/* SSL socket module SSL support based on patches by Brian E Gallew and Laszlo Kovacs. Re-worked a bit by Bill Janssen to add server-side support and certificate decoding. Chris Stawarz contributed some non-blocking patches. This module is imported by ssl.py. It should *not* be used directly. XXX should partial writes be enabled, SSL_MODE_ENABLE_PARTIAL_WRITE? XXX integrate several "shutdown modes" as suggested in http://bugs.python.org/issue8108#msg102867 ? */ #define PY_SSIZE_T_CLEAN #include "Python.h" #ifdef WITH_THREAD #include "pythread.h" #define PySSL_BEGIN_ALLOW_THREADS_S(save) \ do { if (_ssl_locks_count>0) { (save) = PyEval_SaveThread(); } } while (0) #define PySSL_END_ALLOW_THREADS_S(save) \ do { if (_ssl_locks_count>0) { PyEval_RestoreThread(save); } } while (0) #define PySSL_BEGIN_ALLOW_THREADS { \ PyThreadState *_save = NULL; \ PySSL_BEGIN_ALLOW_THREADS_S(_save); #define PySSL_BLOCK_THREADS PySSL_END_ALLOW_THREADS_S(_save); #define PySSL_UNBLOCK_THREADS PySSL_BEGIN_ALLOW_THREADS_S(_save); #define PySSL_END_ALLOW_THREADS PySSL_END_ALLOW_THREADS_S(_save); } #else /* no WITH_THREAD */ #define PySSL_BEGIN_ALLOW_THREADS_S(save) #define PySSL_END_ALLOW_THREADS_S(save) #define PySSL_BEGIN_ALLOW_THREADS #define PySSL_BLOCK_THREADS #define PySSL_UNBLOCK_THREADS #define PySSL_END_ALLOW_THREADS #endif /* Include symbols from _socket module */ #include "socketmodule.h" static PySocketModule_APIObject PySocketModule; #if defined(HAVE_POLL_H) #include #elif defined(HAVE_SYS_POLL_H) #include #endif /* Include OpenSSL header files */ #include "openssl/rsa.h" #include "openssl/crypto.h" #include "openssl/x509.h" #include "openssl/x509v3.h" #include "openssl/pem.h" #include "openssl/ssl.h" #include "openssl/err.h" #include "openssl/rand.h" #include "openssl/bio.h" /* SSL error object */ static PyObject *PySSLErrorObject; static PyObject *PySSLZeroReturnErrorObject; static PyObject *PySSLWantReadErrorObject; static PyObject *PySSLWantWriteErrorObject; static PyObject *PySSLSyscallErrorObject; static PyObject *PySSLEOFErrorObject; /* Error mappings */ static PyObject *err_codes_to_names; static PyObject *err_names_to_codes; static PyObject *lib_codes_to_names; struct py_ssl_error_code { const char *mnemonic; int library, reason; }; struct py_ssl_library_code { const char *library; int code; }; /* Include generated data (error codes) */ #include "_ssl_data.h" /* Openssl comes with TLSv1.1 and TLSv1.2 between 1.0.0h and 1.0.1 http://www.openssl.org/news/changelog.html */ #if OPENSSL_VERSION_NUMBER >= 0x10001000L # define HAVE_TLSv1_2 1 #else # define HAVE_TLSv1_2 0 #endif /* SNI support (client- and server-side) appeared in OpenSSL 1.0.0 and 0.9.8f * This includes the SSL_set_SSL_CTX() function. */ #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME # define HAVE_SNI 1 #else # define HAVE_SNI 0 #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation # define HAVE_ALPN #endif enum py_ssl_error { /* these mirror ssl.h */ PY_SSL_ERROR_NONE, PY_SSL_ERROR_SSL, PY_SSL_ERROR_WANT_READ, PY_SSL_ERROR_WANT_WRITE, PY_SSL_ERROR_WANT_X509_LOOKUP, PY_SSL_ERROR_SYSCALL, /* look at error stack/return value/errno */ PY_SSL_ERROR_ZERO_RETURN, PY_SSL_ERROR_WANT_CONNECT, /* start of non ssl.h errorcodes */ PY_SSL_ERROR_EOF, /* special case of SSL_ERROR_SYSCALL */ PY_SSL_ERROR_NO_SOCKET, /* socket has been GC'd */ PY_SSL_ERROR_INVALID_ERROR_CODE }; enum py_ssl_server_or_client { PY_SSL_CLIENT, PY_SSL_SERVER }; enum py_ssl_cert_requirements { PY_SSL_CERT_NONE, PY_SSL_CERT_OPTIONAL, PY_SSL_CERT_REQUIRED }; enum py_ssl_version { PY_SSL_VERSION_SSL2, PY_SSL_VERSION_SSL3=1, PY_SSL_VERSION_SSL23, #if HAVE_TLSv1_2 PY_SSL_VERSION_TLS1, PY_SSL_VERSION_TLS1_1, PY_SSL_VERSION_TLS1_2 #else PY_SSL_VERSION_TLS1 #endif }; #ifdef WITH_THREAD /* serves as a flag to see whether we've initialized the SSL thread support. */ /* 0 means no, greater than 0 means yes */ static unsigned int _ssl_locks_count = 0; #endif /* def WITH_THREAD */ /* SSL socket object */ #define X509_NAME_MAXLEN 256 /* SSL_CTX_clear_options() and SSL_clear_options() were first added in * OpenSSL 0.9.8m but do not appear in some 0.9.9-dev versions such the * 0.9.9 from "May 2008" that NetBSD 5.0 uses. */ #if OPENSSL_VERSION_NUMBER >= 0x009080dfL && OPENSSL_VERSION_NUMBER != 0x00909000L # define HAVE_SSL_CTX_CLEAR_OPTIONS #else # undef HAVE_SSL_CTX_CLEAR_OPTIONS #endif /* In case of 'tls-unique' it will be 12 bytes for TLS, 36 bytes for * older SSL, but let's be safe */ #define PySSL_CB_MAXLEN 128 typedef struct { PyObject_HEAD SSL_CTX *ctx; #ifdef OPENSSL_NPN_NEGOTIATED unsigned char *npn_protocols; int npn_protocols_len; #endif #ifdef HAVE_ALPN unsigned char *alpn_protocols; int alpn_protocols_len; #endif #ifndef OPENSSL_NO_TLSEXT PyObject *set_hostname; #endif int check_hostname; } PySSLContext; typedef struct { PyObject_HEAD PyObject *Socket; /* weakref to socket on which we're layered */ SSL *ssl; PySSLContext *ctx; /* weakref to SSL context */ X509 *peer_cert; char shutdown_seen_zero; char handshake_done; enum py_ssl_server_or_client socket_type; PyObject *owner; /* Python level "owner" passed to servername callback */ PyObject *server_hostname; } PySSLSocket; typedef struct { PyObject_HEAD BIO *bio; int eof_written; } PySSLMemoryBIO; static PyTypeObject PySSLContext_Type; static PyTypeObject PySSLSocket_Type; static PyTypeObject PySSLMemoryBIO_Type; /*[clinic input] module _ssl class _ssl._SSLContext "PySSLContext *" "&PySSLContext_Type" class _ssl._SSLSocket "PySSLSocket *" "&PySSLSocket_Type" class _ssl.MemoryBIO "PySSLMemoryBIO *" "&PySSLMemoryBIO_Type" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=7bf7cb832638e2e1]*/ #include "clinic/_ssl.c.h" static int PySSL_select(PySocketSockObject *s, int writing, _PyTime_t timeout); #define PySSLContext_Check(v) (Py_TYPE(v) == &PySSLContext_Type) #define PySSLSocket_Check(v) (Py_TYPE(v) == &PySSLSocket_Type) #define PySSLMemoryBIO_Check(v) (Py_TYPE(v) == &PySSLMemoryBIO_Type) typedef enum { SOCKET_IS_NONBLOCKING, SOCKET_IS_BLOCKING, SOCKET_HAS_TIMED_OUT, SOCKET_HAS_BEEN_CLOSED, SOCKET_TOO_LARGE_FOR_SELECT, SOCKET_OPERATION_OK } timeout_state; /* Wrap error strings with filename and line # */ #define ERRSTR1(x,y,z) (x ":" y ": " z) #define ERRSTR(x) ERRSTR1("_ssl.c", Py_STRINGIFY(__LINE__), x) /* Get the socket from a PySSLSocket, if it has one */ #define GET_SOCKET(obj) ((obj)->Socket ? \ (PySocketSockObject *) PyWeakref_GetObject((obj)->Socket) : NULL) /* If sock is NULL, use a timeout of 0 second */ #define GET_SOCKET_TIMEOUT(sock) \ ((sock != NULL) ? (sock)->sock_timeout : 0) /* * SSL errors. */ PyDoc_STRVAR(SSLError_doc, "An error occurred in the SSL implementation."); PyDoc_STRVAR(SSLZeroReturnError_doc, "SSL/TLS session closed cleanly."); PyDoc_STRVAR(SSLWantReadError_doc, "Non-blocking SSL socket needs to read more data\n" "before the requested operation can be completed."); PyDoc_STRVAR(SSLWantWriteError_doc, "Non-blocking SSL socket needs to write more data\n" "before the requested operation can be completed."); PyDoc_STRVAR(SSLSyscallError_doc, "System error when attempting SSL operation."); PyDoc_STRVAR(SSLEOFError_doc, "SSL/TLS connection terminated abruptly."); static PyObject * SSLError_str(PyOSErrorObject *self) { if (self->strerror != NULL && PyUnicode_Check(self->strerror)) { Py_INCREF(self->strerror); return self->strerror; } else return PyObject_Str(self->args); } static PyType_Slot sslerror_type_slots[] = { {Py_tp_base, NULL}, /* Filled out in module init as it's not a constant */ {Py_tp_doc, SSLError_doc}, {Py_tp_str, SSLError_str}, {0, 0}, }; static PyType_Spec sslerror_type_spec = { "ssl.SSLError", sizeof(PyOSErrorObject), 0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, sslerror_type_slots }; static void fill_and_set_sslerror(PyObject *type, int ssl_errno, const char *errstr, int lineno, unsigned long errcode) { PyObject *err_value = NULL, *reason_obj = NULL, *lib_obj = NULL; PyObject *init_value, *msg, *key; _Py_IDENTIFIER(reason); _Py_IDENTIFIER(library); if (errcode != 0) { int lib, reason; lib = ERR_GET_LIB(errcode); reason = ERR_GET_REASON(errcode); key = Py_BuildValue("ii", lib, reason); if (key == NULL) goto fail; reason_obj = PyDict_GetItem(err_codes_to_names, key); Py_DECREF(key); if (reason_obj == NULL) { /* XXX if reason < 100, it might reflect a library number (!!) */ PyErr_Clear(); } key = PyLong_FromLong(lib); if (key == NULL) goto fail; lib_obj = PyDict_GetItem(lib_codes_to_names, key); Py_DECREF(key); if (lib_obj == NULL) { PyErr_Clear(); } if (errstr == NULL) errstr = ERR_reason_error_string(errcode); } if (errstr == NULL) errstr = "unknown error"; if (reason_obj && lib_obj) msg = PyUnicode_FromFormat("[%S: %S] %s (_ssl.c:%d)", lib_obj, reason_obj, errstr, lineno); else if (lib_obj) msg = PyUnicode_FromFormat("[%S] %s (_ssl.c:%d)", lib_obj, errstr, lineno); else msg = PyUnicode_FromFormat("%s (_ssl.c:%d)", errstr, lineno); if (msg == NULL) goto fail; init_value = Py_BuildValue("iN", ssl_errno, msg); if (init_value == NULL) goto fail; err_value = PyObject_CallObject(type, init_value); Py_DECREF(init_value); if (err_value == NULL) goto fail; if (reason_obj == NULL) reason_obj = Py_None; if (_PyObject_SetAttrId(err_value, &PyId_reason, reason_obj)) goto fail; if (lib_obj == NULL) lib_obj = Py_None; if (_PyObject_SetAttrId(err_value, &PyId_library, lib_obj)) goto fail; PyErr_SetObject(type, err_value); fail: Py_XDECREF(err_value); } static PyObject * PySSL_SetError(PySSLSocket *obj, int ret, const char *filename, int lineno) { PyObject *type = PySSLErrorObject; char *errstr = NULL; int err; enum py_ssl_error p = PY_SSL_ERROR_NONE; unsigned long e = 0; assert(ret <= 0); e = ERR_peek_last_error(); if (obj->ssl != NULL) { err = SSL_get_error(obj->ssl, ret); switch (err) { case SSL_ERROR_ZERO_RETURN: errstr = "TLS/SSL connection has been closed (EOF)"; type = PySSLZeroReturnErrorObject; p = PY_SSL_ERROR_ZERO_RETURN; break; case SSL_ERROR_WANT_READ: errstr = "The operation did not complete (read)"; type = PySSLWantReadErrorObject; p = PY_SSL_ERROR_WANT_READ; break; case SSL_ERROR_WANT_WRITE: p = PY_SSL_ERROR_WANT_WRITE; type = PySSLWantWriteErrorObject; errstr = "The operation did not complete (write)"; break; case SSL_ERROR_WANT_X509_LOOKUP: p = PY_SSL_ERROR_WANT_X509_LOOKUP; errstr = "The operation did not complete (X509 lookup)"; break; case SSL_ERROR_WANT_CONNECT: p = PY_SSL_ERROR_WANT_CONNECT; errstr = "The operation did not complete (connect)"; break; case SSL_ERROR_SYSCALL: { if (e == 0) { PySocketSockObject *s = GET_SOCKET(obj); if (ret == 0 || (((PyObject *)s) == Py_None)) { p = PY_SSL_ERROR_EOF; type = PySSLEOFErrorObject; errstr = "EOF occurred in violation of protocol"; } else if (s && ret == -1) { /* underlying BIO reported an I/O error */ Py_INCREF(s); ERR_clear_error(); s->errorhandler(); Py_DECREF(s); return NULL; } else { /* possible? */ p = PY_SSL_ERROR_SYSCALL; type = PySSLSyscallErrorObject; errstr = "Some I/O error occurred"; } } else { p = PY_SSL_ERROR_SYSCALL; } break; } case SSL_ERROR_SSL: { p = PY_SSL_ERROR_SSL; if (e == 0) /* possible? */ errstr = "A failure in the SSL library occurred"; break; } default: p = PY_SSL_ERROR_INVALID_ERROR_CODE; errstr = "Invalid error code"; } } fill_and_set_sslerror(type, p, errstr, lineno, e); ERR_clear_error(); return NULL; } static PyObject * _setSSLError (const char *errstr, int errcode, const char *filename, int lineno) { if (errstr == NULL) errcode = ERR_peek_last_error(); else errcode = 0; fill_and_set_sslerror(PySSLErrorObject, errcode, errstr, lineno, errcode); ERR_clear_error(); return NULL; } /* * SSL objects */ static PySSLSocket * newPySSLSocket(PySSLContext *sslctx, PySocketSockObject *sock, enum py_ssl_server_or_client socket_type, char *server_hostname, PySSLMemoryBIO *inbio, PySSLMemoryBIO *outbio) { PySSLSocket *self; SSL_CTX *ctx = sslctx->ctx; PyObject *hostname; long mode; self = PyObject_New(PySSLSocket, &PySSLSocket_Type); if (self == NULL) return NULL; self->peer_cert = NULL; self->ssl = NULL; self->Socket = NULL; self->ctx = sslctx; self->shutdown_seen_zero = 0; self->handshake_done = 0; self->owner = NULL; if (server_hostname != NULL) { hostname = PyUnicode_Decode(server_hostname, strlen(server_hostname), "idna", "strict"); if (hostname == NULL) { Py_DECREF(self); return NULL; } self->server_hostname = hostname; } else self->server_hostname = NULL; Py_INCREF(sslctx); /* Make sure the SSL error state is initialized */ (void) ERR_get_state(); ERR_clear_error(); PySSL_BEGIN_ALLOW_THREADS self->ssl = SSL_new(ctx); PySSL_END_ALLOW_THREADS SSL_set_app_data(self->ssl, self); if (sock) { SSL_set_fd(self->ssl, Py_SAFE_DOWNCAST(sock->sock_fd, SOCKET_T, int)); } else { /* BIOs are reference counted and SSL_set_bio borrows our reference. * To prevent a double free in memory_bio_dealloc() we need to take an * extra reference here. */ CRYPTO_add(&inbio->bio->references, 1, CRYPTO_LOCK_BIO); CRYPTO_add(&outbio->bio->references, 1, CRYPTO_LOCK_BIO); SSL_set_bio(self->ssl, inbio->bio, outbio->bio); } mode = SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER; #ifdef SSL_MODE_AUTO_RETRY mode |= SSL_MODE_AUTO_RETRY; #endif SSL_set_mode(self->ssl, mode); #if HAVE_SNI if (server_hostname != NULL) SSL_set_tlsext_host_name(self->ssl, server_hostname); #endif /* If the socket is in non-blocking mode or timeout mode, set the BIO * to non-blocking mode (blocking is the default) */ if (sock && sock->sock_timeout >= 0) { BIO_set_nbio(SSL_get_rbio(self->ssl), 1); BIO_set_nbio(SSL_get_wbio(self->ssl), 1); } PySSL_BEGIN_ALLOW_THREADS if (socket_type == PY_SSL_CLIENT) SSL_set_connect_state(self->ssl); else SSL_set_accept_state(self->ssl); PySSL_END_ALLOW_THREADS self->socket_type = socket_type; if (sock != NULL) { self->Socket = PyWeakref_NewRef((PyObject *) sock, NULL); if (self->Socket == NULL) { Py_DECREF(self); Py_XDECREF(self->server_hostname); return NULL; } } return self; } /* SSL object methods */ /*[clinic input] _ssl._SSLSocket.do_handshake [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_do_handshake_impl(PySSLSocket *self) /*[clinic end generated code: output=6c0898a8936548f6 input=d2d737de3df018c8]*/ { int ret; int err; int sockstate, nonblocking; PySocketSockObject *sock = GET_SOCKET(self); _PyTime_t timeout, deadline = 0; int has_timeout; if (sock) { if (((PyObject*)sock) == Py_None) { _setSSLError("Underlying socket connection gone", PY_SSL_ERROR_NO_SOCKET, __FILE__, __LINE__); return NULL; } Py_INCREF(sock); /* just in case the blocking state of the socket has been changed */ nonblocking = (sock->sock_timeout >= 0); BIO_set_nbio(SSL_get_rbio(self->ssl), nonblocking); BIO_set_nbio(SSL_get_wbio(self->ssl), nonblocking); } timeout = GET_SOCKET_TIMEOUT(sock); has_timeout = (timeout > 0); if (has_timeout) deadline = _PyTime_GetMonotonicClock() + timeout; /* Actually negotiate SSL connection */ /* XXX If SSL_do_handshake() returns 0, it's also a failure. */ do { PySSL_BEGIN_ALLOW_THREADS ret = SSL_do_handshake(self->ssl); err = SSL_get_error(self->ssl, ret); PySSL_END_ALLOW_THREADS if (PyErr_CheckSignals()) goto error; if (has_timeout) timeout = deadline - _PyTime_GetMonotonicClock(); if (err == SSL_ERROR_WANT_READ) { sockstate = PySSL_select(sock, 0, timeout); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = PySSL_select(sock, 1, timeout); } else { sockstate = SOCKET_OPERATION_OK; } if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySocketModule.timeout_error, ERRSTR("The handshake operation timed out")); goto error; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, ERRSTR("Underlying socket has been closed.")); goto error; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, ERRSTR("Underlying socket too large for select().")); goto error; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); Py_XDECREF(sock); if (ret < 1) return PySSL_SetError(self, ret, __FILE__, __LINE__); if (self->peer_cert) X509_free (self->peer_cert); PySSL_BEGIN_ALLOW_THREADS self->peer_cert = SSL_get_peer_certificate(self->ssl); PySSL_END_ALLOW_THREADS self->handshake_done = 1; Py_INCREF(Py_None); return Py_None; error: Py_XDECREF(sock); return NULL; } static PyObject * _create_tuple_for_attribute (ASN1_OBJECT *name, ASN1_STRING *value) { char namebuf[X509_NAME_MAXLEN]; int buflen; PyObject *name_obj; PyObject *value_obj; PyObject *attr; unsigned char *valuebuf = NULL; buflen = OBJ_obj2txt(namebuf, sizeof(namebuf), name, 0); if (buflen < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail; } name_obj = PyUnicode_FromStringAndSize(namebuf, buflen); if (name_obj == NULL) goto fail; buflen = ASN1_STRING_to_UTF8(&valuebuf, value); if (buflen < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); Py_DECREF(name_obj); goto fail; } value_obj = PyUnicode_DecodeUTF8((char *) valuebuf, buflen, "strict"); OPENSSL_free(valuebuf); if (value_obj == NULL) { Py_DECREF(name_obj); goto fail; } attr = PyTuple_New(2); if (attr == NULL) { Py_DECREF(name_obj); Py_DECREF(value_obj); goto fail; } PyTuple_SET_ITEM(attr, 0, name_obj); PyTuple_SET_ITEM(attr, 1, value_obj); return attr; fail: return NULL; } static PyObject * _create_tuple_for_X509_NAME (X509_NAME *xname) { PyObject *dn = NULL; /* tuple which represents the "distinguished name" */ PyObject *rdn = NULL; /* tuple to hold a "relative distinguished name" */ PyObject *rdnt; PyObject *attr = NULL; /* tuple to hold an attribute */ int entry_count = X509_NAME_entry_count(xname); X509_NAME_ENTRY *entry; ASN1_OBJECT *name; ASN1_STRING *value; int index_counter; int rdn_level = -1; int retcode; dn = PyList_New(0); if (dn == NULL) return NULL; /* now create another tuple to hold the top-level RDN */ rdn = PyList_New(0); if (rdn == NULL) goto fail0; for (index_counter = 0; index_counter < entry_count; index_counter++) { entry = X509_NAME_get_entry(xname, index_counter); /* check to see if we've gotten to a new RDN */ if (rdn_level >= 0) { if (rdn_level != entry->set) { /* yes, new RDN */ /* add old RDN to DN */ rdnt = PyList_AsTuple(rdn); Py_DECREF(rdn); if (rdnt == NULL) goto fail0; retcode = PyList_Append(dn, rdnt); Py_DECREF(rdnt); if (retcode < 0) goto fail0; /* create new RDN */ rdn = PyList_New(0); if (rdn == NULL) goto fail0; } } rdn_level = entry->set; /* now add this attribute to the current RDN */ name = X509_NAME_ENTRY_get_object(entry); value = X509_NAME_ENTRY_get_data(entry); attr = _create_tuple_for_attribute(name, value); /* fprintf(stderr, "RDN level %d, attribute %s: %s\n", entry->set, PyBytes_AS_STRING(PyTuple_GET_ITEM(attr, 0)), PyBytes_AS_STRING(PyTuple_GET_ITEM(attr, 1))); */ if (attr == NULL) goto fail1; retcode = PyList_Append(rdn, attr); Py_DECREF(attr); if (retcode < 0) goto fail1; } /* now, there's typically a dangling RDN */ if (rdn != NULL) { if (PyList_GET_SIZE(rdn) > 0) { rdnt = PyList_AsTuple(rdn); Py_DECREF(rdn); if (rdnt == NULL) goto fail0; retcode = PyList_Append(dn, rdnt); Py_DECREF(rdnt); if (retcode < 0) goto fail0; } else { Py_DECREF(rdn); } } /* convert list to tuple */ rdnt = PyList_AsTuple(dn); Py_DECREF(dn); if (rdnt == NULL) return NULL; return rdnt; fail1: Py_XDECREF(rdn); fail0: Py_XDECREF(dn); return NULL; } static PyObject * _get_peer_alt_names (X509 *certificate) { /* this code follows the procedure outlined in OpenSSL's crypto/x509v3/v3_prn.c:X509v3_EXT_print() function to extract the STACK_OF(GENERAL_NAME), then iterates through the stack to add the names. */ int i, j; PyObject *peer_alt_names = Py_None; PyObject *v = NULL, *t; X509_EXTENSION *ext = NULL; GENERAL_NAMES *names = NULL; GENERAL_NAME *name; const X509V3_EXT_METHOD *method; BIO *biobuf = NULL; char buf[2048]; char *vptr; int len; const unsigned char *p; if (certificate == NULL) return peer_alt_names; /* get a memory buffer */ biobuf = BIO_new(BIO_s_mem()); i = -1; while ((i = X509_get_ext_by_NID( certificate, NID_subject_alt_name, i)) >= 0) { if (peer_alt_names == Py_None) { peer_alt_names = PyList_New(0); if (peer_alt_names == NULL) goto fail; } /* now decode the altName */ ext = X509_get_ext(certificate, i); if(!(method = X509V3_EXT_get(ext))) { PyErr_SetString (PySSLErrorObject, ERRSTR("No method for internalizing subjectAltName!")); goto fail; } p = ext->value->data; if (method->it) names = (GENERAL_NAMES*) (ASN1_item_d2i(NULL, &p, ext->value->length, ASN1_ITEM_ptr(method->it))); else names = (GENERAL_NAMES*) (method->d2i(NULL, &p, ext->value->length)); for(j = 0; j < sk_GENERAL_NAME_num(names); j++) { /* get a rendering of each name in the set of names */ int gntype; ASN1_STRING *as = NULL; name = sk_GENERAL_NAME_value(names, j); gntype = name->type; switch (gntype) { case GEN_DIRNAME: /* we special-case DirName as a tuple of tuples of attributes */ t = PyTuple_New(2); if (t == NULL) { goto fail; } v = PyUnicode_FromString("DirName"); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 0, v); v = _create_tuple_for_X509_NAME (name->d.dirn); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 1, v); break; case GEN_EMAIL: case GEN_DNS: case GEN_URI: /* GENERAL_NAME_print() doesn't handle NULL bytes in ASN1_string correctly, CVE-2013-4238 */ t = PyTuple_New(2); if (t == NULL) goto fail; switch (gntype) { case GEN_EMAIL: v = PyUnicode_FromString("email"); as = name->d.rfc822Name; break; case GEN_DNS: v = PyUnicode_FromString("DNS"); as = name->d.dNSName; break; case GEN_URI: v = PyUnicode_FromString("URI"); as = name->d.uniformResourceIdentifier; break; } if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 0, v); v = PyUnicode_FromStringAndSize((char *)ASN1_STRING_data(as), ASN1_STRING_length(as)); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 1, v); break; default: /* for everything else, we use the OpenSSL print form */ switch (gntype) { /* check for new general name type */ case GEN_OTHERNAME: case GEN_X400: case GEN_EDIPARTY: case GEN_IPADD: case GEN_RID: break; default: if (PyErr_WarnFormat(PyExc_RuntimeWarning, 1, "Unknown general name type %d", gntype) == -1) { goto fail; } break; } (void) BIO_reset(biobuf); GENERAL_NAME_print(biobuf, name); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail; } vptr = strchr(buf, ':'); if (vptr == NULL) goto fail; t = PyTuple_New(2); if (t == NULL) goto fail; v = PyUnicode_FromStringAndSize(buf, (vptr - buf)); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 0, v); v = PyUnicode_FromStringAndSize((vptr + 1), (len - (vptr - buf + 1))); if (v == NULL) { Py_DECREF(t); goto fail; } PyTuple_SET_ITEM(t, 1, v); break; } /* and add that rendering to the list */ if (PyList_Append(peer_alt_names, t) < 0) { Py_DECREF(t); goto fail; } Py_DECREF(t); } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } BIO_free(biobuf); if (peer_alt_names != Py_None) { v = PyList_AsTuple(peer_alt_names); Py_DECREF(peer_alt_names); return v; } else { return peer_alt_names; } fail: if (biobuf != NULL) BIO_free(biobuf); if (peer_alt_names != Py_None) { Py_XDECREF(peer_alt_names); } return NULL; } static PyObject * _get_aia_uri(X509 *certificate, int nid) { PyObject *lst = NULL, *ostr = NULL; int i, result; AUTHORITY_INFO_ACCESS *info; info = X509_get_ext_d2i(certificate, NID_info_access, NULL, NULL); if (info == NULL) return Py_None; if (sk_ACCESS_DESCRIPTION_num(info) == 0) { AUTHORITY_INFO_ACCESS_free(info); return Py_None; } if ((lst = PyList_New(0)) == NULL) { goto fail; } for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++) { ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i); ASN1_IA5STRING *uri; if ((OBJ_obj2nid(ad->method) != nid) || (ad->location->type != GEN_URI)) { continue; } uri = ad->location->d.uniformResourceIdentifier; ostr = PyUnicode_FromStringAndSize((char *)uri->data, uri->length); if (ostr == NULL) { goto fail; } result = PyList_Append(lst, ostr); Py_DECREF(ostr); if (result < 0) { goto fail; } } AUTHORITY_INFO_ACCESS_free(info); /* convert to tuple or None */ if (PyList_Size(lst) == 0) { Py_DECREF(lst); return Py_None; } else { PyObject *tup; tup = PyList_AsTuple(lst); Py_DECREF(lst); return tup; } fail: AUTHORITY_INFO_ACCESS_free(info); Py_XDECREF(lst); return NULL; } static PyObject * _get_crl_dp(X509 *certificate) { STACK_OF(DIST_POINT) *dps; int i, j; PyObject *lst, *res = NULL; #if OPENSSL_VERSION_NUMBER < 0x10001000L dps = X509_get_ext_d2i(certificate, NID_crl_distribution_points, NULL, NULL); #else /* Calls x509v3_cache_extensions and sets up crldp */ X509_check_ca(certificate); dps = certificate->crldp; #endif if (dps == NULL) return Py_None; lst = PyList_New(0); if (lst == NULL) goto done; for (i=0; i < sk_DIST_POINT_num(dps); i++) { DIST_POINT *dp; STACK_OF(GENERAL_NAME) *gns; dp = sk_DIST_POINT_value(dps, i); gns = dp->distpoint->name.fullname; for (j=0; j < sk_GENERAL_NAME_num(gns); j++) { GENERAL_NAME *gn; ASN1_IA5STRING *uri; PyObject *ouri; int err; gn = sk_GENERAL_NAME_value(gns, j); if (gn->type != GEN_URI) { continue; } uri = gn->d.uniformResourceIdentifier; ouri = PyUnicode_FromStringAndSize((char *)uri->data, uri->length); if (ouri == NULL) goto done; err = PyList_Append(lst, ouri); Py_DECREF(ouri); if (err < 0) goto done; } } /* Convert to tuple. */ res = (PyList_GET_SIZE(lst) > 0) ? PyList_AsTuple(lst) : Py_None; done: Py_XDECREF(lst); #if OPENSSL_VERSION_NUMBER < 0x10001000L sk_DIST_POINT_free(dps); #endif return res; } static PyObject * _decode_certificate(X509 *certificate) { PyObject *retval = NULL; BIO *biobuf = NULL; PyObject *peer; PyObject *peer_alt_names = NULL; PyObject *issuer; PyObject *version; PyObject *sn_obj; PyObject *obj; ASN1_INTEGER *serialNumber; char buf[2048]; int len, result; ASN1_TIME *notBefore, *notAfter; PyObject *pnotBefore, *pnotAfter; retval = PyDict_New(); if (retval == NULL) return NULL; peer = _create_tuple_for_X509_NAME( X509_get_subject_name(certificate)); if (peer == NULL) goto fail0; if (PyDict_SetItemString(retval, (const char *) "subject", peer) < 0) { Py_DECREF(peer); goto fail0; } Py_DECREF(peer); issuer = _create_tuple_for_X509_NAME( X509_get_issuer_name(certificate)); if (issuer == NULL) goto fail0; if (PyDict_SetItemString(retval, (const char *)"issuer", issuer) < 0) { Py_DECREF(issuer); goto fail0; } Py_DECREF(issuer); version = PyLong_FromLong(X509_get_version(certificate) + 1); if (version == NULL) goto fail0; if (PyDict_SetItemString(retval, "version", version) < 0) { Py_DECREF(version); goto fail0; } Py_DECREF(version); /* get a memory buffer */ biobuf = BIO_new(BIO_s_mem()); (void) BIO_reset(biobuf); serialNumber = X509_get_serialNumber(certificate); /* should not exceed 20 octets, 160 bits, so buf is big enough */ i2a_ASN1_INTEGER(biobuf, serialNumber); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } sn_obj = PyUnicode_FromStringAndSize(buf, len); if (sn_obj == NULL) goto fail1; if (PyDict_SetItemString(retval, "serialNumber", sn_obj) < 0) { Py_DECREF(sn_obj); goto fail1; } Py_DECREF(sn_obj); (void) BIO_reset(biobuf); notBefore = X509_get_notBefore(certificate); ASN1_TIME_print(biobuf, notBefore); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } pnotBefore = PyUnicode_FromStringAndSize(buf, len); if (pnotBefore == NULL) goto fail1; if (PyDict_SetItemString(retval, "notBefore", pnotBefore) < 0) { Py_DECREF(pnotBefore); goto fail1; } Py_DECREF(pnotBefore); (void) BIO_reset(biobuf); notAfter = X509_get_notAfter(certificate); ASN1_TIME_print(biobuf, notAfter); len = BIO_gets(biobuf, buf, sizeof(buf)-1); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto fail1; } pnotAfter = PyUnicode_FromStringAndSize(buf, len); if (pnotAfter == NULL) goto fail1; if (PyDict_SetItemString(retval, "notAfter", pnotAfter) < 0) { Py_DECREF(pnotAfter); goto fail1; } Py_DECREF(pnotAfter); /* Now look for subjectAltName */ peer_alt_names = _get_peer_alt_names(certificate); if (peer_alt_names == NULL) goto fail1; else if (peer_alt_names != Py_None) { if (PyDict_SetItemString(retval, "subjectAltName", peer_alt_names) < 0) { Py_DECREF(peer_alt_names); goto fail1; } Py_DECREF(peer_alt_names); } /* Authority Information Access: OCSP URIs */ obj = _get_aia_uri(certificate, NID_ad_OCSP); if (obj == NULL) { goto fail1; } else if (obj != Py_None) { result = PyDict_SetItemString(retval, "OCSP", obj); Py_DECREF(obj); if (result < 0) { goto fail1; } } obj = _get_aia_uri(certificate, NID_ad_ca_issuers); if (obj == NULL) { goto fail1; } else if (obj != Py_None) { result = PyDict_SetItemString(retval, "caIssuers", obj); Py_DECREF(obj); if (result < 0) { goto fail1; } } /* CDP (CRL distribution points) */ obj = _get_crl_dp(certificate); if (obj == NULL) { goto fail1; } else if (obj != Py_None) { result = PyDict_SetItemString(retval, "crlDistributionPoints", obj); Py_DECREF(obj); if (result < 0) { goto fail1; } } BIO_free(biobuf); return retval; fail1: if (biobuf != NULL) BIO_free(biobuf); fail0: Py_XDECREF(retval); return NULL; } static PyObject * _certificate_to_der(X509 *certificate) { unsigned char *bytes_buf = NULL; int len; PyObject *retval; bytes_buf = NULL; len = i2d_X509(certificate, &bytes_buf); if (len < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); return NULL; } /* this is actually an immutable bytes sequence */ retval = PyBytes_FromStringAndSize((const char *) bytes_buf, len); OPENSSL_free(bytes_buf); return retval; } /*[clinic input] _ssl._test_decode_cert path: object(converter="PyUnicode_FSConverter") / [clinic start generated code]*/ static PyObject * _ssl__test_decode_cert_impl(PyModuleDef *module, PyObject *path) /*[clinic end generated code: output=679e01db282804e9 input=cdeaaf02d4346628]*/ { PyObject *retval = NULL; X509 *x=NULL; BIO *cert; if ((cert=BIO_new(BIO_s_file())) == NULL) { PyErr_SetString(PySSLErrorObject, "Can't malloc memory to read file"); goto fail0; } if (BIO_read_filename(cert, PyBytes_AsString(path)) <= 0) { PyErr_SetString(PySSLErrorObject, "Can't open file"); goto fail0; } x = PEM_read_bio_X509_AUX(cert,NULL, NULL, NULL); if (x == NULL) { PyErr_SetString(PySSLErrorObject, "Error decoding PEM-encoded file"); goto fail0; } retval = _decode_certificate(x); X509_free(x); fail0: Py_DECREF(path); if (cert != NULL) BIO_free(cert); return retval; } /*[clinic input] _ssl._SSLSocket.peer_certificate der as binary_mode: bool = False / Returns the certificate for the peer. If no certificate was provided, returns None. If a certificate was provided, but not validated, returns an empty dictionary. Otherwise returns a dict containing information about the peer certificate. If the optional argument is True, returns a DER-encoded copy of the peer certificate, or None if no certificate was provided. This will return the certificate even if it wasn't validated. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_peer_certificate_impl(PySSLSocket *self, int binary_mode) /*[clinic end generated code: output=f0dc3e4d1d818a1d input=8281bd1d193db843]*/ { int verification; if (!self->handshake_done) { PyErr_SetString(PyExc_ValueError, "handshake not done yet"); return NULL; } if (!self->peer_cert) Py_RETURN_NONE; if (binary_mode) { /* return cert in DER-encoded format */ return _certificate_to_der(self->peer_cert); } else { verification = SSL_CTX_get_verify_mode(SSL_get_SSL_CTX(self->ssl)); if ((verification & SSL_VERIFY_PEER) == 0) return PyDict_New(); else return _decode_certificate(self->peer_cert); } } static PyObject * cipher_to_tuple(const SSL_CIPHER *cipher) { const char *cipher_name, *cipher_protocol; PyObject *v, *retval = PyTuple_New(3); if (retval == NULL) return NULL; cipher_name = SSL_CIPHER_get_name(cipher); if (cipher_name == NULL) { Py_INCREF(Py_None); PyTuple_SET_ITEM(retval, 0, Py_None); } else { v = PyUnicode_FromString(cipher_name); if (v == NULL) goto fail; PyTuple_SET_ITEM(retval, 0, v); } cipher_protocol = SSL_CIPHER_get_version(cipher); if (cipher_protocol == NULL) { Py_INCREF(Py_None); PyTuple_SET_ITEM(retval, 1, Py_None); } else { v = PyUnicode_FromString(cipher_protocol); if (v == NULL) goto fail; PyTuple_SET_ITEM(retval, 1, v); } v = PyLong_FromLong(SSL_CIPHER_get_bits(cipher, NULL)); if (v == NULL) goto fail; PyTuple_SET_ITEM(retval, 2, v); return retval; fail: Py_DECREF(retval); return NULL; } /*[clinic input] _ssl._SSLSocket.shared_ciphers [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_shared_ciphers_impl(PySSLSocket *self) /*[clinic end generated code: output=3d174ead2e42c4fd input=0bfe149da8fe6306]*/ { SSL_SESSION *sess = SSL_get_session(self->ssl); STACK_OF(SSL_CIPHER) *ciphers; int i; PyObject *res; if (!sess || !sess->ciphers) Py_RETURN_NONE; ciphers = sess->ciphers; res = PyList_New(sk_SSL_CIPHER_num(ciphers)); if (!res) return NULL; for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { PyObject *tup = cipher_to_tuple(sk_SSL_CIPHER_value(ciphers, i)); if (!tup) { Py_DECREF(res); return NULL; } PyList_SET_ITEM(res, i, tup); } return res; } /*[clinic input] _ssl._SSLSocket.cipher [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_cipher_impl(PySSLSocket *self) /*[clinic end generated code: output=376417c16d0e5815 input=548fb0e27243796d]*/ { const SSL_CIPHER *current; if (self->ssl == NULL) Py_RETURN_NONE; current = SSL_get_current_cipher(self->ssl); if (current == NULL) Py_RETURN_NONE; return cipher_to_tuple(current); } /*[clinic input] _ssl._SSLSocket.version [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_version_impl(PySSLSocket *self) /*[clinic end generated code: output=178aed33193b2cdb input=900186a503436fd6]*/ { const char *version; if (self->ssl == NULL) Py_RETURN_NONE; version = SSL_get_version(self->ssl); if (!strcmp(version, "unknown")) Py_RETURN_NONE; return PyUnicode_FromString(version); } #ifdef OPENSSL_NPN_NEGOTIATED /*[clinic input] _ssl._SSLSocket.selected_npn_protocol [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_selected_npn_protocol_impl(PySSLSocket *self) /*[clinic end generated code: output=b91d494cd207ecf6 input=c28fde139204b826]*/ { const unsigned char *out; unsigned int outlen; SSL_get0_next_proto_negotiated(self->ssl, &out, &outlen); if (out == NULL) Py_RETURN_NONE; return PyUnicode_FromStringAndSize((char *)out, outlen); } #endif #ifdef HAVE_ALPN /*[clinic input] _ssl._SSLSocket.selected_alpn_protocol [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_selected_alpn_protocol_impl(PySSLSocket *self) /*[clinic end generated code: output=ec33688b303d250f input=442de30e35bc2913]*/ { const unsigned char *out; unsigned int outlen; SSL_get0_alpn_selected(self->ssl, &out, &outlen); if (out == NULL) Py_RETURN_NONE; return PyUnicode_FromStringAndSize((char *)out, outlen); } #endif /*[clinic input] _ssl._SSLSocket.compression [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_compression_impl(PySSLSocket *self) /*[clinic end generated code: output=bd16cb1bb4646ae7 input=5d059d0a2bbc32c8]*/ { #ifdef OPENSSL_NO_COMP Py_RETURN_NONE; #else const COMP_METHOD *comp_method; const char *short_name; if (self->ssl == NULL) Py_RETURN_NONE; comp_method = SSL_get_current_compression(self->ssl); if (comp_method == NULL || comp_method->type == NID_undef) Py_RETURN_NONE; short_name = OBJ_nid2sn(comp_method->type); if (short_name == NULL) Py_RETURN_NONE; return PyUnicode_DecodeFSDefault(short_name); #endif } static PySSLContext *PySSL_get_context(PySSLSocket *self, void *closure) { Py_INCREF(self->ctx); return self->ctx; } static int PySSL_set_context(PySSLSocket *self, PyObject *value, void *closure) { if (PyObject_TypeCheck(value, &PySSLContext_Type)) { #if !HAVE_SNI PyErr_SetString(PyExc_NotImplementedError, "setting a socket's " "context is not supported by your OpenSSL library"); return -1; #else Py_INCREF(value); Py_SETREF(self->ctx, (PySSLContext *)value); SSL_set_SSL_CTX(self->ssl, self->ctx->ctx); #endif } else { PyErr_SetString(PyExc_TypeError, "The value must be a SSLContext"); return -1; } return 0; } PyDoc_STRVAR(PySSL_set_context_doc, "_setter_context(ctx)\n\ \ This changes the context associated with the SSLSocket. This is typically\n\ used from within a callback function set by the set_servername_callback\n\ on the SSLContext to change the certificate information associated with the\n\ SSLSocket before the cryptographic exchange handshake messages\n"); static PyObject * PySSL_get_server_side(PySSLSocket *self, void *c) { return PyBool_FromLong(self->socket_type == PY_SSL_SERVER); } PyDoc_STRVAR(PySSL_get_server_side_doc, "Whether this is a server-side socket."); static PyObject * PySSL_get_server_hostname(PySSLSocket *self, void *c) { if (self->server_hostname == NULL) Py_RETURN_NONE; Py_INCREF(self->server_hostname); return self->server_hostname; } PyDoc_STRVAR(PySSL_get_server_hostname_doc, "The currently set server hostname (for SNI)."); static PyObject * PySSL_get_owner(PySSLSocket *self, void *c) { PyObject *owner; if (self->owner == NULL) Py_RETURN_NONE; owner = PyWeakref_GetObject(self->owner); Py_INCREF(owner); return owner; } static int PySSL_set_owner(PySSLSocket *self, PyObject *value, void *c) { Py_XSETREF(self->owner, PyWeakref_NewRef(value, NULL)); if (self->owner == NULL) return -1; return 0; } PyDoc_STRVAR(PySSL_get_owner_doc, "The Python-level owner of this object.