error=2) except ValueError: pass else: self._fail('Did not detect an incorrect fieldname') # verify that field string can have commas Point = namedtuple('Point', 'x, y') p = Point(x=11, y=22) self.assertEqual(repr(p), 'Point(x=11, y=22)') # verify that fieldspec can be a non-string sequence Point = namedtuple('Point', ('x', 'y')) p = Point(x=11, y=22) self.assertEqual(repr(p), 'Point(x=11, y=22)') def test_tupleness(self): Point = namedtuple('Point', 'x y') p = Point(11, 22) self.assert_(isinstance(p, tuple)) self.assertEqual(p, (11, 22)) # matches a real tuple self.assertEqual(tuple(p), (11, 22)) # coercable to a real tuple self.assertEqual(list(p), [11, 22]) # coercable to a list self.assertEqual(max(p), 22) # iterable self.assertEqual(max(*p), 22) # star-able x, y = p self.assertEqual(p, (x, y)) # unpacks like a tuple self.assertEqual((p[0], p[1]), (11, 22)) # indexable like a tuple self.assertRaises(IndexError, p.__getitem__, 3) self.assertEqual(p.x, x) self.assertEqual(p.y, y) self.assertRaises(AttributeError, eval, 'p.z', locals()) def test_odd_sizes(self): Zero = namedtuple('Zero', '') self.assertEqual(Zero(), ()) self.assertEqual(Zero._make([]), ()) self.assertEqual(repr(Zero()), 'Zero()') self.assertEqual(Zero()._asdict(), {}) self.assertEqual(Zero()._fields, ()) Dot = namedtuple('Dot', 'd') self.assertEqual(Dot(1), (1,)) self.assertEqual(Dot._make([1]), (1,)) self.assertEqual(Dot(1).d, 1) self.assertEqual(repr(Dot(1)), 'Dot(d=1)') self.assertEqual(Dot(1)._asdict(), {'d':1}) self.assertEqual(Dot(1)._replace(d=999), (999,)) self.assertEqual(Dot(1)._fields, ('d',)) n = 5000 import string, random names = list(set(''.join([random.choice(string.ascii_letters) for j in range(10)]) for i in range(n))) n = len(names) Big = namedtuple('Big', names) b = Big(*range(n)) self.assertEqual(b, tuple(range(n))) self.assertEqual(Big._make(range(n)), tuple(range(n))) for pos, name in enumerate(names): self.assertEqual(getattr(b, name), pos) repr(b) # make sure repr() doesn't blow-up d = b._asdict() d_expected = dict(zip(names, range(n))) self.assertEqual(d, d_expected) b2 = b._replace(**dict([(names[1], 999),(names[-5], 42)])) b2_expected = range(n) b2_expected[1] = 999 b2_expected[-5] = 42 self.assertEqual(b2, tuple(b2_expected)) self.assertEqual(b._fields, tuple(names)) def test_pickle(self): p = TestNT(x=10, y=20, z=30) for module in pickle, cPickle: loads = getattr(module, 'loads') dumps = getattr(module, 'dumps') for protocol in -1, 0, 1, 2: q = loads(dumps(p, protocol)) self.assertEqual(p, q) self.assertEqual(p._fields, q._fields) def test_copy(self): p = TestNT(x=10, y=20, z=30) for copier in copy.copy, copy.deepcopy: q = copier(p) self.assertEqual(p, q) self.assertEqual(p._fields, q._fields) class ABCTestCase(unittest.TestCase): def validate_abstract_methods(self, abc, *names): methodstubs = dict.fromkeys(names, lambda s, *args: 0) # everything should work will all required methods are present C = type('C', (abc,), methodstubs) C() # instantiation should fail if a required method is missing for name in names: stubs = methodstubs.copy() del stubs[name] C = type('C', (abc,), stubs) self.assertRaises(TypeError, C, name) class TestOneTrickPonyABCs(ABCTestCase): def test_Hashable(self): # Check some non-hashables non_samples = [list(), set(), dict()] for x in non_samples: self.failIf(isinstance(x, Hashable), repr(x)) self.failIf(issubclass(type(x), Hashable), repr(type(x))) # Check some hashables samples = [None, int(), float(), complex(), str(), tuple(), frozenset(), int, list, object, type, ] for x in samples: self.failUnless(isinstance(x, Hashable), repr(x)) self.failUnless(issubclass(type(x), Hashable), repr(type(x))) self.assertRaises(TypeError, Hashable) # Check direct subclassing class H(Hashable): def __hash__(self): return super(H, self).__hash__() __eq__ = Hashable.