"""Python bytecode generator Currently contains generic ASTVisitor code, a LocalNameFinder, and a CodeGenerator. Eventually, this will get split into the ASTVisitor as a generic tool and CodeGenerator as a specific tool. """ from compiler import parseFile, ast, visitor, walk, parse from pyassem import StackRef, PyAssembler, TupleArg import dis import misc import marshal import new import string import sys import os import stat import struct import types class CodeGenerator: """Generate bytecode for the Python VM""" OPTIMIZED = 1 # XXX should clean up initialization and generateXXX funcs def __init__(self, filename=""): self.filename = filename self.code = PyAssembler() self.code.setFlags(0) self.locals = misc.Stack() self.loops = misc.Stack() self.namespace = 0 self.curStack = 0 self.maxStack = 0 def emit(self, *args): # XXX could just use self.emit = self.code.emit apply(self.code.emit, args) def _generateFunctionOrLambdaCode(self, func): self.name = func.name # keep a lookout for 'def foo((x,y)):' args, hasTupleArg = self.generateArglist(func.argnames) self.code = PyAssembler(args=args, name=func.name, filename=self.filename) self.namespace = self.OPTIMIZED if func.varargs: self.code.setVarArgs() if func.kwargs: self.code.setKWArgs() lnf = walk(func.code, LocalNameFinder(args), 0) self.locals.push(lnf.getLocals()) self.emit('SET_LINENO', func.lineno) if hasTupleArg: self.generateArgUnpack(func.argnames) walk(func.code, self) def generateArglist(self, arglist): args = [] extra = [] count = 0 for elt in arglist: if type(elt) == types.StringType: args.append(elt) elif type(elt) == types.TupleType: args.append(TupleArg(count, elt)) count = count + 1 extra.extend(misc.flatten(elt)) else: raise ValueError, "unexpect argument type:", elt return args + extra, count def generateArgUnpack(self, args): count = 0 for arg in args: if type(arg) == types.TupleType: self.emit('LOAD_FAST', '.nested%d' % count) count = count + 1 self.unpackTuple(arg) def unpackTuple(self, tup): self.emit('UNPACK_TUPLE', len(tup)) for elt in tup: if type(elt) == types.TupleType: self.unpackTuple(elt) else: self.emit('STORE_FAST', elt) def generateFunctionCode(self, func): """Generate code for a function body""" self._generateFunctionOrLambdaCode(func) self.emit('LOAD_CONST', None) self.emit('RETURN_VALUE') def generateLambdaCode(self, func): self._generateFunctionOrLambdaCode(func) self.emit('RETURN_VALUE') def generateClassCode(self, klass): self.code = PyAssembler(name=klass.name, filename=self.filename) self.emit('SET_LINENO', klass.lineno) lnf = walk(klass.code, LocalNameFinder(), 0) self.locals.push(lnf.getLocals()) walk(klass.code, self) self.emit('LOAD_LOCALS') self.emit('RETURN_VALUE') def asConst(self): """Create a Python code object.""" if self.namespace == self.OPTIMIZED: self.code.setOptimized() return self.code.makeCodeObject() def isLocalName(self, name): return self.locals.top().has_elt(name) def _nameOp(self, prefix, name): if self.isLocalName(name): if self.namespace == self.OPTIMIZED: self.emit(prefix + '_FAST', name) else: self.emit(prefix + '_NAME', name) else: self.emit(prefix + '_GLOBAL', name) def storeName(self, name): self._nameOp('STORE', name) def loadName(self, name): self._nameOp('LOAD', name) def delName(self, name): self._nameOp('DELETE', name) def visitNULL(self, node): """Method exists only to stop warning in -v mode""" pass visitStmt = visitNULL visitGlobal = visitNULL def visitDiscard(self, node): self.visit(node.expr) self.emit('POP_TOP') return 1 def visitPass(self, node): self.emit('SET_LINENO', node.lineno) def visitModule(self, node): lnf = walk(node.node, LocalNameFinder(), 