\ Passed as \"self\" in servername callback."); static void PySSL_dealloc(PySSLSocket *self) { if (self->peer_cert) /* Possible not to have one? */ X509_free (self->peer_cert); if (self->ssl) SSL_free(self->ssl); Py_XDECREF(self->Socket); Py_XDECREF(self->ctx); Py_XDECREF(self->server_hostname); Py_XDECREF(self->owner); PyObject_Del(self); } /* If the socket has a timeout, do a select()/poll() on the socket. The argument writing indicates the direction. Returns one of the possibilities in the timeout_state enum (above). */ static int PySSL_select(PySocketSockObject *s, int writing, _PyTime_t timeout) { int rc; #ifdef HAVE_POLL struct pollfd pollfd; _PyTime_t ms; #else int nfds; fd_set fds; struct timeval tv; #endif /* Nothing to do unless we're in timeout mode (not non-blocking) */ if ((s == NULL) || (timeout == 0)) return SOCKET_IS_NONBLOCKING; else if (timeout < 0) { if (s->sock_timeout > 0) return SOCKET_HAS_TIMED_OUT; else return SOCKET_IS_BLOCKING; } /* Guard against closed socket */ if (s->sock_fd < 0) return SOCKET_HAS_BEEN_CLOSED; /* Prefer poll, if available, since you can poll() any fd * which can't be done with select(). */ #ifdef HAVE_POLL pollfd.fd = s->sock_fd; pollfd.events = writing ? POLLOUT : POLLIN; /* timeout is in seconds, poll() uses milliseconds */ ms = (int)_PyTime_AsMilliseconds(timeout, _PyTime_ROUND_CEILING); assert(ms <= INT_MAX); PySSL_BEGIN_ALLOW_THREADS rc = poll(&pollfd, 1, (int)ms); PySSL_END_ALLOW_THREADS #else /* Guard against socket too large for select*/ if (!_PyIsSelectable_fd(s->sock_fd)) return SOCKET_TOO_LARGE_FOR_SELECT; _PyTime_AsTimeval_noraise(timeout, &tv, _PyTime_ROUND_CEILING); FD_ZERO(&fds); FD_SET(s->sock_fd, &fds); /* Wait until the socket becomes ready */ PySSL_BEGIN_ALLOW_THREADS nfds = Py_SAFE_DOWNCAST(s->sock_fd+1, SOCKET_T, int); if (writing) rc = select(nfds, NULL, &fds, NULL, &tv); else rc = select(nfds, &fds, NULL, NULL, &tv); PySSL_END_ALLOW_THREADS #endif /* Return SOCKET_TIMED_OUT on timeout, SOCKET_OPERATION_OK otherwise (when we are able to write or when there's something to read) */ return rc == 0 ? SOCKET_HAS_TIMED_OUT : SOCKET_OPERATION_OK; } /*[clinic input] _ssl._SSLSocket.write b: Py_buffer / Writes the bytes-like object b into the SSL object. Returns the number of bytes written. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_write_impl(PySSLSocket *self, Py_buffer *b) /*[clinic end generated code: output=aa7a6be5527358d8 input=77262d994fe5100a]*/ { int len; int sockstate; int err; int nonblocking; PySocketSockObject *sock = GET_SOCKET(self); _PyTime_t timeout, deadline = 0; int has_timeout; if (sock != NULL) { if (((PyObject*)sock) == Py_None) { _setSSLError("Underlying socket connection gone", PY_SSL_ERROR_NO_SOCKET, __FILE__, __LINE__); return NULL; } Py_INCREF(sock); } if (b->len > INT_MAX) { PyErr_Format(PyExc_OverflowError, "string longer than %d bytes", INT_MAX); goto error; } if (sock != NULL) { /* just in case the blocking state of the socket has been changed */ nonblocking = (sock->sock_timeout >= 0); BIO_set_nbio(SSL_get_rbio(self->ssl), nonblocking); BIO_set_nbio(SSL_get_wbio(self->ssl), nonblocking); } timeout = GET_SOCKET_TIMEOUT(sock); has_timeout = (timeout > 0); if (has_timeout) deadline = _PyTime_GetMonotonicClock() + timeout; sockstate = PySSL_select(sock, 1, timeout); if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySocketModule.timeout_error, "The write operation timed out"); goto error; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, "Underlying socket has been closed."); goto error; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, "Underlying socket too large for select()."); goto error; } do { PySSL_BEGIN_ALLOW_THREADS len = SSL_write(self->ssl, b->buf, (int)b->len); err = SSL_get_error(self->ssl, len); PySSL_END_ALLOW_THREADS if (PyErr_CheckSignals()) goto error; if (has_timeout) timeout = deadline - _PyTime_GetMonotonicClock(); if (err == SSL_ERROR_WANT_READ) { sockstate = PySSL_select(sock, 0, timeout); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = PySSL_select(sock, 1, timeout); } else { sockstate = SOCKET_OPERATION_OK; } if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySocketModule.timeout_error, "The write operation timed out"); goto error; } else if (sockstate == SOCKET_HAS_BEEN_CLOSED) { PyErr_SetString(PySSLErrorObject, "Underlying socket has been closed."); goto error; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); Py_XDECREF(sock); if (len > 0) return PyLong_FromLong(len); else return PySSL_SetError(self, len, __FILE__, __LINE__); error: Py_XDECREF(sock); return NULL; } /*[clinic input] _ssl._SSLSocket.pending Returns the number of already decrypted bytes available for read, pending on the connection. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_pending_impl(PySSLSocket *self) /*[clinic end generated code: output=983d9fecdc308a83 input=2b77487d6dfd597f]*/ { int count = 0; PySSL_BEGIN_ALLOW_THREADS count = SSL_pending(self->ssl); PySSL_END_ALLOW_THREADS if (count < 0) return PySSL_SetError(self, count, __FILE__, __LINE__); else return PyLong_FromLong(count); } /*[clinic input] _ssl._SSLSocket.read size as len: int [ buffer: Py_buffer(accept={rwbuffer}) ] / Read up to size bytes from the SSL socket. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_read_impl(PySSLSocket *self, int len, int group_right_1, Py_buffer *buffer) /*[clinic end generated code: output=00097776cec2a0af input=ff157eb918d0905b]*/ { PyObject *dest = NULL; char *mem; int count; int sockstate; int err; int nonblocking; PySocketSockObject *sock = GET_SOCKET(self); _PyTime_t timeout, deadline = 0; int has_timeout; if (!group_right_1 && len < 0) { PyErr_SetString(PyExc_ValueError, "size should not be negative"); return NULL; } if (sock != NULL) { if (((PyObject*)sock) == Py_None) { _setSSLError("Underlying socket connection gone", PY_SSL_ERROR_NO_SOCKET, __FILE__, __LINE__); return NULL; } Py_INCREF(sock); } if (!group_right_1) { dest = PyBytes_FromStringAndSize(NULL, len); if (dest == NULL) goto error; mem = PyBytes_AS_STRING(dest); } else { mem = buffer->buf; if (len <= 0 || len > buffer->len) { len = (int) buffer->len; if (buffer->len != len) { PyErr_SetString(PyExc_OverflowError, "maximum length can't fit in a C 'int'"); goto error; } } } if (sock != NULL) { /* just in case the blocking state of the socket has been changed */ nonblocking = (sock->sock_timeout >= 0); BIO_set_nbio(SSL_get_rbio(self->ssl), nonblocking); BIO_set_nbio(SSL_get_wbio(self->ssl), nonblocking); } timeout = GET_SOCKET_TIMEOUT(sock); has_timeout = (timeout > 0); if (has_timeout) deadline = _PyTime_GetMonotonicClock() + timeout; do { PySSL_BEGIN_ALLOW_THREADS count = SSL_read(self->ssl, mem, len); err = SSL_get_error(self->ssl, count); PySSL_END_ALLOW_THREADS if (PyErr_CheckSignals()) goto error; if (has_timeout) timeout = deadline - _PyTime_GetMonotonicClock(); if (err == SSL_ERROR_WANT_READ) { sockstate = PySSL_select(sock, 0, timeout); } else if (err == SSL_ERROR_WANT_WRITE) { sockstate = PySSL_select(sock, 1, timeout); } else if (err == SSL_ERROR_ZERO_RETURN && SSL_get_shutdown(self->ssl) == SSL_RECEIVED_SHUTDOWN) { count = 0; goto done; } else sockstate = SOCKET_OPERATION_OK; if (sockstate == SOCKET_HAS_TIMED_OUT) { PyErr_SetString(PySocketModule.timeout_error, "The read operation timed out"); goto error; } else if (sockstate == SOCKET_IS_NONBLOCKING) { break; } } while (err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE); if (count <= 0) { PySSL_SetError(self, count, __FILE__, __LINE__); goto error; } done: Py_XDECREF(sock); if (!group_right_1) { _PyBytes_Resize(&dest, count); return dest; } else { return PyLong_FromLong(count); } error: Py_XDECREF(sock); if (!group_right_1) Py_XDECREF(dest); return NULL; } /*[clinic input] _ssl._SSLSocket.shutdown Does the SSL shutdown handshake with the remote end. Returns the underlying socket object. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_shutdown_impl(PySSLSocket *self) /*[clinic end generated code: output=ca1aa7ed9d25ca42 input=ede2cc1a2ddf0ee4]*/ { int err, ssl_err, sockstate, nonblocking; int zeros = 0; PySocketSockObject *sock = GET_SOCKET(self); _PyTime_t timeout, deadline = 0; int has_timeout; if (sock != NULL) { /* Guard against closed socket */ if ((((PyObject*)sock) == Py_None) || (sock->sock_fd < 0)) { _setSSLError("Underlying socket connection gone", PY_SSL_ERROR_NO_SOCKET, __FILE__, __LINE__); return NULL; } Py_INCREF(sock); /* Just in case the blocking state of the socket has been changed */ nonblocking = (sock->sock_timeout >= 0); BIO_set_nbio(SSL_get_rbio(self->ssl), nonblocking); BIO_set_nbio(SSL_get_wbio(self->ssl), nonblocking); } timeout = GET_SOCKET_TIMEOUT(sock); has_timeout = (timeout > 0); if (has_timeout) deadline = _PyTime_GetMonotonicClock() + timeout; while (1) { PySSL_BEGIN_ALLOW_THREADS /* Disable read-ahead so that unwrap can work correctly. * Otherwise OpenSSL might read in too much data, * eating clear text data that happens to be * transmitted after the SSL shutdown. * Should be safe to call repeatedly every time this * function is used and the shutdown_seen_zero != 0 * condition is met. */ if (self->shutdown_seen_zero) SSL_set_read_ahead(self->ssl, 0); err = SSL_shutdown(self->ssl); PySSL_END_ALLOW_THREADS /* If err == 1, a secure shutdown with SSL_shutdown() is complete */ if (err > 0) break; if (err == 0) { /* Don't loop endlessly; instead preserve legacy behaviour of trying SSL_shutdown() only twice. This looks necessary for OpenSSL < 0.9.8m */ if (++zeros > 1) break; /* Shutdown was sent, now try receiving */ self->shutdown_seen_zero = 1; continue; } if (has_timeout) timeout = deadline - _PyTime_GetMonotonicClock(); /* Possibly retry shutdown until timeout or failure */ ssl_err = SSL_get_error(self->ssl, err); if (ssl_err == SSL_ERROR_WANT_READ) sockstate = PySSL_select(sock, 0, timeout); else if (ssl_err == SSL_ERROR_WANT_WRITE) sockstate = PySSL_select(sock, 1, timeout); else break; if (sockstate == SOCKET_HAS_TIMED_OUT) { if (ssl_err == SSL_ERROR_WANT_READ) PyErr_SetString(PySocketModule.timeout_error, "The read operation timed out"); else PyErr_SetString(PySocketModule.timeout_error, "The write operation timed out"); goto error; } else if (sockstate == SOCKET_TOO_LARGE_FOR_SELECT) { PyErr_SetString(PySSLErrorObject, "Underlying socket too large for select()."); goto error; } else if (sockstate != SOCKET_OPERATION_OK) /* Retain the SSL error code */ break; } if (err < 0) { Py_XDECREF(sock); return PySSL_SetError(self, err, __FILE__, __LINE__); } if (sock) /* It's already INCREF'ed */ return (PyObject *) sock; else Py_RETURN_NONE; error: Py_XDECREF(sock); return NULL; } /*[clinic input] _ssl._SSLSocket.tls_unique_cb Returns the 'tls-unique' channel binding data, as defined by RFC 5929. If the TLS handshake is not yet complete, None is returned. [clinic start generated code]*/ static PyObject * _ssl__SSLSocket_tls_unique_cb_impl(PySSLSocket *self) /*[clinic end generated code: output=f3a832d603f586af input=439525c7b3d8d34d]*/ { PyObject *retval = NULL; char buf[PySSL_CB_MAXLEN]; size_t len; if (SSL_session_reused(self->ssl) ^ !self->socket_type) { /* if session is resumed XOR we are the client */ len = SSL_get_finished(self->ssl, buf, PySSL_CB_MAXLEN); } else { /* if a new session XOR we are the server */ len = SSL_get_peer_finished(self->ssl, buf, PySSL_CB_MAXLEN); } /* It cannot be negative in current OpenSSL version as of July 2011 */ if (len == 0) Py_RETURN_NONE; retval = PyBytes_FromStringAndSize(buf, len); return retval; } static PyGetSetDef ssl_getsetlist[] = { {"context", (getter) PySSL_get_context, (setter) PySSL_set_context, PySSL_set_context_doc}, {"server_side", (getter) PySSL_get_server_side, NULL, PySSL_get_server_side_doc}, {"server_hostname", (getter) PySSL_get_server_hostname, NULL, PySSL_get_server_hostname_doc}, {"owner", (getter) PySSL_get_owner, (setter) PySSL_set_owner, PySSL_get_owner_doc}, {NULL}, /* sentinel */ }; static PyMethodDef PySSLMethods[] = { _SSL__SSLSOCKET_DO_HANDSHAKE_METHODDEF _SSL__SSLSOCKET_WRITE_METHODDEF _SSL__SSLSOCKET_READ_METHODDEF _SSL__SSLSOCKET_PENDING_METHODDEF _SSL__SSLSOCKET_PEER_CERTIFICATE_METHODDEF _SSL__SSLSOCKET_CIPHER_METHODDEF _SSL__SSLSOCKET_SHARED_CIPHERS_METHODDEF _SSL__SSLSOCKET_VERSION_METHODDEF _SSL__SSLSOCKET_SELECTED_NPN_PROTOCOL_METHODDEF _SSL__SSLSOCKET_SELECTED_ALPN_PROTOCOL_METHODDEF _SSL__SSLSOCKET_COMPRESSION_METHODDEF _SSL__SSLSOCKET_SHUTDOWN_METHODDEF _SSL__SSLSOCKET_TLS_UNIQUE_CB_METHODDEF {NULL, NULL} }; static PyTypeObject PySSLSocket_Type = { PyVarObject_HEAD_INIT(NULL, 0) "_ssl._SSLSocket", /*tp_name*/ sizeof(PySSLSocket), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ (destructor)PySSL_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ PySSLMethods, /*tp_methods*/ 0, /*tp_members*/ ssl_getsetlist, /*tp_getset*/ }; /* * _SSLContext objects */ /*[clinic input] @classmethod _ssl._SSLContext.__new__ protocol as proto_version: int / [clinic start generated code]*/ static PyObject * _ssl__SSLContext_impl(PyTypeObject *type, int proto_version) /*[clinic end generated code: output=2cf0d7a0741b6bd1 input=8d58a805b95fc534]*/ { PySSLContext *self; long options; SSL_CTX *ctx = NULL; #if defined(SSL_MODE_RELEASE_BUFFERS) unsigned long libver; #endif PySSL_BEGIN_ALLOW_THREADS if (proto_version == PY_SSL_VERSION_TLS1) ctx = SSL_CTX_new(TLSv1_method()); #if HAVE_TLSv1_2 else if (proto_version == PY_SSL_VERSION_TLS1_1) ctx = SSL_CTX_new(TLSv1_1_method()); else if (proto_version == PY_SSL_VERSION_TLS1_2) ctx = SSL_CTX_new(TLSv1_2_method()); #endif #ifndef OPENSSL_NO_SSL3 else if (proto_version == PY_SSL_VERSION_SSL3) ctx = SSL_CTX_new(SSLv3_method()); #endif #ifndef OPENSSL_NO_SSL2 else if (proto_version == PY_SSL_VERSION_SSL2) ctx = SSL_CTX_new(SSLv2_method()); #endif else if (proto_version == PY_SSL_VERSION_SSL23) ctx = SSL_CTX_new(SSLv23_method()); else proto_version = -1; PySSL_END_ALLOW_THREADS if (proto_version == -1) { PyErr_SetString(PyExc_ValueError, "invalid protocol version"); return NULL; } if (ctx == NULL) { PyErr_SetString(PySSLErrorObject, "failed to allocate SSL context"); return NULL; } assert(type != NULL && type->tp_alloc != NULL); self = (PySSLContext *) type->tp_alloc(type, 0); if (self == NULL) { SSL_CTX_free(ctx); return NULL; } self->ctx = ctx; #ifdef OPENSSL_NPN_NEGOTIATED self->npn_protocols = NULL; #endif #ifdef HAVE_ALPN self->alpn_protocols = NULL; #endif #ifndef OPENSSL_NO_TLSEXT self->set_hostname = NULL; #endif /* Don't check host name by default */ self->check_hostname = 0; /* Defaults */ SSL_CTX_set_verify(self->ctx, SSL_VERIFY_NONE, NULL); options = SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS; if (proto_version != PY_SSL_VERSION_SSL2) options |= SSL_OP_NO_SSLv2; if (proto_version != PY_SSL_VERSION_SSL3) options |= SSL_OP_NO_SSLv3; SSL_CTX_set_options(self->ctx, options); #if defined(SSL_MODE_RELEASE_BUFFERS) /* Set SSL_MODE_RELEASE_BUFFERS. This potentially greatly reduces memory usage for no cost at all. However, don't do this for OpenSSL versions between 1.0.1 and 1.0.1h or 1.0.0 and 1.0.0m, which are affected by CVE 2014-0198. I can't find exactly which beta fixed this CVE, so be conservative and assume it wasn't fixed until release. We do this check at runtime to avoid problems from the dynamic linker. See #25672 for more on this. */ libver = SSLeay(); if (!(libver >= 0x10001000UL && libver < 0x1000108fUL) && !(libver >= 0x10000000UL && libver < 0x100000dfUL)) { SSL_CTX_set_mode(self->ctx, SSL_MODE_RELEASE_BUFFERS); } #endif #ifndef OPENSSL_NO_ECDH /* Allow automatic ECDH curve selection (on OpenSSL 1.0.2+), or use prime256v1 by default. This is Apache mod_ssl's initialization policy, so we should be safe. */ #if defined(SSL_CTX_set_ecdh_auto) SSL_CTX_set_ecdh_auto(self->ctx, 1); #else { EC_KEY *key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); SSL_CTX_set_tmp_ecdh(self->ctx, key); EC_KEY_free(key); } #endif #endif #define SID_CTX "Python" SSL_CTX_set_session_id_context(self->ctx, (const unsigned char *) SID_CTX, sizeof(SID_CTX)); #undef SID_CTX #ifdef X509_V_FLAG_TRUSTED_FIRST { /* Improve trust chain building when cross-signed intermediate certificates are present. See https://bugs.python.org/issue23476. */ X509_STORE *store = SSL_CTX_get_cert_store(self->ctx); X509_STORE_set_flags(store, X509_V_FLAG_TRUSTED_FIRST); } #endif return (PyObject *)self; } static int context_traverse(PySSLContext *self, visitproc visit, void *arg) { #ifndef OPENSSL_NO_TLSEXT Py_VISIT(self->set_hostname); #endif return 0; } static int context_clear(PySSLContext *self) { #ifndef OPENSSL_NO_TLSEXT Py_CLEAR(self->set_hostname); #endif return 0; } static void context_dealloc(PySSLContext *self) { context_clear(self); SSL_CTX_free(self->ctx); #ifdef OPENSSL_NPN_NEGOTIATED PyMem_FREE(self->npn_protocols); #endif #ifdef HAVE_ALPN PyMem_FREE(self->alpn_protocols); #endif Py_TYPE(self)->tp_free(self); } /*[clinic input] _ssl._SSLContext.set_ciphers cipherlist: str / [clinic start generated code]*/ static PyObject * _ssl__SSLContext_set_ciphers_impl(PySSLContext *self, const char *cipherlist) /*[clinic end generated code: output=3a3162f3557c0f3f input=a7ac931b9f3ca7fc]*/ { int ret = SSL_CTX_set_cipher_list(self->ctx, cipherlist); if (ret == 0) { /* Clearing the error queue is necessary on some OpenSSL versions, otherwise the error will be reported again when another SSL call is done. */ ERR_clear_error(); PyErr_SetString(PySSLErrorObject, "No cipher can be selected."); return NULL; } Py_RETURN_NONE; } #ifdef OPENSSL_NPN_NEGOTIATED static int