/* Generic object operations; and implementation of None (NoObject) */ #include "Python.h" #include "sliceobject.h" /* For PyEllipsis_Type */ #ifdef __cplusplus extern "C" { #endif #ifdef Py_REF_DEBUG Py_ssize_t _Py_RefTotal; Py_ssize_t _Py_GetRefTotal(void) { PyObject *o; Py_ssize_t total = _Py_RefTotal; /* ignore the references to the dummy object of the dicts and sets because they are not reliable and not useful (now that the hash table code is well-tested) */ o = _PyDict_Dummy(); if (o != NULL) total -= o->ob_refcnt; o = _PySet_Dummy(); if (o != NULL) total -= o->ob_refcnt; return total; } #endif /* Py_REF_DEBUG */ int Py_DivisionWarningFlag; /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. These are used by the individual routines for object creation. Do not call them otherwise, they do not initialize the object! */ #ifdef Py_TRACE_REFS /* Head of circular doubly-linked list of all objects. These are linked * together via the _ob_prev and _ob_next members of a PyObject, which * exist only in a Py_TRACE_REFS build. */ static PyObject refchain = {&refchain, &refchain}; /* Insert op at the front of the list of all objects. If force is true, * op is added even if _ob_prev and _ob_next are non-NULL already. If * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. * force should be true if and only if op points to freshly allocated, * uninitialized memory, or you've unlinked op from the list and are * relinking it into the front. * Note that objects are normally added to the list via _Py_NewReference, * which is called by PyObject_Init. Not all objects are initialized that * way, though; exceptions include statically allocated type objects, and * statically allocated singletons (like Py_True and Py_None). */ void _Py_AddToAllObjects(PyObject *op, int force) { #ifdef Py_DEBUG if (!force) { /* If it's initialized memory, op must be in or out of * the list unambiguously. */ assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); } #endif if (force || op->_ob_prev == NULL) { op->_ob_next = refchain._ob_next; op->_ob_prev = &refchain; refchain._ob_next->_ob_prev = op; refchain._ob_next = op; } } #endif /* Py_TRACE_REFS */ #ifdef COUNT_ALLOCS static PyTypeObject *type_list; /* All types are added to type_list, at least when they get one object created. That makes them immortal, which unfortunately contributes to garbage itself. If unlist_types_without_objects is set, they will be removed from the type_list once the last object is deallocated. */ int unlist_types_without_objects; extern int tuple_zero_allocs, fast_tuple_allocs; extern int quick_int_allocs, quick_neg_int_allocs; extern int null_strings, one_strings; void dump_counts(FILE* f) { PyTypeObject *tp; for (tp = type_list; tp; tp = tp->tp_next) fprintf(f, "%s alloc'd: %d, freed: %d, max in use: %d\n", tp->tp_name, tp->tp_allocs, tp->tp_frees, tp->tp_maxalloc); fprintf(f, "fast tuple allocs: %d, empty: %d\n", fast_tuple_allocs, tuple_zero_allocs); fprintf(f, "fast int allocs: pos: %d, neg: %d\n", quick_int_allocs, quick_neg_int_allocs); fprintf(f, "null strings: %d, 1-strings: %d\n", null_strings, one_strings); } PyObject * get_counts(void) { PyTypeObject *tp; PyObject *result; PyObject *v; result = PyList_New(0); if (result == NULL) return NULL; for (tp = type_list; tp; tp = tp->tp_next) { v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs, tp->tp_frees, tp->tp_maxalloc); if (v == NULL) { Py_DECREF(result); return NULL; } if (PyList_Append(result, v) < 0) { Py_DECREF(v); Py_DECREF(result); return NULL; } Py_DECREF(v); } return result; } void inc_count(PyTypeObject *tp) { if (tp->tp_next == NULL && tp->tp_prev == NULL) { /* first time; insert in linked list */ if (tp->tp_next != NULL) /* sanity check */ Py_FatalError("XXX inc_count sanity check"); if (type_list) type_list->tp_prev = tp; tp->tp_next = type_list; /* Note that as of Python 2.2, heap-allocated type objects * can go away, but this code requires that they stay alive * until program exit. That's why we're careful with * refcounts here. type_list gets a new reference to tp, * while ownership of the reference type_list used to hold * (if any) was transferred to tp->tp_next in the line above. * tp is thus effectively immortal after this. */ Py_INCREF(tp); type_list = tp; #ifdef Py_TRACE_REFS /* Also insert in the doubly-linked list of all objects, * if not already there. */ _Py_AddToAllObjects((PyObject *)tp, 0); #endif } tp->tp_allocs++; if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; } void dec_count(PyTypeObject *tp) { tp->tp_frees++; if (unlist_types_without_objects && tp->tp_allocs == tp->tp_frees) { /* unlink the type from type_list */ if (tp->tp_prev) tp->tp_prev->tp_next = tp->tp_next; else type_list = tp->tp_next; if (tp->tp_next) tp->tp_next->tp_prev = tp->tp_prev; tp->tp_next = tp->tp_prev = NULL; Py_DECREF(tp); } } #endif #ifdef Py_REF_DEBUG /* Log a fatal error; doesn't return. */ void _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) { char buf[300]; PyOS_snprintf(buf, sizeof(buf), "%s:%i object at %p has