0) self.locals.push(lnf.getLocals()) self.visit(node.node) self.emit('LOAD_CONST', None) self.emit('RETURN_VALUE') return 1 def visitImport(self, node): self.emit('SET_LINENO', node.lineno) for name in node.names: self.emit('IMPORT_NAME', name) self.storeName(name) def visitFrom(self, node): self.emit('SET_LINENO', node.lineno) self.emit('IMPORT_NAME', node.modname) for name in node.names: if name == '*': self.namespace = 0 self.emit('IMPORT_FROM', name) self.emit('POP_TOP') def visitClass(self, node): self.emit('SET_LINENO', node.lineno) self.emit('LOAD_CONST', node.name) for base in node.bases: self.visit(base) self.emit('BUILD_TUPLE', len(node.bases)) classBody = CodeGenerator(self.filename) classBody.generateClassCode(node) self.emit('LOAD_CONST', classBody) self.emit('MAKE_FUNCTION', 0) self.emit('CALL_FUNCTION', 0) self.emit('BUILD_CLASS') self.storeName(node.name) return 1 def _visitFuncOrLambda(self, node, kind): """Code common to Function and Lambda nodes""" codeBody = CodeGenerator(self.filename) getattr(codeBody, 'generate%sCode' % kind)(node) self.emit('SET_LINENO', node.lineno) for default in node.defaults: self.visit(default) self.emit('LOAD_CONST', codeBody) self.emit('MAKE_FUNCTION', len(node.defaults)) def visitFunction(self, node): self._visitFuncOrLambda(node, 'Function') self.storeName(node.name) return 1 def visitLambda(self, node): node.name = '' self._visitFuncOrLambda(node, 'Lambda') return 1 def visitCallFunc(self, node): pos = 0 kw = 0 if hasattr(node, 'lineno'): self.emit('SET_LINENO', node.lineno) self.visit(node.node) for arg in node.args: self.visit(arg) if isinstance(arg, ast.Keyword): kw = kw + 1 else: pos = pos + 1 self.emit('CALL_FUNCTION', kw << 8 | pos) return 1 def visitKeyword(self, node): self.emit('LOAD_CONST', node.name) self.visit(node.expr) return 1 def visitIf(self, node): after = StackRef() for test, suite in node.tests: if hasattr(test, 'lineno'): self.emit('SET_LINENO', test.lineno) else: print "warning", "no line number" self.visit(test) dest = StackRef() self.emit('JUMP_IF_FALSE', dest) self.emit('POP_TOP') self.visit(suite) self.emit('JUMP_FORWARD', after) dest.bind(self.code.getCurInst()) self.emit('POP_TOP') if node.else_: self.visit(node.else_) after.bind(self.code.getCurInst()) return 1 def startLoop(self): l = Loop() self.loops.push(l) self.emit('SETUP_LOOP', l.extentAnchor) return l def finishLoop(self): l = self.loops.pop() i = self.code.getCurInst() l.extentAnchor.bind(self.code.getCurInst()) def visitFor(self, node): # three refs needed anchor = StackRef() self.emit('SET_LINENO', node.lineno) l = self.startLoop() self.visit(node.list) self.visit(ast.Const(0)) l.startAnchor.bind(self.code.getCurInst()) self.emit('SET_LINENO', node.lineno) self.emit('FOR_LOOP', anchor) self.visit(node.assign) self.visit(node.body) self.emit('JUMP_ABSOLUTE', l.startAnchor) anchor.bind(self.code.getCurInst()) self.emit('POP_BLOCK') if node.else_: self.visit(node.else_) self.finishLoop() return 1 def visitWhile(self, node): self.emit('SET_LINENO', node.lineno) l = self.startLoop() if node.else_: lElse = StackRef() else: lElse = l.breakAnchor l.startAnchor.bind(self.code.getCurInst()) if hasattr(node.test, 'lineno'): self.emit('SET_LINENO', node.test.lineno) self.visit(node.test) self.emit('JUMP_IF_FALSE', lElse) self.emit('POP_TOP') self.visit(node.body) self.emit('JUMP_ABSOLUTE', l.startAnchor) # note that lElse may be an alias for l.breakAnchor lElse.bind(self.code.getCurInst()) self.emit('POP_TOP') self.emit('POP_BLOCK') if node.else_: self.visit(node.else_) self.finishLoop() return 1 def visitBreak(self, node): if not self.loops: raise SyntaxError, "'break' outside