do_protocol_selection(int alpn, unsigned char **out, unsigned char *outlen, const unsigned char *server_protocols, unsigned int server_protocols_len, const unsigned char *client_protocols, unsigned int client_protocols_len) { int ret; if (client_protocols == NULL) { client_protocols = (unsigned char *)""; client_protocols_len = 0; } if (server_protocols == NULL) { server_protocols = (unsigned char *)""; server_protocols_len = 0; } ret = SSL_select_next_proto(out, outlen, server_protocols, server_protocols_len, client_protocols, client_protocols_len); if (alpn && ret != OPENSSL_NPN_NEGOTIATED) return SSL_TLSEXT_ERR_NOACK; return SSL_TLSEXT_ERR_OK; } /* this callback gets passed to SSL_CTX_set_next_protos_advertise_cb */ static int _advertiseNPN_cb(SSL *s, const unsigned char **data, unsigned int *len, void *args) { PySSLContext *ssl_ctx = (PySSLContext *) args; if (ssl_ctx->npn_protocols == NULL) { *data = (unsigned char *)""; *len = 0; } else { *data = ssl_ctx->npn_protocols; *len = ssl_ctx->npn_protocols_len; } return SSL_TLSEXT_ERR_OK; } /* this callback gets passed to SSL_CTX_set_next_proto_select_cb */ static int _selectNPN_cb(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, void *args) { PySSLContext *ctx = (PySSLContext *)args; return do_protocol_selection(0, out, outlen, server, server_len, ctx->npn_protocols, ctx->npn_protocols_len); } #endif /*[clinic input] _ssl._SSLContext._set_npn_protocols protos: Py_buffer / [clinic start generated code]*/ static PyObject * _ssl__SSLContext__set_npn_protocols_impl(PySSLContext *self, Py_buffer *protos) /*[clinic end generated code: output=72b002c3324390c6 input=319fcb66abf95bd7]*/ { #ifdef OPENSSL_NPN_NEGOTIATED PyMem_Free(self->npn_protocols); self->npn_protocols = PyMem_Malloc(protos->len); if (self->npn_protocols == NULL) return PyErr_NoMemory(); memcpy(self->npn_protocols, protos->buf, protos->len); self->npn_protocols_len = (int) protos->len; /* set both server and client callbacks, because the context can * be used to create both types of sockets */ SSL_CTX_set_next_protos_advertised_cb(self->ctx, _advertiseNPN_cb, self); SSL_CTX_set_next_proto_select_cb(self->ctx, _selectNPN_cb, self); Py_RETURN_NONE; #else PyErr_SetString(PyExc_NotImplementedError, "The NPN extension requires OpenSSL 1.0.1 or later."); return NULL; #endif } #ifdef HAVE_ALPN static int _selectALPN_cb(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *client_protocols, unsigned int client_protocols_len, void *args) { PySSLContext *ctx = (PySSLContext *)args; return do_protocol_selection(1, (unsigned char **)out, outlen, ctx->alpn_protocols, ctx->alpn_protocols_len, client_protocols, client_protocols_len); } #endif /*[clinic input] _ssl._SSLContext._set_alpn_protocols protos: Py_buffer / [clinic start generated code]*/ static PyObject * _ssl__SSLContext__set_alpn_protocols_impl(PySSLContext *self, Py_buffer *protos) /*[clinic end generated code: output=87599a7f76651a9b input=9bba964595d519be]*/ { #ifdef HAVE_ALPN PyMem_FREE(self->alpn_protocols); self->alpn_protocols = PyMem_Malloc(protos->len); if (!self->alpn_protocols) return PyErr_NoMemory(); memcpy(self->alpn_protocols, protos->buf, protos->len); self->alpn_protocols_len = protos->len; if (SSL_CTX_set_alpn_protos(self->ctx, self->alpn_protocols, self->alpn_protocols_len)) return PyErr_NoMemory(); SSL_CTX_set_alpn_select_cb(self->ctx, _selectALPN_cb, self); Py_RETURN_NONE; #else PyErr_SetString(PyExc_NotImplementedError, "The ALPN extension requires OpenSSL 1.0.2 or later."); return NULL; #endif } static PyObject * get_verify_mode(PySSLContext *self, void *c) { switch (SSL_CTX_get_verify_mode(self->ctx)) { case SSL_VERIFY_NONE: return PyLong_FromLong(PY_SSL_CERT_NONE); case SSL_VERIFY_PEER: return PyLong_FromLong(PY_SSL_CERT_OPTIONAL); case SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT: return PyLong_FromLong(PY_SSL_CERT_REQUIRED); } PyErr_SetString(PySSLErrorObject, "invalid return value from SSL_CTX_get_verify_mode"); return NULL; } static int set_verify_mode(PySSLContext *self, PyObject *arg, void *c) { int n, mode; if (!PyArg_Parse(arg, "i", &n)) return -1; if (n == PY_SSL_CERT_NONE) mode = SSL_VERIFY_NONE; else if (n == PY_SSL_CERT_OPTIONAL) mode = SSL_VERIFY_PEER; else if (n == PY_SSL_CERT_REQUIRED) mode = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT; else { PyErr_SetString(PyExc_ValueError, "invalid value for verify_mode"); return -1; } if (mode == SSL_VERIFY_NONE && self->check_hostname) { PyErr_SetString(PyExc_ValueError, "Cannot set verify_mode to CERT_NONE when " "check_hostname is enabled."); return -1; } SSL_CTX_set_verify(self->ctx, mode, NULL); return 0; } static PyObject * get_verify_flags(PySSLContext *self, void *c) { X509_STORE *store; unsigned long flags; store = SSL_CTX_get_cert_store(self->ctx); flags = X509_VERIFY_PARAM_get_flags(store->param); return PyLong_FromUnsignedLong(flags); } static int set_verify_flags(PySSLContext *self, PyObject *arg, void *c) { X509_STORE *store; unsigned long new_flags, flags, set, clear; if (!PyArg_Parse(arg, "k", &new_flags)) return -1; store = SSL_CTX_get_cert_store(self->ctx); flags = X509_VERIFY_PARAM_get_flags(store->param); clear = flags & ~new_flags; set = ~flags & new_flags; if (clear) { if (!X509_VERIFY_PARAM_clear_flags(store->param, clear)) { _setSSLError(NULL, 0, __FILE__, __LINE__); return -1; } } if (set) { if (!X509_VERIFY_PARAM_set_flags(store->param, set)) { _setSSLError(NULL, 0, __FILE__, __LINE__); return -1; } } return 0; } static PyObject * get_options(PySSLContext *self, void *c) { return PyLong_FromLong(SSL_CTX_get_options(self->ctx)); } static int set_options(PySSLContext *self, PyObject *arg, void *c) { long new_opts, opts, set, clear; if (!PyArg_Parse(arg, "l", &new_opts)) return -1; opts = SSL_CTX_get_options(self->ctx); clear = opts & ~new_opts; set = ~opts & new_opts; if (clear) { #ifdef HAVE_SSL_CTX_CLEAR_OPTIONS SSL_CTX_clear_options(self->ctx, clear); #else PyErr_SetString(PyExc_ValueError, "can't clear options before OpenSSL 0.9.8m"); return -1; #endif } if (set) SSL_CTX_set_options(self->ctx, set); return 0; } static PyObject * get_check_hostname(PySSLContext *self, void *c) { return PyBool_FromLong(self->check_hostname); } static int set_check_hostname(PySSLContext *self, PyObject *arg, void *c) { int check_hostname; if (!PyArg_Parse(arg, "p", &check_hostname)) return -1; if (check_hostname && SSL_CTX_get_verify_mode(self->ctx) == SSL_VERIFY_NONE) { PyErr_SetString(PyExc_ValueError, "check_hostname needs a SSL context with either " "CERT_OPTIONAL or CERT_REQUIRED"); return -1; } self->check_hostname = check_hostname; return 0; } typedef struct { PyThreadState *thread_state; PyObject *callable; char *password; int size; int error; } _PySSLPasswordInfo; static int _pwinfo_set(_PySSLPasswordInfo *pw_info, PyObject* password, const char *bad_type_error) { /* Set the password and size fields of a _PySSLPasswordInfo struct from a unicode, bytes, or byte array object. The password field will be dynamically allocated and must be freed by the caller */ PyObject *password_bytes = NULL; const char *data = NULL; Py_ssize_t size; if (PyUnicode_Check(password)) { password_bytes = PyUnicode_AsEncodedString(password, NULL, NULL); if (!password_bytes) { goto error; } data = PyBytes_AS_STRING(password_bytes); size = PyBytes_GET_SIZE(password_bytes); } else if (PyBytes_Check(password)) { data = PyBytes_AS_STRING(password); size = PyBytes_GET_SIZE(password); } else if (PyByteArray_Check(password)) { data = PyByteArray_AS_STRING(password); size = PyByteArray_GET_SIZE(password); } else { PyErr_SetString(PyExc_TypeError, bad_type_error); goto error; } if (size > (Py_ssize_t)INT_MAX) { PyErr_Format(PyExc_ValueError, "password cannot be longer than %d bytes", INT_MAX); goto error; } PyMem_Free(pw_info->password); pw_info->password = PyMem_Malloc(size); if (!pw_info->password) { PyErr_SetString(PyExc_MemoryError, "unable to allocate password buffer"); goto error; } memcpy(pw_info->password, data, size); pw_info->size = (int)size; Py_XDECREF(password_bytes); return 1; error: Py_XDECREF(password_bytes); return 0; } static int _password_callback(char *buf, int size, int rwflag, void *userdata) { _PySSLPasswordInfo *pw_info = (_PySSLPasswordInfo*) userdata; PyObject *fn_ret = NULL; PySSL_END_ALLOW_THREADS_S(pw_info->thread_state); if (pw_info->callable) { fn_ret = PyObject_CallFunctionObjArgs(pw_info->callable, NULL); if (!fn_ret) { /* TODO: It would be nice to move _ctypes_add_traceback() into the core python API, so we could use it to add a frame here */ goto error; } if (!