import unittest from test import test_support from random import random from math import atan2, isnan, copysign INF = float("inf") NAN = float("nan") # These tests ensure that complex math does the right thing class ComplexTest(unittest.TestCase): def assertAlmostEqual(self, a, b): if isinstance(a, complex): if isinstance(b, complex): unittest.TestCase.assertAlmostEqual(self, a.real, b.real) unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag) else: unittest.TestCase.assertAlmostEqual(self, a.real, b) unittest.TestCase.assertAlmostEqual(self, a.imag, 0.) else: if isinstance(b, complex): unittest.TestCase.assertAlmostEqual(self, a, b.real) unittest.TestCase.assertAlmostEqual(self, 0., b.imag) else: unittest.TestCase.assertAlmostEqual(self, a, b) def assertCloseAbs(self, x, y, eps=1e-9): """Return true iff floats x and y "are close\"""" # put the one with larger magnitude second if abs(x) > abs(y): x, y = y, x if y == 0: return abs(x) < eps if x == 0: return abs(y) < eps # check that relative difference < eps self.assertTrue(abs((x-y)/y) < eps) def assertFloatsAreIdentical(self, x, y): """assert that floats x and y are identical, in the sense that: (1) both x and y are nans, or (2) both x and y are infinities, with the same sign, or (3) both x and y are zeros, with the same sign, or (4) x and y are both finite and nonzero, and x == y """ msg = 'floats {!r} and {!r} are not identical' if isnan(x) or isnan(y): if isnan(x) and isnan(y): return elif x == y: if x != 0.0: return # both zero; check that signs match elif copysign(1.0, x) == copysign(1.0, y): return else: msg += ': zeros have different signs' self.fail(msg.format(x, y)) def assertClose(self, x, y, eps=1e-9): """Return true iff complexes x and y "are close\"""" self.assertCloseAbs(x.real, y.real, eps) self.assertCloseAbs(x.imag, y.imag, eps) def check_div(self, x, y): """Compute complex z=x*y, and check that z/x==y and z/y==x.""" z = x * y if x != 0: q = z / x self.assertClose(q, y) q = z.__div__(x) self.assertClose(q, y) q = z.__truediv__(x) self.assertClose(q, y) if y != 0: q = z / y self.assertClose(q, x) q = z.__div__(y) self.assertClose(q, x) q = z.__truediv__(y) self.assertClose(q, x) def test_div(self): simple_real = [float(i) for i in xrange(-5, 6)] simple_complex = [complex(x, y) for x in simple_real for y in simple_real] for x in simple_complex: for y in simple_complex: self.check_div(x, y) # A naive complex division algorithm (such as in 2.0) is very prone to # nonsense errors for these (overflows and underflows). self.check_div(complex(1e200, 1e200), 1+0j) self.check_div(complex(1e-200, 1e-200), 1+0j) # Just for fun. for i in xrange(100): self.check_div(complex(random(), random()), complex(random(), random())) self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j) # FIXME: The following currently crashes on Alpha # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j) def test_truediv(self): self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j) self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j) def test_floordiv(self): self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2) self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j) def test_coerce(self): self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000) def test_richcompare(self): self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000) self.assertEqual(complex.__lt__(1+1j, None), NotImplemented) self.assertIs(complex.__eq__(1+1j, 1+1j), True) self.assertIs(complex.__eq__(1+1j, 2+2j), False) self.assertIs(complex.__ne__(1+1j, 1+1j), False) self.assertIs(complex.__ne__(1+1j, 2+2j), True) self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j) self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j) def test_mod(self): self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j) a = 3.33+4.43j try: a % 0 except ZeroDivisionError: pass else: self.fail("modulo parama can't be 0") def test_divmod(self): self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j) def test_pow(self): self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0) self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0) self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j) self.assertAlmostEqual(pow(1j, -1), 1/1j) self.assertAlmostEqual(pow(1j, 200), 1) self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j) a = 3.33+4.43j self.assertEqual(a ** 0j, 1) self.assertEqual(a ** 0.