# R A N D O M V A R I A B L E G E N E R A T O R S # # distributions on the real line: # ------------------------------ # normal (Gaussian) # lognormal # negative exponential # gamma # beta # # distributions on the circle (angles 0 to 2pi) # --------------------------------------------- # circular uniform # von Mises # Translated from anonymously contributed C/C++ source. import whrandom from whrandom import random, uniform, randint, choice # Also for export! from math import log, exp, pi, e, sqrt, acos, cos, sin # Interfaces to replace remaining needs for importing whrandom # XXX TO DO: make the distribution functions below into methods. def makeseed(a=None): """Turn a hashable value into three seed values for whrandom.seed(). None or no argument returns (0, 0, 0), to seed from current time. """ if a is None: return (0, 0, 0) a = hash(a) a, x = divmod(a, 256) a, y = divmod(a, 256) a, z = divmod(a, 256) x = (x + a) % 256 or 1 y = (y + a) % 256 or 1 z = (z + a) % 256 or 1 return (x, y, z) def seed(a=None): """Seed the default generator from any hashable value. None or no argument returns (0, 0, 0) to seed from current time. """ x, y, z = makeseed(a) whrandom.seed(x, y, z) class generator(whrandom.whrandom): """Random generator class.""" def __init__(self, a=None): """Constructor. Seed from current time or hashable value.""" self.seed(a) def seed(self, a=None): """Seed the generator from current time or hashable value.""" x, y, z = makeseed(a) whrandom.whrandom.seed(self, x, y, z) def new_generator(a=None): """Return a new random generator instance.""" return generator(a) # Housekeeping function to verify that magic constants have been # computed correctly def verify(name, expected): computed = eval(name) if abs(computed - expected) > 1e-7: raise ValueError, \ 'computed value for %s deviates too much (computed %g, expected %g)' % \ (name, computed, expected) # -------------------- normal distribution -------------------- NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0) verify('NV_MAGICCONST', 1.71552776992141) def normalvariate(mu, sigma): # mu = mean, sigma = standard deviation # Uses Kinderman and Monahan method. Reference: Kinderman, # A.J. and Monahan, J.F., "Computer generation of random # variables using the ratio of uniform deviates", ACM Trans # Math Software, 3, (1977), pp257-260. while 1: u1 = random() u2 = random() z = NV_MAGICCONST*(u1-0.5)/u2 zz = z*z/4.0 if zz <= -log(u2): break return mu+z*sigma # -------------------- lognormal distribution -------------------- def lognormvariate(mu, sigma): return exp(normalvariate(mu, sigma)) # -------------------- circular uniform -------------------- def cunifvariate(mean, arc): # mean: mean angle (in radians between 0 and pi) # arc: range of distribution (in radians between 0 and pi) return (mean + arc * (random() - 0.5)) % pi # -------------------- exponential distribution -------------------- def expovariate(lambd): # lambd: rate lambd = 1/mean # ('lambda' is a Python reserved word) u = random() while u <= 1e-7: u = random() return -log(u)/lambd # -------------------- von Mises distribution -------------------- TWOPI = 2.0*pi verify('TWOPI', 6.28318530718) def vonmisesvariate(mu, kappa): # mu: mean angle (in radians between 0 and 2*pi) # kappa: concentration parameter kappa (>= 0) # if kappa = 0 generate uniform random angle # Based upon an algorithm published in: Fisher, N.I., # "Statistical Analysis of Circular Data", Cambridge # University Press, 1993. # Thanks to Magnus Kessler for a correction to the # implementation of step 4. if kappa <= 1e-6: return TWOPI * random() a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa) b = (a - sqrt(2.0 * a))/(2.0 * kappa) r = (1.0 + b * b)/(2.0 * b) while 1: u1 = random() z = cos(pi * u1) f = (1.0 + r * z)/(r + z) c = kappa * (r - f) u2 = random() if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)): break u3 = random() if u3 > 0.5: theta = (mu % TWOPI) + acos(f) else: theta = (mu % TWOPI) - acos(f) return theta # -------------------- gamma distribution -------------------- LOG4 = log(4.0) verify('LOG4', 1.38629436111989) def gammavariate(alpha, beta): # beta times standard gamma ainv = sqrt(2.0 * alpha - 1.0) return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv) SG_MAGICCONST = 1.0 + log(4.5) verify('SG_MAGICCONST', 2.50407739677627) def stdgamma(alpha, ainv, bbb, ccc): # ainv = sqrt(2 * alpha - 1) # bbb = alpha - log(4) # ccc = alpha + ainv if alpha <= 0.0: raise ValueError, 'stdgamma: alpha must be > 0.0' if alpha > 1.0: # Uses R.C.H. Cheng, "The generation of Gamma # variables with non-integral shape parameters", # Applied Statistics, (1977), 26, No. 1, p71-74 while 1: u1 = random() u2 = random() v = log(u1/(1.0-u1))/ainv x = alpha*exp(v) z = u1*u1*u2 r = bbb+ccc*v-x if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z): return x elif alpha == 1.0: # expovariate(1) u = random() while u <= 1e-7: u = random() return -log(u) else: # alpha is between 0 and 1 (exclusive) # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle while 1: u = random() b = (e + alpha)/e p = b*u if p <= 1.0: x = pow(p, 1.0/alpha) else: # p > 1 x = -log((b-p)/alpha) u1 = random() if not (((p <= 1.0) and (u1 > exp(-x))) or ((p > 1) and (u1 > pow(x, alpha - 1.0)))): break return x # -------------------- Gauss (faster alternative) -------------------- gauss_next = None def gauss(mu, sigma): # When x and y are two variables from [0, 1), uniformly # distributed, then # # cos(2*pi*x)*sqrt(-2*log(1-y)) # sin(2*pi*x)*sqrt(-2*log(1-y)) # # are two *independent* variables with normal distribution # (mu = 0, sigma = 1). # (Lambert Meertens) # (corrected version; bug discovered by Mike Miller, fixed by LM) global gauss_next if gauss_next != None: z = gauss_next gauss_next = None else: x2pi = random() * TWOPI g2rad = sqrt(-2.0 * log(1.0 - random())) z = cos(x2pi) * g2rad gauss_next = sin(x2pi) * g2rad return mu + z*sigma # -------------------- beta -------------------- def betavariate(alpha, beta): # Discrete Event Simulation in C, pp 87-88. y = expovariate(alpha) z = expovariate(1.0/beta) return z/(y+z) # -------------------- Pareto -------------------- def paretovariate(alpha): # Jain, pg. 495 u = random() return 1.0 / pow(u, 1.0/alpha) # -------------------- Weibull -------------------- def weibullvariate(alpha, beta): # Jain, pg. 499; bug fix courtesy Bill Arms u = random() return alpha * pow(-log(u), 1.0/beta) # -------------------- test program -------------------- def test(N = 200): print 'TWOPI =', TWOPI print 'LOG4 =', LOG4 print 'NV_MAGICCONST =', NV_MAGICCONST print 'SG_MAGICCONST =', SG_MAGICCONST test_generator(N, 'random()') test_generator(N, 'normalvariate(0.0, 1.0)') test_generator(N, 'lognormvariate(0.0, 1.0)') test_generator(N, 'cunifvariate(0.0, 1.0)') test_generator(N, 'expovariate(1.0)') test_generator(N, 'vonmisesvariate(0.0, 1.0)') test_generator(N, 'gammavariate(0.5, 1.0)') test_generator(N, 'gammavariate(0.9, 1.0)') test_generator(N, 'gammavariate(1.0, 1.0)') test_generator(N, 'gammavariate(2.0, 1.0)') test_generator(N, 'gammavariate(20.0, 1.0)') test_generator(N, 'gammavariate(200.0, 1.0)') test_generator(N, 'gauss(0.0, 1.0)') test_generator(N, 'betavariate(3.0, 3.0)') test_generator(N, 'paretovariate(1.0)') test_generator(N, 'weibullvariate(1.0, 1.0)') def test_generator(n, funccall): import time print n, 'times', funccall code = compile(funccall, funccall, 'eval') sum = 0.0 sqsum = 0.0 smallest = 1e10 largest = -1e10 t0 = time.time() for i in range(n): x = eval(code) sum = sum + x sqsum = sqsum + x*x smallest = min(x, smallest) largest = max(x, largest) t1 = time.time() print round(t1-t0, 3), 'sec,', avg = sum/n stddev = sqrt(sqsum/n - avg*avg) print 'avg %g, stddev %g, min %g, max %g' % \ (avg, stddev, smallest, largest) if __name__ == '__main__': test()