loop" self.emit('SET_LINENO', node.lineno) self.emit('BREAK_LOOP') def visitContinue(self, node): if not self.loops: raise SyntaxError, "'continue' outside loop" l = self.loops.top() self.emit('SET_LINENO', node.lineno) self.emit('JUMP_ABSOLUTE', l.startAnchor) def visitTryExcept(self, node): # XXX need to figure out exactly what is on the stack when an # exception is raised and the first handler is checked handlers = StackRef() end = StackRef() if node.else_: lElse = StackRef() else: lElse = end self.emit('SET_LINENO', node.lineno) self.emit('SETUP_EXCEPT', handlers) self.visit(node.body) self.emit('POP_BLOCK') self.emit('JUMP_FORWARD', lElse) handlers.bind(self.code.getCurInst()) last = len(node.handlers) - 1 for i in range(len(node.handlers)): expr, target, body = node.handlers[i] if hasattr(expr, 'lineno'): self.emit('SET_LINENO', expr.lineno) if expr: self.emit('DUP_TOP') self.visit(expr) self.emit('COMPARE_OP', "exception match") next = StackRef() self.emit('JUMP_IF_FALSE', next) self.emit('POP_TOP') self.emit('POP_TOP') if target: self.visit(target) else: self.emit('POP_TOP') self.emit('POP_TOP') self.visit(body) self.emit('JUMP_FORWARD', end) if expr: next.bind(self.code.getCurInst()) self.emit('POP_TOP') self.emit('END_FINALLY') if node.else_: lElse.bind(self.code.getCurInst()) self.visit(node.else_) end.bind(self.code.getCurInst()) return 1 def visitTryFinally(self, node): final = StackRef() self.emit('SET_LINENO', node.lineno) self.emit('SETUP_FINALLY', final) self.visit(node.body) self.emit('POP_BLOCK') self.emit('LOAD_CONST', None) final.bind(self.code.getCurInst()) self.visit(node.final) self.emit('END_FINALLY') return 1 def visitCompare(self, node): """Comment from compile.c follows: The following code is generated for all but the last comparison in a chain: label: on stack: opcode: jump to: a a, b DUP_TOP a, b, b ROT_THREE b, a, b COMPARE_OP b, 0-or-1 JUMP_IF_FALSE L1 b, 1 POP_TOP b We are now ready to repeat this sequence for the next comparison in the chain. For the last we generate: b b, c COMPARE_OP 0-or-1 If there were any jumps to L1 (i.e., there was more than one comparison), we generate: 0-or-1 JUMP_FORWARD L2 L1: b, 0 ROT_TWO 0, b POP_TOP 0 L2: 0-or-1 """ self.visit(node.expr) # if refs are never emitted, subsequent bind call has no effect l1 = StackRef() l2 = StackRef() for op, code in node.ops[:-1]: # emit every comparison except the last self.visit(code) self.emit('DUP_TOP') self.emit('ROT_THREE') self.emit('COMPARE_OP', op) # dupTop and compareOp cancel stack effect self.emit('JUMP_IF_FALSE', l1) self.emit('POP_TOP') if node.ops: # emit the last comparison op, code = node.ops[-1] self.visit(code) self.emit('COMPARE_OP', op) if len(node.ops) > 1: self.emit('JUMP_FORWARD', l2) l1.bind(self.code.getCurInst()) self.emit('ROT_TWO') self.emit('POP_TOP') l2.bind(self.code.getCurInst()) return 1 def visitGetattr(self, node): self.visit(node.expr) self.emit('LOAD_ATTR', node.attrname) return 1 def visitSubscript(self, node): self.visit(node.expr) for sub in node.subs: self.visit(sub) if len(node.subs) > 1: self.emit('BUILD_TUPLE', len(node.subs)) if node.flags == 'OP_APPLY': self.emit('BINARY_SUBSCR') elif node.flags == 'OP_ASSIGN': self.emit('STORE_SUBSCR') elif node.flags == 'OP_DELETE': self.emit('DELETE_SUBSCR') return 1 def visitSlice(self, node): self.visit(node.expr) slice = 0 if node.lower: self.visit(node.lower) slice = slice | 1 if node.upper: self.visit(node.upper) slice = slice | 2 if node.flags == 'OP_APPLY': self.emit('SLICE+%d' % slice) elif node.flags == 'OP_ASSIGN': self.emit('STORE_SLICE+%d' % slice) elif node.flags == 'OP_DELETE': self.emit('DELETE_SLICE+%d' % slice) else: print "weird slice", node.flags