+0.j, 1) self.assertEqual(3j ** 0j, 1) self.assertEqual(3j ** 0, 1) try: 0j ** a except ZeroDivisionError: pass else: self.fail("should fail 0.0 to negative or complex power") try: 0j ** (3-2j) except ZeroDivisionError: pass else: self.fail("should fail 0.0 to negative or complex power") # The following is used to exercise certain code paths self.assertEqual(a ** 105, a ** 105) self.assertEqual(a ** -105, a ** -105) self.assertEqual(a ** -30, a ** -30) self.assertEqual(0.0j ** 0, 1) b = 5.1+2.3j self.assertRaises(ValueError, pow, a, b, 0) def test_boolcontext(self): for i in xrange(100): self.assertTrue(complex(random() + 1e-6, random() + 1e-6)) self.assertTrue(not complex(0.0, 0.0)) def test_conjugate(self): self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j) def test_constructor(self): class OS: def __init__(self, value): self.value = value def __complex__(self): return self.value class NS(object): def __init__(self, value): self.value = value def __complex__(self): return self.value self.assertEqual(complex(OS(1+10j)), 1+10j) self.assertEqual(complex(NS(1+10j)), 1+10j) self.assertRaises(TypeError, complex, OS(None)) self.assertRaises(TypeError, complex, NS(None)) self.assertAlmostEqual(complex("1+10j"), 1+10j) self.assertAlmostEqual(complex(10), 10+0j) self.assertAlmostEqual(complex(10.0), 10+0j) self.assertAlmostEqual(complex(10L), 10+0j) self.assertAlmostEqual(complex(10+0j), 10+0j) self.assertAlmostEqual(complex(1,10), 1+10j) self.assertAlmostEqual(complex(1,10L), 1+10j) self.assertAlmostEqual(complex(1,10.0), 1+10j) self.assertAlmostEqual(complex(1L,10), 1+10j) self.assertAlmostEqual(complex(1L,10L), 1+10j) self.assertAlmostEqual(complex(1L,10.0), 1+10j) self.assertAlmostEqual(complex(1.0,10), 1+10j) self.assertAlmostEqual(complex(1.0,10L), 1+10j) self.assertAlmostEqual(complex(1.0,10.0), 1+10j) self.assertAlmostEqual(complex(3.14+0j), 3.14+0j) self.assertAlmostEqual(complex(3.14), 3.14+0j) self.assertAlmostEqual(complex(314), 314.0+0j) self.assertAlmostEqual(complex(314L), 314.0+0j) self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j) self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j) self.assertAlmostEqual(complex(314, 0), 314.0+0j) self.assertAlmostEqual(complex(314L, 0L), 314.0+0j) self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j) self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j) self.assertAlmostEqual(complex(0j, 3.14), 3.14j) self.assertAlmostEqual(complex(0.0, 3.14), 3.14j) self.assertAlmostEqual(complex("1"), 1+0j) self.assertAlmostEqual(complex("1j"), 1j) self.assertAlmostEqual(complex(), 0) self.assertAlmostEqual(complex("-1"), -1) self.assertAlmostEqual(complex("+1"), +1) self.assertAlmostEqual(complex("(1+2j)"), 1+2j) self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j) self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j) self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j) self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j) self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j) self.assertAlmostEqual(complex("J"), 1j) self.assertAlmostEqual(complex("( j )"), 1j) self.assertAlmostEqual(complex("+J"), 1j) self.assertAlmostEqual(complex("( -j)"), -1j) self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j) self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j) self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j) class complex2(complex): pass self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j) self.assertAlmostEqual(complex(real=17, imag=23), 17+23j) self.assertAlmostEqual(complex(real=17+23j), 17+23j) self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j) self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j) # check that the sign of a zero in the real or imaginary part # is preserved when constructing from two floats. (These checks # are harmless on systems without support for signed zeros.) def split_zeros(x): """Function that produces different results for 0. and -0.""" return atan2(x, -1.) self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.)) self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.)) self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.)) self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.)) c = 3.14 + 1j self.assertTrue(complex(c) is c) del c self.assertRaises(TypeError, complex, "1", "1") self.assertRaises(TypeError, complex, 1, "1") if test_support.have_unicode: self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j) # SF bug 543840: complex(string) accepts strings with \0 # Fixed in 2.3. self.assertRaises(ValueError, complex, '1+1j\0j') self.assertRaises(TypeError, int, 5+3j) self.assertRaises(TypeError, long, 5+3j) self.assertRaises(TypeError, float, 5+3j) self.assertRaises(ValueError, complex, "") self.assertRaises(TypeError, complex, None) self.assertRaises(ValueError, complex, "\0") self.assertRaises(ValueError, complex, "3\09") self.assertRaises(TypeError, complex, "1", "2") self.assertRaises(TypeError, complex, "1", 42) self.assertRaises(TypeError, complex, 1, "2") self.assertRaises(ValueError, complex, "1+") self.assertRaises(ValueError, complex, "1+1j+1j") self.assertRaises(ValueError, complex, "--") self.assertRaises(ValueError, complex, "(1+2j") self.assertRaises(ValueError, complex, "1+2j)") self.assertRaises(ValueError, complex, "1+(2j)") self.assertRaises(ValueError, complex, "(1+2j)123") if test_support.have_unicode: self.assertRaises(ValueError, complex, unicode("x")) self.assertRaises(ValueError, complex, "1j+2") self.assertRaises(ValueError, complex, "1e1ej") self.assertRaises(ValueError, complex, "1e++1ej") self.assertRaises(ValueError, complex, ")1+2j(") # the following three are accepted by Python 2.6 self.assertRaises(ValueError, complex, "1..1j") self.assertRaises(ValueError, complex, "1.11.1j") self.assertRaises(ValueError, complex, "1e1.1j") if