negative ref count " "%" PY_FORMAT_SIZE_T "d", fname, lineno, op, op->ob_refcnt); Py_FatalError(buf); } #endif /* Py_REF_DEBUG */ void Py_IncRef(PyObject *o) { Py_XINCREF(o); } void Py_DecRef(PyObject *o) { Py_XDECREF(o); } PyObject * PyObject_Init(PyObject *op, PyTypeObject *tp) { if (op == NULL) return PyErr_NoMemory(); /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ op->ob_type = tp; _Py_NewReference(op); return op; } PyVarObject * PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size) { if (op == NULL) return (PyVarObject *) PyErr_NoMemory(); /* Any changes should be reflected in PyObject_INIT_VAR */ op->ob_size = size; op->ob_type = tp; _Py_NewReference((PyObject *)op); return op; } PyObject * _PyObject_New(PyTypeObject *tp) { PyObject *op; op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); if (op == NULL) return PyErr_NoMemory(); return PyObject_INIT(op, tp); } PyVarObject * _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems) { PyVarObject *op; const size_t size = _PyObject_VAR_SIZE(tp, nitems); op = (PyVarObject *) PyObject_MALLOC(size); if (op == NULL) return (PyVarObject *)PyErr_NoMemory(); return PyObject_INIT_VAR(op, tp, nitems); } /* Implementation of PyObject_Print with recursion checking */ static int internal_print(PyObject *op, FILE *fp, int flags, int nesting) { int ret = 0; if (nesting > 10) { PyErr_SetString(PyExc_RuntimeError, "print recursion"); return -1; } if (PyErr_CheckSignals()) return -1; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "stack overflow"); return -1; } #endif clearerr(fp); /* Clear any previous error condition */ if (op == NULL) { fprintf(fp, ""); } else { if (op->ob_refcnt <= 0) /* XXX(twouters) cast refcount to long until %zd is universally available */ fprintf(fp, "", (long)op->ob_refcnt, op); else if (op->ob_type->tp_print == NULL) { PyObject *s; if (flags & Py_PRINT_RAW) s = PyObject_Str(op); else s = PyObject_Repr(op); if (s == NULL) ret = -1; else { ret = internal_print(s, fp, Py_PRINT_RAW, nesting+1); } Py_XDECREF(s); } else ret = (*op->ob_type->tp_print)(op, fp, flags); } if (ret == 0) { if (ferror(fp)) { PyErr_SetFromErrno(PyExc_IOError); clearerr(fp); ret = -1; } } return ret; } int PyObject_Print(PyObject *op, FILE *fp, int flags) { return internal_print(op, fp, flags, 0); } /* For debugging convenience. Set a breakpoint here and call it from your DLL */ void _Py_BreakPoint(void) { } /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ void _PyObject_Dump(PyObject* op) { if (op == NULL) fprintf(stderr, "NULL\n"); else { fprintf(stderr, "object : "); (void)PyObject_Print(op, stderr, 0); /* XXX(twouters) cast refcount to long until %zd is universally available */ fprintf(stderr, "\n" "type : %s\n" "refcount: %ld\n" "address : %p\n", op->ob_type==NULL ? "NULL" : op->ob_type->tp_name, (long)op->ob_refcnt, op); } } PyObject * PyObject_Repr(PyObject *v) { if (PyErr_CheckSignals()) return NULL; #ifdef USE_STACKCHECK if (PyOS_CheckStack()) { PyErr_SetString(PyExc_MemoryError, "stack overflow"); return NULL; } #endif if (v == NULL) return PyString_FromString(""); else if (v->ob_type->tp_repr == NULL) return PyString_FromFormat("<%s object at %p>", v->ob_type->tp_name, v); else { PyObject *res; res = (*v->ob_type->tp_repr)(v); if (res == NULL) return NULL; #ifdef Py_USING_UNICODE if (PyUnicode_Check(res)) { PyObject* str; str = PyUnicode_AsEncodedString(res, NULL, NULL); Py_DECREF(res); if (str) res = str; else return NULL; } #endif if (!PyString_Check(res)) { PyErr_Format(PyExc_TypeError, "__repr__ returned non-string (type %.200s)", res->ob_type->tp_name); Py_DECREF(res); return NULL; } return res; } } PyObject * _PyObject_Str(PyObject *v) { PyObject *res; int type_ok; if (v == NULL) return PyString_FromString(""); if (PyString_CheckExact(v)) { Py_INCREF(v); return v; } #ifdef Py_USING_UNICODE if (PyUnicode_CheckExact(v)) { Py_INCREF(v); return v; } #endif if (v->ob_type->tp_str == NULL) return PyObject_Repr(v); res = (*v->ob_type->tp_str)(v); if (res == NULL) return NULL; type_ok = PyString_Check(res); #ifdef Py_USING_UNICODE type_ok = type_ok || PyUnicode_Check(res); #endif if (!type_ok) { PyErr_Format(PyExc_TypeError, "__str__ returned non-string (type %.200s)", res->ob_type->tp_name); Py_DECREF(res); return NULL; } return res; } PyObject * PyObject_Str(PyObject *v) { PyObject *res = _PyObject_Str(v); if (res == NULL) return NULL; #ifdef Py_USING_UNICODE if (PyUnicode_Check(res)) { PyObject* str; str = PyUnicode_AsEncodedString(res, NULL, NULL); Py_DECREF(res); if (str) res = str; else return NULL; } #endif assert(PyString_Check(res)); return res; } #ifdef Py_USING_UNICODE PyObject * PyObject_Unicode(PyObject *v) { PyObject *res; PyObject *func; PyObject *str; static PyObject *unicodestr; if (v == NULL) { res = PyString_FromString(""); if (res == NULL) return NULL; str = PyUnicode_FromEncodedObject(res, NULL, "strict"); Py_DECREF(res); return str; } else if (PyUnicode_CheckExact(v)) { Py_INCREF(v); return v; } /* XXX As soon as we have a tp_unicode slot, we should check this before