raise return 1 def visitSliceobj(self, node): for child in node.nodes: print child self.visit(child) self.emit('BUILD_SLICE', len(node.nodes)) return 1 def visitAssign(self, node): self.emit('SET_LINENO', node.lineno) self.visit(node.expr) dups = len(node.nodes) - 1 for i in range(len(node.nodes)): elt = node.nodes[i] if i < dups: self.emit('DUP_TOP') if isinstance(elt, ast.Node): self.visit(elt) return 1 def visitAssName(self, node): if node.flags == 'OP_ASSIGN': self.storeName(node.name) elif node.flags == 'OP_DELETE': self.delName(node.name) else: print "oops", node.flags return 1 def visitAssAttr(self, node): self.visit(node.expr) if node.flags == 'OP_ASSIGN': self.emit('STORE_ATTR', node.attrname) elif node.flags == 'OP_DELETE': self.emit('DELETE_ATTR', node.attrname) else: print "warning: unexpected flags:", node.flags print node return 1 def visitAssTuple(self, node): if findOp(node) != 'OP_DELETE': self.emit('UNPACK_TUPLE', len(node.nodes)) for child in node.nodes: self.visit(child) return 1 visitAssList = visitAssTuple # binary ops def binaryOp(self, node, op): self.visit(node.left) self.visit(node.right) self.emit(op) return 1 def visitAdd(self, node): return self.binaryOp(node, 'BINARY_ADD') def visitSub(self, node): return self.binaryOp(node, 'BINARY_SUBTRACT') def visitMul(self, node): return self.binaryOp(node, 'BINARY_MULTIPLY') def visitDiv(self, node): return self.binaryOp(node, 'BINARY_DIVIDE') def visitMod(self, node): return self.binaryOp(node, 'BINARY_MODULO') def visitPower(self, node): return self.binaryOp(node, 'BINARY_POWER') def visitLeftShift(self, node): return self.binaryOp(node, 'BINARY_LSHIFT') def visitRightShift(self, node): return self.binaryOp(node, 'BINARY_RSHIFT') # unary ops def unaryOp(self, node, op): self.visit(node.expr) self.emit(op) return 1 def visitInvert(self, node): return self.unaryOp(node, 'UNARY_INVERT') def visitUnarySub(self, node): return self.unaryOp(node, 'UNARY_NEGATIVE') def visitUnaryAdd(self, node): return self.unaryOp(node, 'UNARY_POSITIVE') def visitUnaryInvert(self, node): return self.unaryOp(node, 'UNARY_INVERT') def visitNot(self, node): return self.unaryOp(node, 'UNARY_NOT') def visitBackquote(self, node): return self.unaryOp(node, 'UNARY_CONVERT') # bit ops def bitOp(self, nodes, op): self.visit(nodes[0]) for node in nodes[1:]: self.visit(node) self.emit(op) return 1 def visitBitand(self, node): return self.bitOp(node.nodes, 'BINARY_AND') def visitBitor(self, node): return self.bitOp(node.nodes, 'BINARY_OR') def visitBitxor(self, node): return self.bitOp(node.nodes, 'BINARY_XOR') def visitAssert(self, node): # XXX __debug__ and AssertionError appear to be special cases # -- they are always loaded as globals even if there are local # names. I guess this is a sort of renaming op. skip = StackRef() self.emit('SET_LINENO', node.lineno) self.emit('LOAD_GLOBAL', '__debug__') self.emit('JUMP_IF_FALSE', skip) self.emit('POP_TOP') self.visit(node.test) self.emit('JUMP_IF_TRUE', skip) self.emit('LOAD_GLOBAL', 'AssertionError') self.visit(node.fail) self.emit('RAISE_VARARGS', 2) skip.bind(self.code.getCurInst()) self.emit('POP_TOP') return 1 def visitTest(self, node, jump): end = StackRef() for child in node.nodes[:-1]: self.visit(child) self.emit(jump, end) self.emit('POP_TOP') self.visit(node.nodes[-1]) end.bind(self.code.getCurInst()) return 1 def visitAnd(self, node): return self.visitTest(node, 'JUMP_IF_FALSE') def visitOr(self, node): return self.visitTest(node, 'JUMP_IF_TRUE') def visitName(self, node): self.loadName(node.name) def visitConst(self, node): self.emit('LOAD_CONST', node.value) return 1 def visitEllipsis(self, node): self.emit('LOAD_CONST', Ellipsis) return 