__eq__ # Silence Py3k warning self.assertEqual(hash(H()), 0) self.failIf(issubclass(int, H)) self.validate_abstract_methods(Hashable, '__hash__') def test_Iterable(self): # Check some non-iterables non_samples = [None, 42, 3.14, 1j] for x in non_samples: self.failIf(isinstance(x, Iterable), repr(x)) self.failIf(issubclass(type(x), Iterable), repr(type(x))) # Check some iterables samples = [str(), tuple(), list(), set(), frozenset(), dict(), dict().keys(), dict().items(), dict().values(), (lambda: (yield))(), (x for x in []), ] for x in samples: self.failUnless(isinstance(x, Iterable), repr(x)) self.failUnless(issubclass(type(x), Iterable), repr(type(x))) # Check direct subclassing class I(Iterable): def __iter__(self): return super(I, self).__iter__() self.assertEqual(list(I()), []) self.failIf(issubclass(str, I)) self.validate_abstract_methods(Iterable, '__iter__') def test_Iterator(self): non_samples = [None, 42, 3.14, 1j, "".encode('ascii'), "", (), [], {}, set()] for x in non_samples: self.failIf(isinstance(x, Iterator), repr(x)) self.failIf(issubclass(type(x), Iterator), repr(type(x))) samples = [iter(str()), iter(tuple()), iter(list()), iter(dict()), iter(set()), iter(frozenset()), iter(dict().keys()), iter(dict().items()), iter(dict().values()), (lambda: (yield))(), (x for x in []), ] for x in samples: self.failUnless(isinstance(x, Iterator), repr(x)) self.failUnless(issubclass(type(x), Iterator), repr(type(x))) self.validate_abstract_methods(Iterator, 'next') def test_Sized(self): non_samples = [None, 42, 3.14, 1j, (lambda: (yield))(), (x for x in []), ] for x in non_samples: self.failIf(isinstance(x, Sized), repr(x)) self.failIf(issubclass(type(x), Sized), repr(type(x))) samples = [str(), tuple(), list(), set(), frozenset(), dict(), dict().keys(), dict().items(), dict().values(), ] for x in samples: self.failUnless(isinstance(x, Sized), repr(x)) self.failUnless(issubclass(type(x), Sized), repr(type(x))) self.validate_abstract_methods(Sized, '__len__') def test_Container(self): non_samples = [None, 42, 3.14, 1j, (lambda: (yield))(), (x for x in []), ] for x in non_samples: self.failIf(isinstance(x, Container), repr(x)) self.failIf(issubclass(type(x), Container), repr(type(x))) samples = [str(), tuple(), list(), set(), frozenset(), dict(), dict().keys(), dict().items(), ] for x in samples: self.failUnless(isinstance(x, Container), repr(x)) self.failUnless(issubclass(type(x), Container), repr(type(x))) self.validate_abstract_methods(Container, '__contains__') def test_Callable(self): non_samples = [None, 42, 3.14, 1j, "", "".encode('ascii'), (), [], {}, set(), (lambda: (yield))(), (x for x in []), ] for x in non_samples: self.failIf(isinstance(x, Callable), repr(x)) self.failIf(issubclass(type(x), Callable), repr(type(x))) samples = [lambda: None, type, int, object, len, list.append, [].append, ] for x in samples: self.failUnless(isinstance(x, Callable), repr(x)) self.failUnless(issubclass(type(x), Callable), repr(type(x))) self.validate_abstract_methods(Callable, '__call__') def test_direct_subclassing(self): for B in Hashable, Iterable, Iterator, Sized, Container, Callable: class C(B): pass self.failUnless(issubclass(C, B)) self.failIf(issubclass(int, C)) def test_registration(self): for B in Hashable, Iterable, Iterator, Sized, Container, Callable: class C: __metaclass__ = type __hash__ = None # Make sure it isn't hashable by default self.failIf(issubclass(C, B), B.__name__) B.register(C) self.failUnless(issubclass(C, B)) class TestCollectionABCs(ABCTestCase): # XXX For now, we only test some virtual inheritance properties. # We should also test the proper behavior of the collection ABCs # as real base classes or mix-in classes. def test_Set(self): for sample in [set, frozenset]: self.failUnless(isinstance(sample(), Set)) self.failUnless(issubclass(sample, Set)) self.validate_abstract_methods(Set, '__contains__', '__iter__', '__len__') def test_hash_Set(self): class OneTwoThreeSet(Set): def __init__(self): self.contents = [1, 2, 3] def __contains__(self, x): return x in