trying the __unicode__ method. */ if (unicodestr == NULL) { unicodestr= PyString_InternFromString("__unicode__"); if (unicodestr == NULL) return NULL; } func = PyObject_GetAttr(v, unicodestr); if (func != NULL) { res = PyEval_CallObject(func, (PyObject *)NULL); Py_DECREF(func); } else { PyErr_Clear(); if (PyUnicode_Check(v)) { /* For a Unicode subtype that's didn't overwrite __unicode__, return a true Unicode object with the same data. */ return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v), PyUnicode_GET_SIZE(v)); } if (PyString_CheckExact(v)) { Py_INCREF(v); res = v; } else { if (v->ob_type->tp_str != NULL) res = (*v->ob_type->tp_str)(v); else res = PyObject_Repr(v); } } if (res == NULL) return NULL; if (!PyUnicode_Check(res)) { str = PyUnicode_FromEncodedObject(res, NULL, "strict"); Py_DECREF(res); res = str; } return res; } #endif /* The new comparison philosophy is: we completely separate three-way comparison from rich comparison. That is, PyObject_Compare() and PyObject_Cmp() *just* use the tp_compare slot. And PyObject_RichCompare() and PyObject_RichCompareBool() *just* use the tp_richcompare slot. See (*) below for practical amendments. IOW, only cmp() uses tp_compare; the comparison operators (==, !=, <=, <, >=, >) only use tp_richcompare. Note that list.sort() only uses <. (And yes, eventually we'll rip out cmp() and tp_compare.) The calling conventions are different: tp_compare only gets called with two objects of the appropriate type; tp_richcompare gets called with a first argument of the appropriate type and a second object of an arbitrary type. We never do any kind of coercion. The return conventions are also different. The tp_compare slot should return a C int, as follows: -1 if a < b or if an exception occurred 0 if a == b +1 if a > b No other return values are allowed. PyObject_Compare() has the same calling convention. The tp_richcompare slot should return an object, as follows: NULL if an exception occurred NotImplemented if the requested comparison is not implemented any other false value if the requested comparison is false any other true value if the requested comparison is true The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get NotImplemented. (*) Practical amendments: - If rich comparison returns NotImplemented, == and != are decided by comparing the object pointer (i.e. falling back to the base object implementation). - If three-way comparison is not implemented, it falls back on rich comparison (but not the other way around!). */ /* Forward */ static PyObject *do_richcompare(PyObject *v, PyObject *w, int op); /* Perform a three-way comparison, raising TypeError if three-way comparison is not supported. */ static int do_compare(PyObject *v, PyObject *w) { cmpfunc f; int ok; if (v->ob_type == w->ob_type && (f = v->ob_type->tp_compare) != NULL) { return (*f)(v, w); } /* Now try three-way compare before giving up. This is intentionally elaborate; if you have a it will raise TypeError if it detects two objects that aren't ordered with respect to each other. */ ok = PyObject_RichCompareBool(v, w, Py_LT); if (ok < 0) return -1; /* Error */ if (ok) return -1; /* Less than */ ok = PyObject_RichCompareBool(v, w, Py_GT); if (ok < 0) return -1; /* Error */ if (ok) return 1; /* Greater than */ ok = PyObject_RichCompareBool(v, w, Py_EQ); if (ok < 0) return -1; /* Error */ if (ok) return 0; /* Equal */ /* Give up */ PyErr_Format(PyExc_TypeError, "unorderable types: '%.100s' != '%.100s'", v->ob_type->tp_name, w->ob_type->tp_name); return -1; } /* Perform a three-way comparison. This wraps do_compare() with a check for NULL arguments and a recursion check. */ int PyObject_Compare(PyObject *v, PyObject *w) { int res; if (v == NULL || w == NULL) { if (!PyErr_Occurred()) PyErr_BadInternalCall(); return -1; } if (Py_EnterRecursiveCall(" in cmp")) return -1; res = do_compare(v, w); Py_LeaveRecursiveCall(); return res < 0 ? -1 : res; } /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */ int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="}; /* Perform a rich comparison, raising TypeError when the requested comparison operator is not supported. */ static PyObject * do_richcompare(PyObject *v, PyObject *w, int op) { richcmpfunc f; PyObject *res; if (v->ob_type != w->ob_type && PyType_IsSubtype(w->ob_type, v->ob_type) && (f = w->ob_type->tp_richcompare) != NULL) { res = (*f)(w, v, _Py_SwappedOp[op]); if (res != Py_NotImplemented) return res; Py_DECREF(res); } if ((f = v->ob_type->tp_richcompare) != NULL) { res = (*f)(v, w, op); if (res != Py_NotImplemented) return res; Py_DECREF(res); } if ((f = w->ob_type->tp_richcompare) != NULL) { res = (*f)(w, v, _Py_SwappedOp[op]); if (res != Py_NotImplemented) return res; Py_DECREF(res); } /* If neither object implements it, provide a sensible default for == and !