1 def visitTuple(self, node): for elt in node.nodes: self.visit(elt) self.emit('BUILD_TUPLE', len(node.nodes)) return 1 def visitList(self, node): for elt in node.nodes: self.visit(elt) self.emit('BUILD_LIST', len(node.nodes)) return 1 def visitDict(self, node): self.emit('BUILD_MAP', 0) for k, v in node.items: # XXX need to add set lineno when there aren't constants self.emit('DUP_TOP') self.visit(v) self.emit('ROT_TWO') self.visit(k) self.emit('STORE_SUBSCR') return 1 def visitReturn(self, node): self.emit('SET_LINENO', node.lineno) self.visit(node.value) self.emit('RETURN_VALUE') return 1 def visitRaise(self, node): self.emit('SET_LINENO', node.lineno) n = 0 if node.expr1: self.visit(node.expr1) n = n + 1 if node.expr2: self.visit(node.expr2) n = n + 1 if node.expr3: self.visit(node.expr3) n = n + 1 self.emit('RAISE_VARARGS', n) return 1 def visitPrint(self, node): self.emit('SET_LINENO', node.lineno) for child in node.nodes: self.visit(child) self.emit('PRINT_ITEM') return 1 def visitPrintnl(self, node): self.visitPrint(node) self.emit('PRINT_NEWLINE') return 1 def visitExec(self, node): self.visit(node.expr) if node.locals is None: self.emit('LOAD_CONST', None) else: self.visit(node.locals) if node.globals is None: self.emit('DUP_TOP') else: self.visit(node.globals) self.emit('EXEC_STMT') return 1 class LocalNameFinder: def __init__(self, names=()): self.names = misc.Set() self.globals = misc.Set() for name in names: self.names.add(name) def getLocals(self): for elt in self.globals.items(): if self.names.has_elt(elt): self.names.remove(elt) return self.names def visitDict(self, node): return 1 def visitGlobal(self, node): for name in node.names: self.globals.add(name) return 1 def visitFunction(self, node): self.names.add(node.name) return 1 def visitLambda(self, node): return 1 def visitImport(self, node): for name in node.names: self.names.add(name) def visitFrom(self, node): for name in node.names: self.names.add(name) def visitClass(self, node): self.names.add(node.name) return 1 def visitAssName(self, node): self.names.add(node.name) class OpFinder: def __init__(self): self.op = None def visitAssName(self, node): if self.op is None: self.op = node.flags elif self.op != node.flags: raise ValueError, "mixed ops in stmt" def findOp(node): v = OpFinder() walk(node, v) return v.op class Loop: def __init__(self): self.startAnchor = StackRef() self.breakAnchor = StackRef() self.extentAnchor = StackRef() class CompiledModule: """Store the code object for a compiled module XXX Not clear how the code objects will be stored. Seems possible that a single code attribute is sufficient, because it will contains references to all the need code objects. That might be messy, though. """ MAGIC = (20121 | (ord('\r')<<16) | (ord('\n')<<24)) def __init__(self, source, filename): self.source = source self.filename = filename def compile(self): self.ast = parse(self.source) cg = CodeGenerator(self.filename) walk(self.ast, cg) self.code = cg.asConst() def dump(self, path): """create a .pyc file""" f = open(path, 'wb') f.write(self._pyc_header()) marshal.dump(self.code, f) f.close() def _pyc_header(self): # compile.c uses marshal to write a long directly, with # calling the interface that would also generate a 1-byte code # to indicate the type of the value. simplest way to get the # same effect is to call marshal and then skip the code. magic = marshal.dumps(self.MAGIC)[1:] mtime = os.stat(self.filename)[stat.ST_MTIME] mtime = struct.pack('i', mtime) return magic + mtime def compile(filename): buf = open(filename).read() mod = CompiledModule(buf, filename) mod.compile() mod.dump(filename + 'c')