/* Return the initial module search path. */ /* Used by DOS, Windows 3.1, Windows 95/98, Windows NT. */ /* ---------------------------------------------------------------- PATH RULES FOR WINDOWS: This describes how sys.path is formed on Windows. It describes the functionality, not the implementation (ie, the order in which these are actually fetched is different). The presence of a python._pth or pythonXY._pth file alongside the program overrides these rules - see below. * Python always adds an empty entry at the start, which corresponds to the current directory. * If the PYTHONPATH env. var. exists, its entries are added next. * We look in the registry for "application paths" - that is, sub-keys under the main PythonPath registry key. These are added next (the order of sub-key processing is undefined). HKEY_CURRENT_USER is searched and added first. HKEY_LOCAL_MACHINE is searched and added next. (Note that all known installers only use HKLM, so HKCU is typically empty) * We attempt to locate the "Python Home" - if the PYTHONHOME env var is set, we believe it. Otherwise, we use the path of our host .EXE's to try and locate one of our "landmarks" and deduce our home. - If we DO have a Python Home: The relevant sub-directories (Lib, DLLs, etc) are based on the Python Home - If we DO NOT have a Python Home, the core Python Path is loaded from the registry. This is the main PythonPath key, and both HKLM and HKCU are combined to form the path) * Iff - we can not locate the Python Home, have not had a PYTHONPATH specified, and can't locate any Registry entries (ie, we have _nothing_ we can assume is a good path), a default path with relative entries is used (eg. .\Lib;.\DLLs, etc) If a '._pth' file exists adjacent to the executable with the same base name (e.g. python._pth adjacent to python.exe) or adjacent to the shared library (e.g. python36._pth adjacent to python36.dll), it is used in preference to the above process. The shared library file takes precedence over the executable. The path file must contain a list of paths to add to sys.path, one per line. Each path is relative to the directory containing the file. Blank lines and comments beginning with '#' are permitted. In the presence of this ._pth file, no other paths are added to the search path, the registry finder is not enabled, site.py is not imported and isolated mode is enabled. The site package can be enabled by including a line reading "import site"; no other imports are recognized. Any invalid entry (other than directories that do not exist) will result in immediate termination of the program. The end result of all this is: * When running python.exe, or any other .exe in the main Python directory (either an installed version, or directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored. Other "application paths" in the registry are always read. * When Python is hosted in another exe (different directory, embedded via COM, etc), the Python Home will not be deduced, so the core path from the registry is used. Other "application paths" in the registry are always read. * If Python can't find its home and there is no registry (eg, frozen exe, some very strange installation setup) you get a path with some default, but relative, paths. * An embedding application can use Py_SetPath() to override all of these automatic path computations. * An install of Python can fully specify the contents of sys.path using either a 'EXENAME._pth' or 'DLLNAME._pth' file, optionally including "import site" to enable the site module. ---------------------------------------------------------------- */ #include "Python.h" #include "osdefs.h" #include #ifndef MS_WINDOWS #error getpathp.c should only be built on Windows #endif #include #include #ifdef HAVE_SYS_TYPES_H #include #endif /* HAVE_SYS_TYPES_H */ #ifdef HAVE_SYS_STAT_H #include #endif /* HAVE_SYS_STAT_H */ #include /* Search in some common locations for the associated Python libraries. * * Py_GetPath() tries to return a sensible Python module search path. * * The approach is an adaptation for Windows of the strategy used in * ../Modules/getpath.c; it uses the Windows Registry as one of its * information sources. * * Py_SetPath() can be used to override this mechanism. Call Py_SetPath * with a semicolon separated path prior to calling Py_Initialize. */ #ifndef LANDMARK #define LANDMARK L"lib\\os.py" #endif static wchar_t prefix[MAXPATHLEN+1]; static wchar_t progpath[MAXPATHLEN+1]; static wchar_t dllpath[MAXPATHLEN+1]; static wchar_t *module_search_path = NULL; static int is_sep(wchar_t ch) /* determine if "ch" is a separator character */ { #ifdef ALTSEP return ch == SEP || ch == ALTSEP; #else return ch == SEP; #endif } /* assumes 'dir' null terminated in bounds. Never writes beyond existing terminator. */ static void reduce(wchar_t *dir) { size_t i = wcsnlen_s(dir, MAXPATHLEN+1); if (i >= MAXPATHLEN+1) Py_FatalError("buffer overflow in getpathp.c's reduce()"); while (i > 0 && !is_sep(dir[i])) --i; dir[i] = '\0'; } static int change_ext(wchar_t *dest, const wchar_t *src, const wchar_t *ext) { size_t src_len = wcsnlen_s(src, MAXPATHLEN+1); size_t i = src_len; if (i >= MAXPATHLEN+1) Py_FatalError("buffer overflow in getpathp.c's reduce()"); while (i > 0 && src[i] != '.' && !is_sep(src[i])) --i; if (i == 0) { dest[0] = '\0'; return -1; } if (is_sep(src[i])) i = src_len; if (wcsncpy_s(dest, MAXPATHLEN+1, src, i) || wcscat_s(dest, MAXPATHLEN+1, ext)) { dest[0] = '\0'; return -1; } return 0; } static int exists(wchar_t *filename) { return GetFileAttributesW(filename) != 0xFFFFFFFF; } /* Assumes 'filename' MAXPATHLEN+1 bytes long - may extend 'filename' by one character. */ static int ismodule(wchar_t *filename, int update_filename) /* Is module -- check for .pyc too */ { size_t n; if (exists(filename)) return 1; /* Check for the compiled version of prefix. */ n = wcsnlen_s(filename, MAXPATHLEN+1); if (n < MAXPATHLEN) { int exist = 0; filename[n] = L'c'; filename[n + 1] = L'\0'; exist = exists(filename); if (!update_filename) filename[n] = L'\0'; return exist; } return 0; } /* Add a path component, by appending stuff to buffer. buffer must have at least MAXPATHLEN + 1 bytes allocated, and contain a NUL-terminated string with no more than MAXPATHLEN characters (not counting the trailing NUL). It's a fatal error if it contains a string longer than that (callers must be careful!). If these requirements are met, it's guaranteed that buffer will still be a NUL-terminated string with no more than MAXPATHLEN characters at exit. If stuff is too long, only as much of stuff as fits will be appended. */ static int _PathCchCombineEx_Initialized = 0; typedef HRESULT(__stdcall *PPathCchCombineEx)(PWSTR pszPathOut, size_t cchPathOut, PCWSTR pszPathIn, PCWSTR pszMore, unsigned long dwFlags); static PPathCchCombineEx _PathCchCombineEx; static void join(wchar_t *buffer, const wchar_t *stuff) { if (_PathCchCombineEx_Initialized == 0) { HMODULE pathapi = LoadLibraryW(L"api-ms-win-core-path-l1-1-0.dll"); if (pathapi) _PathCchCombineEx = (PPathCchCombineEx)GetProcAddress(pathapi, "PathCchCombineEx"); else _PathCchCombineEx = NULL; _PathCchCombineEx_Initialized = 1; } if (_PathCchCombineEx) { if (FAILED(_PathCchCombineEx(buffer, MAXPATHLEN+1, buffer, stuff, 0))) Py_FatalError("buffer overflow in getpathp.c's join()"); } else { if (!PathCombineW(buffer, buffer, stuff)) Py_FatalError("buffer overflow in getpathp.c's join()"); } } /* gotlandmark only called by search_for_prefix, which ensures 'prefix' is null terminated in bounds. join() ensures 'landmark' can not overflow prefix if too long. */ static int gotlandmark(const wchar_t *landmark) { int ok; Py_ssize_t n = wcsnlen_s(prefix, MAXPATHLEN); join(prefix, landmark); ok = ismodule(prefix, FALSE); prefix[n] = '\0'; return ok; } /* assumes argv0_path is MAXPATHLEN+1 bytes long, already \0 term'd. assumption provided by only caller, calculate_path() */ static int search_for_prefix(wchar_t *argv0_path, const wchar_t *landmark) { /* Search from argv0_path, until landmark is found */ wcscpy_s(prefix, MAXPATHLEN + 1, argv0_path); do { if (gotlandmark(landmark)) return 1; reduce(prefix); } while (prefix[0]); return 0; } #ifdef Py_ENABLE_SHARED /* a string loaded from the DLL at startup.*/ extern const char *PyWin_DLLVersionString; /* Load a PYTHONPATH value from the registry. Load from either HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER. Works in both Unicode and 8bit environments. Only uses the Ex family of functions so it also works with Windows CE. Returns NULL, or a pointer that should be freed. XXX - this code is pretty strange, as it used to also work on Win16, where the buffer sizes werent available in advance. It could be simplied now Win16/Win32s is dead! */ static wchar_t * getpythonregpath(HKEY keyBase, int skipcore) { HKEY newKey = 0; DWORD dataSize = 0; DWORD numKeys = 0; LONG rc; wchar_t *retval = NULL; WCHAR *dataBuf = NULL; static const WCHAR keyPrefix[] = L"Software\\Python\\PythonCore\\"; static const WCHAR keySuffix[] = L"\\PythonPath"; size_t versionLen, keyBufLen; DWORD index; WCHAR *keyBuf = NULL; WCHAR *keyBufPtr; WCHAR **ppPaths = NULL; /* Tried to use sysget("winver") but here is too early :-( */ versionLen = strlen(PyWin_DLLVersionString); /* Space for all the chars, plus one \0 */ keyBufLen = sizeof(keyPrefix) + sizeof(WCHAR)*(versionLen-1) + sizeof(keySuffix); keyBuf = keyBufPtr = PyMem_RawMalloc(keyBufLen); if (keyBuf==NULL) goto done; memcpy_s(keyBufPtr, keyBufLen, keyPrefix, sizeof(keyPrefix)-sizeof(WCHAR)); keyBufPtr += Py_ARRAY_LENGTH(keyPrefix) - 1; mbstowcs(keyBufPtr, PyWin_DLLVersionString, versionLen); keyBufPtr += versionLen; /* NULL comes with this one! */ memcpy(keyBufPtr, keySuffix, sizeof(keySuffix)); /* Open the root Python key */ rc=RegOpenKeyExW(keyBase, keyBuf, /* subkey */ 0, /* reserved */ KEY_READ, &newKey); if (rc!=ERROR_SUCCESS) goto done; /* Find out how big our core buffer is, and how many subkeys we have */ rc = RegQueryInfoKey(newKey, NULL, NULL, NULL, &numKeys, NULL, NULL, NULL, NULL, &dataSize, NULL, NULL); if (rc!=ERROR_SUCCESS) goto done; if (skipcore) dataSize = 0; /* Only count core ones if we want them! */ /* Allocate a temp array of char buffers, so we only need to loop reading the registry once */ ppPaths = PyMem_RawMalloc( sizeof(WCHAR *) * numKeys ); if (ppPaths==NULL) goto done; memset(ppPaths, 0, sizeof(WCHAR *) * numKeys); /* Loop over all subkeys, allocating a temp sub-buffer. */ for(index=0;index 0) { *(szCur++) = L';'; dataSize--; } if (ppPaths[index]) { Py_ssize_t len = wcslen(ppPaths[index]); wcsncpy(szCur, ppPaths[index], len); szCur += len; assert(dataSize > (DWORD)len); dataSize -= (DWORD)len; } } if (skipcore) *szCur = '\0'; else { /* If we have no values, we don't need a ';' */ if (numKeys) { *(szCur++) = L';'; dataSize--; } /* Now append the core path entries - this will include the NULL */ rc = RegQueryValueExW(newKey, NULL, 0, NULL, (LPBYTE)szCur, &dataSize); if (rc != ERROR_SUCCESS) { PyMem_RawFree(dataBuf); goto done; } } /* And set the result - caller must free */ retval = dataBuf; } done: /* Loop freeing my temp buffers */ if (ppPaths) { for(index=0; index= 0) { wchar_t * context = NULL; wchar_t * tok = wcstok_s(tmpbuffer, L" \t\r\n", &context); if ((tok != NULL) && !wcscmp(tok, key)) { tok = wcstok_s(NULL, L" \t", &context); if ((tok != NULL) && !wcscmp(tok, L"=")) { tok = wcstok_s(NULL, L"\r\n", &context); if (tok != NULL) { wcsncpy(value, tok, MAXPATHLEN); result = 1; break; } } } } } } return result; } static int read_pth_file(const wchar_t *path, wchar_t *prefix, int *isolated, int *nosite) { FILE *sp_file = _Py_wfopen(path, L"r"); if (sp_file == NULL) return -1; wcscpy_s(prefix, MAXPATHLEN+1, path); reduce(prefix); *isolated = 1; *nosite = 1; size_t bufsiz = MAXPATHLEN; size_t prefixlen = wcslen(prefix); wchar_t *buf = (wchar_t*)PyMem_RawMalloc(bufsiz * sizeof(wchar_t)); buf[0] = '\0'; while (!feof(sp_file)) { char line[MAXPATHLEN + 1]; char *p = fgets(line, MAXPATHLEN + 1, sp_file); if (!p) break; if (*p == '\0' || *p == '\r' || *p == '\n' || *p == '#') continue; while (*++p) { if (*p == '\r' || *p == '\n') { *p = '\0'; break; } } if (strcmp(line, "import site") == 0) { *nosite = 0; continue; } else if (strncmp(line, "import ", 7) == 0) { Py_FatalError("only 'import site' is supported in ._pth file"); } DWORD wn = MultiByteToWideChar(CP_UTF8, 0, line, -1, NULL, 0); wchar_t *wline = (wchar_t*)PyMem_RawMalloc((wn + 1) * sizeof(wchar_t)); wn = MultiByteToWideChar(CP_UTF8, 0, line, -1, wline, wn + 1); wline[wn] = '\0'; size_t usedsiz = wcslen(buf); while (usedsiz + wn + prefixlen + 4 > bufsiz) { bufsiz += MAXPATHLEN; buf = (wchar_t*)PyMem_RawRealloc(buf, (bufsiz + 1) * sizeof(wchar_t)); if (!buf) { PyMem_RawFree(wline); goto error; } } if (usedsiz) { wcscat_s(buf, bufsiz, L";"); usedsiz += 1; } errno_t result; _Py_BEGIN_SUPPRESS_IPH result = wcscat_s(buf, bufsiz, prefix); _Py_END_SUPPRESS_IPH if (result == EINVAL) { Py_FatalError("invalid argument during ._pth processing"); } else if (result == ERANGE) { Py_FatalError("buffer overflow during ._pth processing"); } wchar_t *b = &buf[usedsiz]; join(b, wline); PyMem_RawFree(wline); } module_search_path = buf; fclose(sp_file); return 0; error: PyMem_RawFree(buf); fclose(sp_file); return -1; } static void calculate_path(void) { wchar_t argv0_path[MAXPATHLEN+1]; wchar_t *buf; size_t bufsz; wchar_t *pythonhome = Py_GetPythonHome(); wchar_t *envpath = NULL; int skiphome, skipdefault; wchar_t *machinepath = NULL; wchar_t *userpath = NULL; wchar_t zip_path[MAXPATHLEN+1]; if (!Py_IgnoreEnvironmentFlag) { envpath = _wgetenv(L"PYTHONPATH"); } get_progpath(); /* progpath guaranteed \0 terminated in MAXPATH+1 bytes. */ wcscpy_s(argv0_path, MAXPATHLEN+1, progpath); reduce(argv0_path); /* Search for a sys.path file */ { wchar_t spbuffer[MAXPATHLEN+1]; if ((dllpath[0] && !change_ext(spbuffer, dllpath, L"._pth") && exists(spbuffer)) || (progpath[0] && !change_ext(spbuffer, progpath, L"._pth") && exists(spbuffer))) { if (!read_pth_file(spbuffer, prefix, &Py_IsolatedFlag, &Py_NoSiteFlag)) { return; } } } /* Search for an environment configuration file, first in the executable's directory and then in the parent directory. If found, open it for use when searching for prefixes. */ { wchar_t