=, but raise an exception for ordering. */ switch (op) { case Py_EQ: res = (v == w) ? Py_True : Py_False; break; case Py_NE: res = (v != w) ? Py_True : Py_False; break; default: /* XXX Special-case None so it doesn't show as NoneType() */ PyErr_Format(PyExc_TypeError, "unorderable types: %.100s() %s %.100s()", v->ob_type->tp_name, opstrings[op], w->ob_type->tp_name); return NULL; } Py_INCREF(res); return res; } /* Perform a rich comparison with object result. This wraps do_richcompare() with a check for NULL arguments and a recursion check. */ PyObject * PyObject_RichCompare(PyObject *v, PyObject *w, int op) { PyObject *res; assert(Py_LT <= op && op <= Py_GE); if (v == NULL || w == NULL) { if (!PyErr_Occurred()) PyErr_BadInternalCall(); return NULL; } if (Py_EnterRecursiveCall(" in cmp")) return NULL; res = do_richcompare(v, w, op); Py_LeaveRecursiveCall(); return res; } /* Perform a rich comparison with integer result. This wraps PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */ int PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) { PyObject *res; int ok; res = PyObject_RichCompare(v, w, op); if (res == NULL) return -1; if (PyBool_Check(res)) ok = (res == Py_True); else ok = PyObject_IsTrue(res); Py_DECREF(res); return ok; } /* Turn the result of a three-way comparison into the result expected by a rich comparison. */ PyObject * Py_CmpToRich(int op, int cmp) { PyObject *res; int ok; if (PyErr_Occurred()) return NULL; switch (op) { case Py_LT: ok = cmp < 0; break; case Py_LE: ok = cmp <= 0; break; case Py_EQ: ok = cmp == 0; break; case Py_NE: ok = cmp != 0; break; case Py_GT: ok = cmp > 0; break; case Py_GE: ok = cmp >= 0; break; default: PyErr_BadArgument(); return NULL; } res = ok ? Py_True : Py_False; Py_INCREF(res); return res; } /* Set of hash utility functions to help maintaining the invariant that if a==b then hash(a)==hash(b) All the utility functions (_Py_Hash*()) return "-1" to signify an error. */ long _Py_HashDouble(double v) { double intpart, fractpart; int expo; long hipart; long x; /* the final hash value */ /* This is designed so that Python numbers of different types * that compare equal hash to the same value; otherwise comparisons * of mapping keys will turn out weird. */ fractpart = modf(v, &intpart); if (fractpart == 0.0) { /* This must return the same hash as an equal int or long. */ if (intpart > LONG_MAX || -intpart > LONG_MAX) { /* Convert to long and use its hash. */ PyObject *plong; /* converted to Python long */ if (Py_IS_INFINITY(intpart)) /* can't convert to long int -- arbitrary */ v = v < 0 ? -271828.0 : 314159.0; plong = PyLong_FromDouble(v); if (plong == NULL) return -1; x = PyObject_Hash(plong); Py_DECREF(plong); return x; } /* Fits in a C long == a Python int, so is its own hash. */ x = (long)intpart; if (x == -1) x = -2; return x; } /* The fractional part is non-zero, so we don't have to worry about * making this match the hash of some other type. * Use frexp to get at the bits in the double. * Since the VAX D double format has 56 mantissa bits, which is the * most of any double format in use, each of these parts may have as * many as (but no more than) 56 significant bits. * So, assuming sizeof(long) >= 4, each part can be broken into two * longs; frexp and multiplication are used to do that. * Also, since the Cray double format has 15 exponent bits, which is * the most of any double format in use, shifting the exponent field * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). */ v = frexp(v, &expo); v *= 2147483648.0; /* 2**31 */ hipart = (long)v; /* take the top 32 bits */ v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ x = hipart + (long)v + (expo << 15); if (x == -1) x = -2; return x; } long _Py_HashPointer(void *p) { #if SIZEOF_LONG >= SIZEOF_VOID_P return (long)p; #else /* convert to a Python long and hash that */ PyObject* longobj; long x; if ((longobj = PyLong_FromVoidPtr(p)) == NULL) { x = -1; goto finally; } x = PyObject_Hash(longobj); finally: Py_XDECREF(longobj); return x; #endif } long PyObject_Hash(PyObject *v) { PyTypeObject *tp = v->ob_type; if (tp->tp_hash != NULL) return (*tp->tp_hash)(v); /* Otherwise, the object can't be hashed */ PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'", v->ob_type->tp_name); return -1; } PyObject * PyObject_GetAttrString(PyObject *v, const char *name) { PyObject *w, *res; if (v->ob_type->tp_getattr != NULL) return (*v->ob_type->tp_getattr)(v, (char*)name); w = PyString_InternFromString(name); if (w == NULL) return NULL; res = PyObject_GetAttr(v, w); Py_XDECREF(w); return res; } int PyObject_HasAttrString(PyObject *v, const char *name) { PyObject *res = PyObject_GetAttrString(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) { PyObject *s; int res; if (v->ob_type->tp_setattr != NULL) return (*v->ob_type->tp_setattr)(v, (char*)name, w); s = PyString_InternFromString(name); if (s == NULL) return -1; res = PyObject_SetAttr(v, s, w); Py_XDECREF(s); return res; } PyObject * PyObject_GetAttr(PyObject *v, PyObject *name) { PyTypeObject *tp = v->ob_type; if (!PyString_Check(name)) { #ifdef Py_USING_UNICODE /* The Unicode to string conversion is done here because the existing tp_getattro slots expect a string object as name and we wouldn't want to break those. */ if (PyUnicode_Check(name)) { name = _PyUnicode_AsDefaultEncodedString(name, NULL); if (name == NULL) return NULL; } else #endif { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return NULL; } } if (tp->tp_getattro != NULL) return (*tp->tp_getattro)(v, name); if (tp->tp_getattr != NULL) return (*tp->tp_getattr)(v, PyString_AS_STRING(name)); PyErr_Format(PyExc_AttributeError, "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(name)); return NULL; } int PyObject_HasAttr(PyObject *v, PyObject *name) { PyObject *res = PyObject_GetAttr(v, name); if (res != NULL) { Py_DECREF(res); return 1; } PyErr_Clear(); return 0; } int PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) { PyTypeObject *tp = v->ob_type; int err; if (!PyString_Check(name)){ #ifdef Py_USING_UNICODE /* The Unicode to string conversion is done here because the existing tp_setattro slots expect a string object as name and we wouldn't want to break those. */ if (PyUnicode_Check(name)) { name = PyUnicode_AsEncodedString(name, NULL, NULL); if (name == NULL) return -1; } else #endif { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return -1; } } else Py_INCREF(name); PyString_InternInPlace(&name); if (tp->tp_setattro != NULL) { err = (*tp->tp_setattro)(v, name, value); Py_DECREF(name); return err; } if (tp->tp_setattr != NULL) { err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value); Py_DECREF(name); return err; } Py_DECREF(name); if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) PyErr_Format(PyExc_TypeError, "'%.100s' object has no attributes " "(%s .%.100s)", tp->tp_name, value==NULL ? "del" : "assign to", PyString_AS_STRING(name)); else PyErr_Format(PyExc_TypeError, "'%.100s' object has only read-only attributes " "(%s .%.100s)", tp->tp_name, value==NULL ? "del" : "assign to", PyString_AS_STRING(name)); return -1; } /* Helper to get a pointer to an object's __dict__ slot, if any */ PyObject ** _PyObject_GetDictPtr(PyObject *obj) { Py_ssize_t dictoffset; PyTypeObject *tp = obj->ob_type; dictoffset = tp->tp_dictoffset; if (dictoffset == 0) return NULL; if (dictoffset < 0) { Py_ssize_t tsize; size_t size; tsize = ((PyVarObject *)obj)->ob_size; if (tsize < 0) tsize = -tsize; size = _PyObject_VAR_SIZE(tp, tsize); dictoffset += (long)size; assert(dictoffset > 0); assert(dictoffset % SIZEOF_VOID_P == 0); } return (PyObject **) ((char *)obj + dictoffset); } PyObject * PyObject_SelfIter(PyObject *obj) { Py_INCREF(obj); return obj; } /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ PyObject * PyObject_GenericGetAttr(PyObject *obj, PyObject *name) { PyTypeObject *tp = obj->ob_type; PyObject *descr = NULL; PyObject *res = NULL; descrgetfunc f; Py_ssize_t dictoffset; PyObject **dictptr; if (!PyString_Check(name)){ #ifdef Py_USING_UNICODE /* The Unicode to string conversion is done here because the existing tp_setattro slots expect a string object as name and we wouldn't want to break those. */ if (PyUnicode_Check(name)) { name = PyUnicode_AsEncodedString(name, NULL, NULL); if (name == NULL) return NULL; } else #endif { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return NULL; } } else Py_INCREF(name); if (tp->tp_dict == NULL) { if (PyType_Ready(tp) < 0) goto done; } /* Inline _PyType_Lookup */ { Py_ssize_t i, n; PyObject *mro, *base, *dict; /* Look in tp_dict of types in MRO */ mro = tp->tp_mro; assert(mro != NULL); assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { base = PyTuple_GET_ITEM(mro, i); assert(PyType_Check(base)); dict = ((PyTypeObject *)base)->tp_dict; assert(dict && PyDict_Check(dict)); descr = PyDict_GetItem(dict, name); if (descr != NULL) break; } } Py_XINCREF(descr); f = NULL; if (descr != NULL) { f = descr->ob_type->tp_descr_get; if (f != NULL && PyDescr_IsData(descr)) { res = f(descr, obj, (PyObject *)obj->ob_type); Py_DECREF(descr); goto done; } } /* Inline _PyObject_GetDictPtr */ dictoffset = tp->tp_dictoffset; if (dictoffset != 0) { PyObject *dict; if (dictoffset < 0) { Py_ssize_t tsize; size_t size; tsize = ((PyVarObject *)obj)->ob_size; if (tsize < 0) tsize = -tsize; size = _PyObject_VAR_SIZE(tp, tsize); dictoffset += (long)size; assert(dictoffset > 0); assert(dictoffset % SIZEOF_VOID_P == 0); } dictptr = (PyObject **) ((char *)obj + dictoffset); dict = *dictptr; if (dict != NULL) { res = PyDict_GetItem(dict, name); if (res != NULL) { Py_INCREF(res); Py_XDECREF(descr); goto done; } } } if (f != NULL) { res = f(descr, obj, (PyObject *)obj->ob_type); Py_DECREF(descr); goto done; } if (descr != NULL) { res = descr; /* descr was already increfed above */ goto done; } PyErr_Format(PyExc_AttributeError, "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(name)); done: Py_DECREF(name); return res; } int PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) { PyTypeObject *tp = obj->ob_type; PyObject *descr; descrsetfunc f; PyObject **dictptr; int res = -1; if (!PyString_Check(name)){ #ifdef Py_USING_UNICODE /* The Unicode to string conversion is done here because the existing tp_setattro slots expect a string object as name and we wouldn't want to break