self.contents def __len__(self): return len(self.contents) def __iter__(self): return iter(self.contents) def __hash__(self): return self._hash() a, b = OneTwoThreeSet(), OneTwoThreeSet() self.failUnless(hash(a) == hash(b)) def test_MutableSet(self): self.failUnless(isinstance(set(), MutableSet)) self.failUnless(issubclass(set, MutableSet)) self.failIf(isinstance(frozenset(), MutableSet)) self.failIf(issubclass(frozenset, MutableSet)) self.validate_abstract_methods(MutableSet, '__contains__', '__iter__', '__len__', 'add', 'discard') def test_issue_4920(self): # MutableSet.pop() method did not work class MySet(collections.MutableSet): __slots__=['__s'] def __init__(self,items=None): if items is None: items=[] self.__s=set(items) def __contains__(self,v): return v in self.__s def __iter__(self): return iter(self.__s) def __len__(self): return len(self.__s) def add(self,v): result=v not in self.__s self.__s.add(v) return result def discard(self,v): result=v in self.__s self.__s.discard(v) return result def __repr__(self): return "MySet(%s)" % repr(list(self)) s = MySet([5,43,2,1]) self.assertEqual(s.pop(), 1) def test_Mapping(self): for sample in [dict]: self.failUnless(isinstance(sample(), Mapping)) self.failUnless(issubclass(sample, Mapping)) self.validate_abstract_methods(Mapping, '__contains__', '__iter__', '__len__', '__getitem__') def test_MutableMapping(self): for sample in [dict]: self.failUnless(isinstance(sample(), MutableMapping)) self.failUnless(issubclass(sample, MutableMapping)) self.validate_abstract_methods(MutableMapping, '__contains__', '__iter__', '__len__', '__getitem__', '__setitem__', '__delitem__') def test_Sequence(self): for sample in [tuple, list, str]: self.failUnless(isinstance(sample(), Sequence)) self.failUnless(issubclass(sample, Sequence)) self.failUnless(issubclass(basestring, Sequence)) self.failUnless(isinstance(range(10), Sequence)) self.failUnless(issubclass(xrange, Sequence)) self.failUnless(issubclass(str, Sequence)) self.validate_abstract_methods(Sequence, '__contains__', '__iter__', '__len__', '__getitem__') def test_MutableSequence(self): for sample in [tuple, str]: self.failIf(isinstance(sample(), MutableSequence)) self.failIf(issubclass(sample, MutableSequence)) for sample in [list]: self.failUnless(isinstance(sample(), MutableSequence)) self.failUnless(issubclass(sample, MutableSequence)) self.failIf(issubclass(basestring, MutableSequence)) self.validate_abstract_methods(MutableSequence, '__contains__', '__iter__', '__len__', '__getitem__', '__setitem__', '__delitem__', 'insert') class TestCounter(unittest.TestCase): def test_basics(self): c = Counter('abcaba') self.assertEqual(c, Counter({'a':3 , 'b': 2, 'c': 1})) self.assertEqual(c, Counter(a=3, b=2, c=1)) self.assert_(isinstance(c, dict)) self.assert_(isinstance(c, Mapping)) self.assert_(issubclass(Counter, dict)) self.assert_(issubclass(Counter, Mapping)) self.assertEqual(len(c), 3) self.assertEqual(sum(c.values()), 6) self.assertEqual(sorted(c.values()), [1, 2, 3]) self.assertEqual(sorted(c.keys()), ['a', 'b', 'c']) self.assertEqual(sorted(c), ['a', 'b', 'c']) self.assertEqual(sorted(c.items()), [('a', 3), ('b', 2), ('c', 1)]) self.assertEqual(c['b'], 2) self.assertEqual(c['z'], 0) self.assertEqual(c.has_key('c'), True) self.assertEqual(c.has_key('z'), False) self.assertEqual(c.__contains__('c'), True) self.assertEqual(c.