envbuffer[MAXPATHLEN+1]; wchar_t tmpbuffer[MAXPATHLEN+1]; const wchar_t *env_cfg = L"pyvenv.cfg"; FILE * env_file = NULL; wcscpy_s(envbuffer, MAXPATHLEN+1, argv0_path); join(envbuffer, env_cfg); env_file = _Py_wfopen(envbuffer, L"r"); if (env_file == NULL) { errno = 0; reduce(envbuffer); reduce(envbuffer); join(envbuffer, env_cfg); env_file = _Py_wfopen(envbuffer, L"r"); if (env_file == NULL) { errno = 0; } } if (env_file != NULL) { /* Look for a 'home' variable and set argv0_path to it, if found */ if (find_env_config_value(env_file, L"home", tmpbuffer)) { wcscpy_s(argv0_path, MAXPATHLEN+1, tmpbuffer); } fclose(env_file); env_file = NULL; } } /* Calculate zip archive path from DLL or exe path */ change_ext(zip_path, dllpath[0] ? dllpath : progpath, L".zip"); if (pythonhome == NULL || *pythonhome == '\0') { if (zip_path[0] && exists(zip_path)) { wcscpy_s(prefix, MAXPATHLEN+1, zip_path); reduce(prefix); pythonhome = prefix; } else if (search_for_prefix(argv0_path, LANDMARK)) pythonhome = prefix; else pythonhome = NULL; } else wcscpy_s(prefix, MAXPATHLEN+1, pythonhome); if (envpath && *envpath == '\0') envpath = NULL; skiphome = pythonhome==NULL ? 0 : 1; #ifdef Py_ENABLE_SHARED machinepath = getpythonregpath(HKEY_LOCAL_MACHINE, skiphome); userpath = getpythonregpath(HKEY_CURRENT_USER, skiphome); #endif /* We only use the default relative PYTHONPATH if we haven't anything better to use! */ skipdefault = envpath!=NULL || pythonhome!=NULL || \ machinepath!=NULL || userpath!=NULL; /* We need to construct a path from the following parts. (1) the PYTHONPATH environment variable, if set; (2) for Win32, the zip archive file path; (3) for Win32, the machinepath and userpath, if set; (4) the PYTHONPATH config macro, with the leading "." of each component replaced with pythonhome, if set; (5) the directory containing the executable (argv0_path). The length calculation calculates #4 first. Extra rules: - If PYTHONHOME is set (in any way) item (3) is ignored. - If registry values are used, (4) and (5) are ignored. */ /* Calculate size of return buffer */ if (pythonhome != NULL) { wchar_t *p; bufsz = 1; for (p = PYTHONPATH; *p; p++) { if (*p == DELIM) bufsz++; /* number of DELIM plus one */ } bufsz *= wcslen(pythonhome); } else bufsz = 0; bufsz += wcslen(PYTHONPATH) + 1; bufsz += wcslen(argv0_path) + 1; if (userpath) bufsz += wcslen(userpath) + 1; if (machinepath) bufsz += wcslen(machinepath) + 1; bufsz += wcslen(zip_path) + 1; if (envpath != NULL) bufsz += wcslen(envpath) + 1; module_search_path = buf = PyMem_RawMalloc(bufsz*sizeof(wchar_t)); if (buf == NULL) { /* We can't exit, so print a warning and limp along */ fprintf(stderr, "Can't malloc dynamic PYTHONPATH.\n"); if (envpath) { fprintf(stderr, "Using environment $PYTHONPATH.\n"); module_search_path = envpath; } else { fprintf(stderr, "Using default static path.\n"); module_search_path = PYTHONPATH; } PyMem_RawFree(machinepath); PyMem_RawFree(userpath); return; } if (envpath) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), envpath)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); *buf++ = DELIM; } if (zip_path[0]) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), zip_path)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); *buf++ = DELIM; } if (userpath) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), userpath)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); *buf++ = DELIM; PyMem_RawFree(userpath); } if (machinepath) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), machinepath)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); *buf++ = DELIM; PyMem_RawFree(machinepath); } if (pythonhome == NULL) { if (!skipdefault) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), PYTHONPATH)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); *buf++ = DELIM; } } else { wchar_t *p = PYTHONPATH; wchar_t *q; size_t n; for (;;) { q = wcschr(p, DELIM); if (q == NULL) n = wcslen(p); else n = q-p; if (p[0] == '.' && is_sep(p[1])) { if (wcscpy_s(buf, bufsz - (buf - module_search_path), pythonhome)) Py_FatalError("buffer overflow in getpathp.c's calculate_path()"); buf = wcschr(buf, L'\0'); p++; n--; } wcsncpy(buf, p, n); buf += n; *buf++ = DELIM; if (q == NULL) break; p = q+1; } } if (argv0_path) { wcscpy(buf, argv0_path); buf = wcschr(buf, L'\0'); *buf++ = DELIM; } *(buf - 1) = L'\0'; /* Now to pull one last hack/trick. If sys.prefix is empty, then try and find it somewhere on the paths we calculated. We scan backwards, as our general policy is that Python core directories are at the *end* of sys.path. We assume that our "lib" directory is on the path, and that our 'prefix' directory is the parent of that. */ if (*prefix==L'\0') { wchar_t lookBuf[MAXPATHLEN+1]; wchar_t *look = buf - 1; /* 'buf' is at the end of the buffer */ while (1) { Py_ssize_t nchars; wchar_t *lookEnd = look; /* 'look' will end up one character before the start of the path in question - even if this is one character before the start of the buffer */ while (look >= module_search_path && *look != DELIM) look--; nchars = lookEnd-look; wcsncpy(lookBuf, look+1, nchars); lookBuf[nchars] = L'\0'; /* Up one level to the parent */ reduce(lookBuf); if (search_for_prefix(lookBuf, LANDMARK)) { break; } /* If we are out of paths to search - give up */ if (look < module_search_path) break; look--; } } } /* External interface */ void Py_SetPath(const wchar_t *path) { if (module_search_path != NULL) { PyMem_RawFree(module_search_path); module_search_path = NULL; } if (path != NULL) { extern wchar_t *Py_GetProgramName(void); wchar_t *prog = Py_GetProgramName(); wcsncpy(progpath, prog, MAXPATHLEN); prefix[0] = L'\0'; module_search_path = PyMem_RawMalloc((wcslen(path) + 1) * sizeof(wchar_t)); if (module_search_path != NULL) wcscpy(module_search_path, path); } } wchar_t * Py_GetPath(void) { if (!module_search_path) calculate_path(); return module_search_path; } wchar_t * Py_GetPrefix(void) { if (!module_search_path) calculate_path(); return prefix; } wchar_t * Py_GetExecPrefix(void) { return Py_GetPrefix(); } wchar_t * Py_GetProgramFullPath(void) { if (!module_search_path) calculate_path(); return progpath; } /* Load python3.dll before loading any extension module that might refer to it. That way, we can be sure that always the python3.dll corresponding to this python DLL is loaded, not a python3.dll that might be on the path by chance. Return whether the DLL was found. */ static int python3_checked = 0; static HANDLE hPython3; int _Py_CheckPython3() { wchar_t py3path[MAXPATHLEN+1]; wchar_t *s; if (python3_checked) return hPython3 != NULL; python3_checked = 1; /* If there is a python3.dll next to the python3y.dll, assume this is a build tree; use that DLL */ wcscpy(py3path, dllpath); s = wcsrchr(py3path, L'\\'); if (!s) s = py3path; wcscpy(s, L"\\python3.dll"); hPython3 = LoadLibraryExW(py3path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH); if (hPython3 != NULL) return 1; /* Check sys.prefix\DLLs\python3.dll */ wcscpy(py3path, Py_GetPrefix()); wcscat(py3path, L"\\DLLs\\python3.dll"); hPython3 = LoadLibraryExW(py3path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH); return hPython3 != NULL; }