those. */ if (PyUnicode_Check(name)) { name = PyUnicode_AsEncodedString(name, NULL, NULL); if (name == NULL) return -1; } else #endif { PyErr_Format(PyExc_TypeError, "attribute name must be string, not '%.200s'", name->ob_type->tp_name); return -1; } } else Py_INCREF(name); if (tp->tp_dict == NULL) { if (PyType_Ready(tp) < 0) goto done; } descr = _PyType_Lookup(tp, name); f = NULL; if (descr != NULL) { f = descr->ob_type->tp_descr_set; if (f != NULL && PyDescr_IsData(descr)) { res = f(descr, obj, value); goto done; } } dictptr = _PyObject_GetDictPtr(obj); if (dictptr != NULL) { PyObject *dict = *dictptr; if (dict == NULL && value != NULL) { dict = PyDict_New(); if (dict == NULL) goto done; *dictptr = dict; } if (dict != NULL) { if (value == NULL) res = PyDict_DelItem(dict, name); else res = PyDict_SetItem(dict, name, value); if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) PyErr_SetObject(PyExc_AttributeError, name); goto done; } } if (f != NULL) { res = f(descr, obj, value); goto done; } if (descr == NULL) { PyErr_Format(PyExc_AttributeError, "'%.100s' object has no attribute '%.200s'", tp->tp_name, PyString_AS_STRING(name)); goto done; } PyErr_Format(PyExc_AttributeError, "'%.50s' object attribute '%.400s' is read-only", tp->tp_name, PyString_AS_STRING(name)); done: Py_DECREF(name); return res; } /* Test a value used as condition, e.g., in a for or if statement. Return -1 if an error occurred */ int PyObject_IsTrue(PyObject *v) { Py_ssize_t res; if (v == Py_True) return 1; if (v == Py_False) return 0; if (v == Py_None) return 0; else if (v->ob_type->tp_as_number != NULL && v->ob_type->tp_as_number->nb_bool != NULL) res = (*v->ob_type->tp_as_number->nb_bool)(v); else if (v->ob_type->tp_as_mapping != NULL && v->ob_type->tp_as_mapping->mp_length != NULL) res = (*v->ob_type->tp_as_mapping->mp_length)(v); else if (v->ob_type->tp_as_sequence != NULL && v->ob_type->tp_as_sequence->sq_length != NULL) res = (*v->ob_type->tp_as_sequence->sq_length)(v); else return 1; /* if it is negative, it should be either -1 or -2 */ return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int); } /* equivalent of 'not v' Return -1 if an error occurred */ int PyObject_Not(PyObject *v) { int res; res = PyObject_IsTrue(v); if (res < 0) return res; return res == 0; } /* Test whether an object can be called */ int PyCallable_Check(PyObject *x) { if (x == NULL) return 0; return x->ob_type->tp_call != NULL; } /* Helper for PyObject_Dir. Merge the __dict__ of aclass into dict, and recursively also all the __dict__s of aclass's base classes. The order of merging isn't defined, as it's expected that only the final set of dict keys is interesting. Return 0 on success, -1 on error. */ static int merge_class_dict(PyObject* dict, PyObject* aclass) { PyObject *classdict; PyObject *bases; assert(PyDict_Check(dict)); assert(aclass); /* Merge in the type's dict (if any). */ classdict = PyObject_GetAttrString(aclass, "__dict__"); if (classdict == NULL) PyErr_Clear(); else { int status = PyDict_Update(dict, classdict); Py_DECREF(classdict); if (status < 0) return -1; } /* Recursively merge in the base types' (if any) dicts. */ bases = PyObject_GetAttrString(aclass, "__bases__"); if (bases == NULL) PyErr_Clear(); else { /* We have no guarantee that bases is a real tuple */ Py_ssize_t i, n; n = PySequence_Size(bases); /* This better be right */ if (n < 0) PyErr_Clear(); else { for (i = 0; i < n; i++) { int status; PyObject *base = PySequence_GetItem(bases, i); if (base == NULL) { Py_DECREF(bases); return -1; } status = merge_class_dict(dict, base); Py_DECREF(base); if (status < 0) { Py_DECREF(bases); return -1; } } } Py_DECREF(bases); } return 0; } /* Helper for PyObject_Dir. If obj has an attr named attrname that's a list, merge its string elements into keys of dict. Return 0 on success, -1 on error. Errors due to not finding the attr, or the attr not being a list, are suppressed. */ static int merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname) { PyObject *list; int result = 0; assert(PyDict_Check(dict)); assert(obj); assert(attrname); list = PyObject_GetAttrString(obj, attrname); if (list == NULL) PyErr_Clear(); else if (PyList_Check(list)) { int i; for (i = 0; i < PyList_GET_SIZE(list); ++i) { PyObject *item = PyList_GET_ITEM(list, i); if (PyString_Check(item)) { result = PyDict_SetItem(dict, item, Py_None); if (result < 0) break; } } } Py_XDECREF(list); return result; } /* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the docstring, which should be kept in synch with this implementation. */ PyObject * PyObject_Dir(PyObject *arg) { /* Set exactly one of these non-NULL before the end. */ PyObject *result = NULL; /* result list */ PyObject *masterdict = NULL; /* result is masterdict.keys() */ /* If NULL arg, return the locals. */ if (arg == NULL) { PyObject *locals = PyEval_GetLocals(); if (locals == NULL) goto error; result = PyMapping_Keys(locals); if (result == NULL) goto error; } /* Elif this is some form of module, we only want its dict. */ else if (PyModule_Check(arg)) { masterdict = PyObject_GetAttrString(arg, "__dict__"); if (masterdict == NULL) goto error; if (!PyDict_Check(masterdict)) { PyErr_SetString(PyExc_TypeError, "module.