test_support.have_unicode: # check that complex accepts long unicode strings self.assertEqual(type(complex(unicode("1"*500))), complex) class EvilExc(Exception): pass class evilcomplex: def __complex__(self): raise EvilExc self.assertRaises(EvilExc, complex, evilcomplex()) class float2: def __init__(self, value): self.value = value def __float__(self): return self.value self.assertAlmostEqual(complex(float2(42.)), 42) self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j) self.assertRaises(TypeError, complex, float2(None)) class complex0(complex): """Test usage of __complex__() when inheriting from 'complex'""" def __complex__(self): return 42j class complex1(complex): """Test usage of __complex__() with a __new__() method""" def __new__(self, value=0j): return complex.__new__(self, 2*value) def __complex__(self): return self class complex2(complex): """Make sure that __complex__() calls fail if anything other than a complex is returned""" def __complex__(self): return None self.assertAlmostEqual(complex(complex0(1j)), 42j) self.assertAlmostEqual(complex(complex1(1j)), 2j) self.assertRaises(TypeError, complex, complex2(1j)) def test_subclass(self): class xcomplex(complex): def __add__(self,other): return xcomplex(complex(self) + other) __radd__ = __add__ def __sub__(self,other): return xcomplex(complex(self) + other) __rsub__ = __sub__ def __mul__(self,other): return xcomplex(complex(self) * other) __rmul__ = __mul__ def __div__(self,other): return xcomplex(complex(self) / other) def __rdiv__(self,other): return xcomplex(other / complex(self)) __truediv__ = __div__ __rtruediv__ = __rdiv__ def __floordiv__(self,other): return xcomplex(complex(self) // other) def __rfloordiv__(self,other): return xcomplex(other // complex(self)) def __pow__(self,other): return xcomplex(complex(self) ** other) def __rpow__(self,other): return xcomplex(other ** complex(self) ) def __mod__(self,other): return xcomplex(complex(self) % other) def __rmod__(self,other): return xcomplex(other % complex(self)) infix_binops = ('+', '-', '*', '**', '%', '//', '/') xcomplex_values = (xcomplex(1), xcomplex(123.0), xcomplex(-10+2j), xcomplex(3+187j), xcomplex(3-78j)) test_values = (1, 123.0, 10-19j, xcomplex(1+2j), xcomplex(1+87j), xcomplex(10+90j)) for op in infix_binops: for x in xcomplex_values: for y in test_values: a = 'x %s y' % op b = 'y %s x' % op self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex) def test_hash(self): for x in xrange(-30, 30): self.assertEqual(hash(x), hash(complex(x, 0))) x /= 3.0 # now check against floating point self.assertEqual(hash(x), hash(complex(x, 0.))) def test_abs(self): nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)] for num in nums: self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num)) def test_repr(self): self.assertEqual(repr(1+6j), '(1+6j)') self.assertEqual(repr(1-6j), '(1-6j)') self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)') self.assertEqual(1-6j,complex(repr(1-6j))) self.assertEqual(1+6j,complex(repr(1+6j))) self.assertEqual(-6j,complex(repr(-6j))) self.assertEqual(6j,complex(repr(6j))) self.assertEqual(repr(complex(1., INF)), "(1+infj)") self.assertEqual(repr(complex(1., -INF)), "(1-infj)") self.assertEqual(repr(complex(INF, 1)), "(inf+1j)") self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)") self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)") self.assertEqual(repr(complex(1, NAN)), "(1+nanj)") self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)") self.assertEqual(repr(complex(0, INF)), "infj") self.assertEqual(repr(complex(0, -INF)), "-infj") self.assertEqual(repr(complex(0, NAN)), "nanj") def test_neg(self): self.assertEqual(-(1+6j), -1-6j) def test_file(self): a = 3.33+4.43j b = 5.1+2.3j fo = None try: fo = open(test_support.TESTFN, "wb") print >>fo, a, b fo.close() fo = open(test_support.TESTFN, "rb") self.assertEqual(fo.read(), "%s %s\n" % (a, b)) finally: if (fo is not None) and (not fo.closed): fo.close() test_support.unlink(test_support.TESTFN) def test_getnewargs(self): self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0)) self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0)) self.assertEqual((2j).__getnewargs__(), (0.0, 2.0)) self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0)) self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF)) self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0)) if float.