__contains__('z'), False) self.assertEqual(c.get('b', 10), 2) self.assertEqual(c.get('z', 10), 10) self.assertEqual(c, dict(a=3, b=2, c=1)) self.assertEqual(repr(c), "Counter({'a': 3, 'b': 2, 'c': 1})") self.assertEqual(c.most_common(), [('a', 3), ('b', 2), ('c', 1)]) for i in range(5): self.assertEqual(c.most_common(i), [('a', 3), ('b', 2), ('c', 1)][:i]) self.assertEqual(''.join(sorted(c.elements())), 'aaabbc') c['a'] += 1 # increment an existing value c['b'] -= 2 # sub existing value to zero del c['c'] # remove an entry del c['c'] # make sure that del doesn't raise KeyError c['d'] -= 2 # sub from a missing value c['e'] = -5 # directly assign a missing value c['f'] += 4 # add to a missing value self.assertEqual(c, dict(a=4, b=0, d=-2, e=-5, f=4)) self.assertEqual(''.join(sorted(c.elements())), 'aaaaffff') self.assertEqual(c.pop('f'), 4) self.assertEqual('f' in c, False) for i in range(3): elem, cnt = c.popitem() self.assertEqual(elem in c, False) c.clear() self.assertEqual(c, {}) self.assertEqual(repr(c), 'Counter()') self.assertRaises(NotImplementedError, Counter.fromkeys, 'abc') self.assertRaises(TypeError, hash, c) c.update(dict(a=5, b=3)) c.update(c=1) c.update(Counter('a' * 50 + 'b' * 30)) c.update() # test case with no args c.__init__('a' * 500 + 'b' * 300) c.__init__('cdc') c.__init__() self.assertEqual(c, dict(a=555, b=333, c=3, d=1)) self.assertEqual(c.setdefault('d', 5), 1) self.assertEqual(c['d'], 1) self.assertEqual(c.setdefault('e', 5), 5) self.assertEqual(c['e'], 5) def test_copying(self): # Check that counters are copyable, deepcopyable, picklable, and #have a repr/eval round-trip words = Counter('which witch had which witches wrist watch'.split()) update_test = Counter() update_test.update(words) for i, dup in enumerate([ words.copy(), copy.copy(words), copy.deepcopy(words), pickle.loads(pickle.dumps(words, 0)), pickle.loads(pickle.dumps(words, 1)), pickle.loads(pickle.dumps(words, 2)), pickle.loads(pickle.dumps(words, -1)), cPickle.loads(cPickle.dumps(words, 0)), cPickle.loads(cPickle.dumps(words, 1)), cPickle.loads(cPickle.dumps(words, 2)), cPickle.loads(cPickle.dumps(words, -1)), eval(repr(words)), update_test, Counter(words), ]): msg = (i, dup, words) self.assert_(dup is not words) self.assertEquals(dup, words) self.assertEquals(len(dup), len(words)) self.assertEquals(type(dup), type(words)) def test_conversions(self): # Convert to: set, list, dict s = 'she sells sea shells by the sea shore' self.assertEqual(sorted(Counter(s).elements()), sorted(s)) self.assertEqual(sorted(Counter(s)), sorted(set(s))) self.assertEqual(dict(Counter(s)), dict(Counter(s).items())) self.assertEqual(set(Counter(s)), set(s)) def test_invariant_for_the_in_operator(self): c = Counter(a=10, b=-2, c=0) for elem in c: self.assert_(elem in c) def test_multiset_operations(self): # Verify that adding a zero counter will strip zeros and negatives c = Counter(a=10, b=-2, c=0) + Counter() self.assertEqual(dict(c), dict(a=10)) elements = 'abcd' for i in range(1000): # test random pairs of multisets p = Counter(dict((elem, randrange(-2,4)) for elem in elements)) p.update(e=1, f=-1, g=0) q = Counter(dict((elem, randrange(-2,4)) for elem in elements)) q.update(h=1, i=-1, j=0) for counterop, numberop in [ (Counter.__add__, lambda x, y: max(0, x+y)), (Counter.__sub__, lambda x, y: max(0, x-y)), (Counter.__or__, lambda x, y: max(0,x,y)), (Counter.__and__, lambda x, y: max(0, min(x,y))), ]: result = counterop(p, q) for x in elements: self.assertEqual(numberop(p[x], q[x]), result[x], (counterop, x, p, q)) # verify that results exclude non-positive counts self.assert_(x>0 for x in result.values()) elements = 'abcdef' for i in range(100): # verify that random multisets with no repeats are exactly like sets p = Counter(dict((elem, randrange(0, 2)) for elem in elements)) q = Counter(dict((elem, randrange(0, 2)) for elem in elements)) for counterop, setop in [ (Counter.__sub__, set.__sub__), (Counter.__or__, set.__or__), (Counter.__and__, set.__and__), ]: counter_result = counterop(p, q) set_result = setop(set(p.elements()), set(q.elements())) self.assertEqual(counter_result, dict.fromkeys(set_result, 1)) import doctest, collections def test_main(verbose=None): NamedTupleDocs = doctest.DocTestSuite(module=collections) test_classes = [TestNamedTuple, NamedTupleDocs, TestOneTrickPonyABCs, TestCollectionABCs, TestCounter] test_support.run_unittest(*test_classes) test_support.run_doctest(collections, verbose) if __name__ == "__main__": test_main(verbose=True)