__dict__ is not a dictionary"); goto error; } } /* Elif some form of type or class, grab its dict and its bases. We deliberately don't suck up its __class__, as methods belonging to the metaclass would probably be more confusing than helpful. */ else if (PyType_Check(arg)) { masterdict = PyDict_New(); if (masterdict == NULL) goto error; if (merge_class_dict(masterdict, arg) < 0) goto error; } /* Else look at its dict, and the attrs reachable from its class. */ else { PyObject *itsclass; /* Create a dict to start with. CAUTION: Not everything responding to __dict__ returns a dict! */ masterdict = PyObject_GetAttrString(arg, "__dict__"); if (masterdict == NULL) { PyErr_Clear(); masterdict = PyDict_New(); } else if (!PyDict_Check(masterdict)) { Py_DECREF(masterdict); masterdict = PyDict_New(); } else { /* The object may have returned a reference to its dict, so copy it to avoid mutating it. */ PyObject *temp = PyDict_Copy(masterdict); Py_DECREF(masterdict); masterdict = temp; } if (masterdict == NULL) goto error; /* Merge in __members__ and __methods__ (if any). XXX Would like this to go away someday; for now, it's XXX needed to get at im_self etc of method objects. */ if (merge_list_attr(masterdict, arg, "__members__") < 0) goto error; if (merge_list_attr(masterdict, arg, "__methods__") < 0) goto error; /* Merge in attrs reachable from its class. CAUTION: Not all objects have a __class__ attr. */ itsclass = PyObject_GetAttrString(arg, "__class__"); if (itsclass == NULL) PyErr_Clear(); else { int status = merge_class_dict(masterdict, itsclass); Py_DECREF(itsclass); if (status < 0) goto error; } } assert((result == NULL) ^ (masterdict == NULL)); if (masterdict != NULL) { /* The result comes from its keys. */ assert(result == NULL); result = PyDict_Keys(masterdict); if (result == NULL) goto error; } assert(result); if (!PyList_Check(result)) { PyErr_Format(PyExc_TypeError, "Expected keys() to be a list, not '%.200s'", result->ob_type->tp_name); goto error; } if (PyList_Sort(result) != 0) goto error; else goto normal_return; error: Py_XDECREF(result); result = NULL; /* fall through */ normal_return: Py_XDECREF(masterdict); return result; } /* NoObject is usable as a non-NULL undefined value, used by the macro None. There is (and should be!) no way to create other objects of this type, so there is exactly one (which is indestructible, by the way). (XXX This type and the type of NotImplemented below should be unified.) */ /* ARGSUSED */ static PyObject * none_repr(PyObject *op) { return PyString_FromString("None"); } /* ARGUSED */ static void none_dealloc(PyObject* ignore) { /* This should never get called, but we also don't want to SEGV if * we accidently decref None out of existance. */ Py_FatalError("deallocating None"); } static PyTypeObject PyNone_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "NoneType", 0, 0, none_dealloc, /*tp_dealloc*/ /*never called*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ none_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ }; PyObject _Py_NoneStruct = { PyObject_HEAD_INIT(&PyNone_Type) }; /* NotImplemented is an object that can be used to signal that an operation is not implemented for the given type combination. */ static PyObject * NotImplemented_repr(PyObject *op) { return PyString_FromString("NotImplemented"); } static PyTypeObject PyNotImplemented_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "NotImplementedType", 0, 0, none_dealloc, /*tp_dealloc*/ /*never called*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ NotImplemented_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ }; PyObject _Py_NotImplementedStruct = { PyObject_HEAD_INIT(&PyNotImplemented_Type) }; void _Py_ReadyTypes(void) { if (PyType_Ready(&PyType_Type) < 0) Py_FatalError("Can't initialize 'type'"); if (PyType_Ready(&_PyWeakref_RefType) < 0) Py_FatalError("Can't initialize 'weakref'"); if (PyType_Ready(&PyBool_Type) < 0) Py_FatalError("Can't initialize 'bool'"); if (PyType_Ready(&PyBytes_Type) < 0) Py_FatalError("Can't initialize 'bytes'"); if (PyType_Ready(&PyString_Type) < 0) Py_FatalError("Can't initialize 'str'"); if (PyType_Ready(&PyList_Type) < 0) Py_FatalError("Can't initialize 'list'"); if (PyType_Ready(&PyNone_Type) < 0) Py_FatalError("Can't initialize type(None)"); if (PyType_Ready(Py_Ellipsis->ob_type) < 0) Py_FatalError("Can't initialize type(Ellipsis)"); if (PyType_Ready(&PyNotImplemented_Type) < 0) Py_FatalError("Can't initialize type(NotImplemented)"); if (PyType_Ready(&PyCode_Type) < 0) Py_FatalError("Can't initialize 'code'"); } #ifdef Py_TRACE_REFS void _Py_NewReference(PyObject *op) { _Py_INC_REFTOTAL; op->ob_refcnt = 1; _Py_AddToAllObjects(op, 1); _Py_INC_TPALLOCS(op); } void _Py_ForgetReference(register PyObject *op) { #ifdef SLOW_UNREF_CHECK register PyObject *p; #endif if (op->ob_refcnt < 0) Py_FatalError("UNREF negative refcnt"); if (op == &refchain || op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) Py_FatalError("UNREF invalid object"); #ifdef SLOW_UNREF_CHECK for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { if (p == op) break; } if (p == &refchain) /* Not found */ Py_FatalError("UNREF unknown object"); #endif op->_ob_next->_ob_prev = op->_ob_prev; op->_ob_prev->_ob_next = op->_ob_next; op->_ob_next = op->_ob_prev = NULL; _Py_INC_TPFREES(op); } void _Py_Dealloc(PyObject *op) { destructor dealloc = op->ob_type->tp_dealloc; _Py_ForgetReference(op); (*dealloc)(op); } /* Print all live objects. Because PyObject_Print is called, the * interpreter must be in a healthy state. */ void _Py_PrintReferences(FILE *fp) { PyObject *op; fprintf(fp, "Remaining objects:\n"); for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt); if (PyObject_Print(op, fp, 0) != 0) PyErr_Clear(); putc('\n', fp); } } /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this * doesn't make any calls to the Python C API, so is always safe to call. */ void _Py_PrintReferenceAddresses(FILE *fp) { PyObject *op; fprintf(fp, "Remaining object addresses:\n"); for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op, op->ob_refcnt, op->ob_type->tp_name); } PyObject * _Py_GetObjects(PyObject *self, PyObject *args) { int i, n; PyObject *t = NULL; PyObject *res, *op; if (!PyArg_ParseTuple(args, "i|O", &n, &t)) return NULL; op = refchain._ob_next; res = PyList_New(0); if (res == NULL) return NULL; for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { while (op == self || op == args || op == res || op == t || (t != NULL && op->ob_type != (PyTypeObject *) t)) { op = op->_ob_next; if (op == &refchain) return res; } if (PyList_Append(res, op) < 0) { Py_DECREF(res); return NULL; } op = op->_ob_next; } return res; } #endif /* Hack to force loading of cobject.o */ PyTypeObject *_Py_cobject_hack = &PyCObject_Type; /* Hack to force loading of abstract.o */ Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size; /* Python's malloc wrappers (see pymem.h) */ void * PyMem_Malloc(size_t nbytes) { return PyMem_MALLOC(nbytes); } void * PyMem_Realloc(void *p, size_t nbytes) { return PyMem_REALLOC(p, nbytes); } void PyMem_Free(void *p) { PyMem_FREE(p); } /* These methods are used to control infinite recursion in repr, str, print, etc. Container objects that may recursively contain themselves, e.g. builtin dictionaries and lists, should used Py_ReprEnter() and Py_ReprLeave() to avoid infinite recursion. Py_ReprEnter() returns 0 the first time it is called for a particular object and 1 every time thereafter. It returns -1 if an exception occurred. Py_ReprLeave() has no return value. See dictobject.c and listobject.c for examples of use. */ #define KEY "Py_Repr" int Py_ReprEnter(PyObject *obj) { PyObject *dict; PyObject *list; Py_ssize_t i; dict = PyThreadState_GetDict(); if (dict == NULL) return 0; list = PyDict_GetItemString(dict, KEY); if (list == NULL) { list = PyList_New(0); if (list == NULL) return -1; if (PyDict_SetItemString(dict, KEY, list) < 0) return -1; Py_DECREF(list); } i = PyList_GET_SIZE(list); while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) return 1; } PyList_Append(list, obj); return 0; } void Py_ReprLeave(PyObject *obj) { PyObject *dict; PyObject *list; Py_ssize_t i; dict = PyThreadState_GetDict(); if (dict == NULL) return; list = PyDict_GetItemString(dict, KEY); if (list == NULL || !PyList_Check(list)) return; i = PyList_GET_SIZE(list); /* Count backwards because we always expect obj to be list[-1] */ while (--i >= 0) { if (PyList_GET_ITEM(list, i) == obj) { PyList_SetSlice(list, i, i + 1, NULL); break; } } } /* Trashcan support. */ /* Current call-stack depth of tp_dealloc calls. */ int _PyTrash_delete_nesting = 0; /* List of objects that still need to be cleaned up, singly linked via their * gc headers' gc_prev pointers. */ PyObject *_PyTrash_delete_later = NULL; /* Add op to the _PyTrash_delete_later list. Called when the current * call-stack depth gets large. op must be a currently untracked gc'ed * object, with refcount 0. Py_DECREF must already have been called on it. */ void _PyTrash_deposit_object(PyObject *op) { assert(PyObject_IS_GC(op)); assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED); assert(op->ob_refcnt == 0); _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; _PyTrash_delete_later = op; } /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when * the call-stack unwinds again. */ void _PyTrash_destroy_chain(void) { while (_PyTrash_delete_later) { PyObject *op = _PyTrash_delete_later; destructor dealloc = op->ob_type->tp_dealloc; _PyTrash_delete_later = (PyObject*) _Py_AS_GC(op)->gc.gc_prev; /* Call the deallocator directly. This used to try to * fool Py_DECREF into calling it indirectly, but * Py_DECREF was already called on this object, and in * assorted non-release builds calling Py_DECREF again ends * up distorting allocation statistics. */ assert(op->ob_refcnt == 0); ++_PyTrash_delete_nesting; (*dealloc)(op); --_PyTrash_delete_nesting; } } #ifdef __cplusplus } #endif