__getformat__("double").startswith("IEEE"): def test_plus_minus_0j(self): # test that -0j and 0j literals are not identified z1, z2 = 0j, -0j self.assertEquals(atan2(z1.imag, -1.), atan2(0., -1.)) self.assertEquals(atan2(z2.imag, -1.), atan2(-0., -1.)) @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") def test_overflow(self): self.assertEqual(complex("1e500"), complex(INF, 0.0)) self.assertEqual(complex("-1e500j"), complex(0.0, -INF)) self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF)) @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") def test_repr_roundtrip(self): vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN] vals += [-v for v in vals] # complex(repr(z)) should recover z exactly, even for complex # numbers involving an infinity, nan, or negative zero for x in vals: for y in vals: z = complex(x, y) roundtrip = complex(repr(z)) self.assertFloatsAreIdentical(z.real, roundtrip.real) self.assertFloatsAreIdentical(z.imag, roundtrip.imag) # if we predefine some constants, then eval(repr(z)) should # also work, except that it might change the sign of zeros inf, nan = float('inf'), float('nan') infj, nanj = complex(0.0, inf), complex(0.0, nan) for x in vals: for y in vals: z = complex(x, y) roundtrip = eval(repr(z)) # adding 0.0 has no effect beside changing -0.0 to 0.0 self.assertFloatsAreIdentical(0.0 + z.real, 0.0 + roundtrip.real) self.assertFloatsAreIdentical(0.0 + z.imag, 0.0 + roundtrip.imag) def test_format(self): # empty format string is same as str() self.assertEqual(format(1+3j, ''), str(1+3j)) self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j)) self.assertEqual(format(3j, ''), str(3j)) self.assertEqual(format(3.2j, ''), str(3.2j)) self.assertEqual(format(3+0j, ''), str(3+0j)) self.assertEqual(format(3.2+0j, ''), str(3.2+0j)) # empty presentation type should still be analogous to str, # even when format string is nonempty (issue #5920). self.assertEqual(format(3.2+0j, '-'), str(3.2+0j)) self.assertEqual(format(3.2+0j, '<'), str(3.2+0j)) z = 4/7. - 100j/7. self.assertEqual(format(z, ''), str(z)) self.assertEqual(format(z, '-'), str(z)) self.assertEqual(format(z, '<'), str(z)) self.assertEqual(format(z, '10'), str(z)) self.assertEqual(format(1+3j, 'g'), '1+3j') self.assertEqual(format(3j, 'g'), '0+3j') self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j') self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j') self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j') self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j') self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j') self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j') self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j') self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j') self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j') self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j') self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j') self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j') self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j') self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j') self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j') self.assertEqual(format(1.5+3j, '<20g'), '1.5+3j ') self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************') self.assertEqual(format(1.5+3j, '>20g'), ' 1.5+3j') self.assertEqual(format(1.5+3j, '^20g'), ' 1.5+3j ') self.assertEqual(format(1.5+3j, '<20'), '(1.5+3j) ') self.assertEqual(format(1.5+3j, '>20'), ' (1.5+3j)') self.assertEqual(format(1.5+3j, '^20'), ' (1.5+3j) ') self.assertEqual(format(1.123-3.123j, '^20.2'), ' (1.1-3.1j) ') self.assertEqual(format(1.5+3j, '20.2f'), ' 1.50+3.00j') self.assertEqual(format(1.5+3j, '>20.2f'), ' 1.50+3.00j') self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j ') self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j') self.assertEqual(format(1.5e20+3j, '>40.2f'), ' 150000000000000000000.00+3.00j') self.assertEqual(format(1.5e20+3j, '^40,.2f'), ' 150,000,000,000,000,000,000.00+3.00j ') self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ') self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j') # alternate is invalid self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f') # zero padding is invalid self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f') # '=' alignment is invalid self.assertRaises(ValueError, (1.5+3j).__format__, '=20') # integer presentation types are an error for t in 'bcdoxX': self.assertRaises(ValueError, (1.5+0.5j).__format__, t) # make sure everything works in ''.format() self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*') # issue 3382: 'f' and 'F' with inf's and nan's self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j') self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j') self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j') self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j') self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj') self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj') self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj') self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj') self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj') self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj') self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj') self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj') self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j') self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j') self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj') self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj') def test_main(): with test_support.check_warnings(("complex divmod.., // and % are " "deprecated", DeprecationWarning)): test_support.run_unittest(ComplexTest) if __name__ == "__main__": test_main()