_pwinfo_set(pw_info, fn_ret, "password callback must return a string")) { goto error; } Py_CLEAR(fn_ret); } if (pw_info->size > size) { PyErr_Format(PyExc_ValueError, "password cannot be longer than %d bytes", size); goto error; } PySSL_BEGIN_ALLOW_THREADS_S(pw_info->thread_state); memcpy(buf, pw_info->password, pw_info->size); return pw_info->size; error: Py_XDECREF(fn_ret); PySSL_BEGIN_ALLOW_THREADS_S(pw_info->thread_state); pw_info->error = 1; return -1; } /*[clinic input] _ssl._SSLContext.load_cert_chain certfile: object keyfile: object = NULL password: object = NULL [clinic start generated code]*/ static PyObject * _ssl__SSLContext_load_cert_chain_impl(PySSLContext *self, PyObject *certfile, PyObject *keyfile, PyObject *password) /*[clinic end generated code: output=9480bc1c380e2095 input=7cf9ac673cbee6fc]*/ { PyObject *certfile_bytes = NULL, *keyfile_bytes = NULL; pem_password_cb *orig_passwd_cb = self->ctx->default_passwd_callback; void *orig_passwd_userdata = self->ctx->default_passwd_callback_userdata; _PySSLPasswordInfo pw_info = { NULL, NULL, NULL, 0, 0 }; int r; errno = 0; ERR_clear_error(); if (keyfile == Py_None) keyfile = NULL; if (!PyUnicode_FSConverter(certfile, &certfile_bytes)) { PyErr_SetString(PyExc_TypeError, "certfile should be a valid filesystem path"); return NULL; } if (keyfile && !PyUnicode_FSConverter(keyfile, &keyfile_bytes)) { PyErr_SetString(PyExc_TypeError, "keyfile should be a valid filesystem path"); goto error; } if (password && password != Py_None) { if (PyCallable_Check(password)) { pw_info.callable = password; } else if (!_pwinfo_set(&pw_info, password, "password should be a string or callable")) { goto error; } SSL_CTX_set_default_passwd_cb(self->ctx, _password_callback); SSL_CTX_set_default_passwd_cb_userdata(self->ctx, &pw_info); } PySSL_BEGIN_ALLOW_THREADS_S(pw_info.thread_state); r = SSL_CTX_use_certificate_chain_file(self->ctx, PyBytes_AS_STRING(certfile_bytes)); PySSL_END_ALLOW_THREADS_S(pw_info.thread_state); if (r != 1) { if (pw_info.error) { ERR_clear_error(); /* the password callback has already set the error information */ } else if (errno != 0) { ERR_clear_error(); PyErr_SetFromErrno(PyExc_IOError); } else { _setSSLError(NULL, 0, __FILE__, __LINE__); } goto error; } PySSL_BEGIN_ALLOW_THREADS_S(pw_info.thread_state); r = SSL_CTX_use_PrivateKey_file(self->ctx, PyBytes_AS_STRING(keyfile ? keyfile_bytes : certfile_bytes), SSL_FILETYPE_PEM); PySSL_END_ALLOW_THREADS_S(pw_info.thread_state); Py_CLEAR(keyfile_bytes); Py_CLEAR(certfile_bytes); if (r != 1) { if (pw_info.error) { ERR_clear_error(); /* the password callback has already set the error information */ } else if (errno != 0) { ERR_clear_error(); PyErr_SetFromErrno(PyExc_IOError); } else { _setSSLError(NULL, 0, __FILE__, __LINE__); } goto error; } PySSL_BEGIN_ALLOW_THREADS_S(pw_info.thread_state); r = SSL_CTX_check_private_key(self->ctx); PySSL_END_ALLOW_THREADS_S(pw_info.thread_state); if (r != 1) { _setSSLError(NULL, 0, __FILE__, __LINE__); goto error; } SSL_CTX_set_default_passwd_cb(self->ctx, orig_passwd_cb); SSL_CTX_set_default_passwd_cb_userdata(self->ctx, orig_passwd_userdata); PyMem_Free(pw_info.password); Py_RETURN_NONE; error: SSL_CTX_set_default_passwd_cb(self->ctx, orig_passwd_cb); SSL_CTX_set_default_passwd_cb_userdata(self->ctx, orig_passwd_userdata); PyMem_Free(pw_info.password); Py_XDECREF(keyfile_bytes); Py_XDECREF(certfile_bytes); return NULL; } /* internal helper function, returns -1 on error */ static int _add_ca_certs(PySSLContext *self, void *data, Py_ssize_t len, int filetype) { BIO *biobuf = NULL; X509_STORE *store; int retval = 0, err, loaded = 0; assert(filetype == SSL_FILETYPE_ASN1 || filetype == SSL_FILETYPE_PEM); if (len <= 0) { PyErr_SetString(PyExc_ValueError, "Empty certificate data"); return -1; } else if (len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "Certificate data is too long."); return -1; } biobuf = BIO_new_mem_buf(data, (int)len); if (biobuf == NULL) { _setSSLError("Can't allocate buffer", 0, __FILE__, __LINE__); return -1; } store = SSL_CTX_get_cert_store(self->ctx); assert(store != NULL); while (1) { X509 *cert = NULL; int r; if (filetype == SSL_FILETYPE_ASN1) { cert = d2i_X509_bio(biobuf, NULL); } else { cert = PEM_read_bio_X509(biobuf, NULL, self->ctx->default_passwd_callback, self->ctx->default_passwd_callback_userdata); } if (cert == NULL) { break; } r = X509_STORE_add_cert(store, cert); X509_free(cert); if (!r) { err = ERR_peek_last_error(); if ((ERR_GET_LIB(err) == ERR_LIB_X509) && (ERR_GET_REASON(err) == X509_R_CERT_ALREADY_IN_HASH_TABLE)) { /* cert already in hash table, not an error */ ERR_clear_error(); } else { break; } } loaded++; } err = ERR_peek_last_error(); if ((filetype == SSL_FILETYPE_ASN1) && (loaded > 0) && (ERR_GET_LIB(err) == ERR_LIB_ASN1) && (ERR_GET_REASON(err) == ASN1_R_HEADER_TOO_LONG)) { /* EOF ASN1 file, not an error */ ERR_clear_error(); retval = 0; } else if ((filetype == SSL_FILETYPE_PEM) && (loaded > 0) && (ERR_GET_LIB(err) == ERR_LIB_PEM) && (ERR_GET_REASON(err) == PEM_R_NO_START_LINE)) { /* EOF PEM file, not an error */ ERR_clear_error(); retval = 0; } else { _setSSLError(NULL, 0, __FILE__, __LINE__); retval = -1; } BIO_free(biobuf); return retval; } /*[clinic input] _ssl._SSLContext.load_verify_locations cafile: object = NULL capath: object = NULL cadata: object = NULL [clinic start generated code]*/ static PyObject * _ssl__SSLContext_load_verify_locations_impl(PySSLContext *self, PyObject *cafile, PyObject *capath, PyObject *cadata) /*[clinic end generated code: output=454c7e41230ca551 input=997f1fb3a784ef88]*/ { PyObject *cafile_bytes = NULL, *capath_bytes = NULL; const char *cafile_buf = NULL, *capath_buf = NULL; int r = 0, ok = 1; errno = 0; if (cafile == Py_None) cafile = NULL; if (capath == Py_None) capath = NULL; if (cadata == Py_None) cadata = NULL; if (cafile == NULL && capath == NULL && cadata == NULL) { PyErr_SetString(PyExc_TypeError, "cafile, capath and cadata cannot be all omitted"); goto error; } if (cafile && !PyUnicode_FSConverter(cafile, &cafile_bytes)) { PyErr_SetString(PyExc_TypeError, "cafile should be a valid filesystem path"); goto error; } if (capath && !PyUnicode_FSConverter(capath, &capath_bytes)) { PyErr_SetString(PyExc_TypeError, "capath should be a valid filesystem path"); goto error; } /* validata cadata type and load cadata */ if (cadata) { Py_buffer buf; PyObject *cadata_ascii = NULL; if (PyObject_GetBuffer(cadata, &buf, PyBUF_SIMPLE) == 0) { if (!PyBuffer_IsContiguous(&buf, 'C') || buf.ndim > 1) { PyBuffer_Release(&buf); PyErr_SetString(PyExc_TypeError, "cadata should be a contiguous buffer with " "a single dimension"); goto error; } r = _add_ca_certs(self, buf.buf, buf.len, SSL_FILETYPE_ASN1); PyBuffer_Release(&buf); if (r == -1) { goto error; } } else { PyErr_Clear(); cadata_ascii = PyUnicode_AsASCIIString(cadata); if (cadata_ascii == NULL) { PyErr_SetString(PyExc_TypeError, "cadata should be an ASCII string or a " "bytes-like object"); goto error; } r = _add_ca_certs(self, PyBytes_AS_STRING(cadata_ascii), PyBytes_GET_SIZE(cadata_ascii), SSL_FILETYPE_PEM); Py_DECREF(cadata_ascii); if (r == -1) { goto error; } } } /* load cafile or capath */ if (cafile || capath) { if (cafile) cafile_buf = PyBytes_AS_STRING(cafile_bytes); if (capath) capath_buf = PyBytes_AS_STRING(capath_bytes); PySSL_BEGIN_ALLOW_THREADS r = SSL_CTX_load_verify_locations(self->ctx, cafile_buf, capath_buf); PySSL_END_ALLOW_THREADS if (r != 1) { ok = 0; if (errno != 0) { ERR_clear_error(); PyErr_SetFromErrno(PyExc_IOError); } else { _setSSLError(NULL, 0, __FILE__, __LINE__); } goto error; } } goto end; error: ok = 0; end: Py_XDECREF(cafile_bytes); Py_XDECREF(capath_bytes); if (ok) { Py_RETURN_NONE; } else { return NULL; } } /*[clinic input] _ssl._SSLContext.load_dh_params path as filepath: object / [clinic start generated code]*/ static PyObject * _ssl__SSLContext_load_dh_params(PySSLContext *self, PyObject *filepath) /*[clinic end generated code: output=1c8e57a38e055af0 input=c8871f3c796ae1d6]*/ { FILE *f; DH *dh; f = _Py_fopen_obj(filepath, "rb"); if (f == NULL) return NULL; errno = 0; PySSL_BEGIN_ALLOW_THREADS dh = PEM_read_DHparams(f, NULL, NULL, NULL); fclose(f); PySSL_END_ALLOW_THREADS if (dh == NULL) { if (errno != 0) { ERR_clear_error(); PyErr_SetFromErrnoWithFilenameObject(PyExc_OSError, filepath); } else { _setSSLError(NULL, 0, __FILE__, __LINE__); } return NULL; } if (SSL_CTX_set_tmp_dh(self->ctx, dh) == 0) _setSSLError(NULL, 0, __FILE__, __LINE__); DH_free(dh); Py_RETURN_NONE; } /*[clinic input] _ssl._SSLContext._wrap_socket sock: object(subclass_of="PySocketModule.Sock_Type") server_side: int server_hostname as hostname_obj: object = None [clinic start generated code]*/ static PyObject * _ssl__SSLContext__wrap_socket_impl(PySSLContext *self, PyObject *sock, int server_side, PyObject *hostname_obj) /*[clinic end generated code: output=6973e4b60995e933 input=83859b9156ddfc63]*/ { char *hostname = NULL; PyObject *res; /* server_hostname is either None (or absent), or to be encoded using the idna encoding. */ if (hostname_obj != Py_None) { if (!PyArg_Parse(hostname_obj, "et", "idna", &hostname)) return NULL; } res = (PyObject *) newPySSLSocket(self, (PySocketSockObject *)sock, server_side, hostname, NULL, NULL); if (hostname != NULL) PyMem_Free(hostname); return res; } /*[clinic input] _ssl._SSLContext._wrap_bio incoming: object(subclass_of="&PySSLMemoryBIO_Type", type="PySSLMemoryBIO *") outgoing: object(subclass_of="&PySSLMemoryBIO_Type", type="PySSLMemoryBIO *") server_side: int server_hostname as hostname_obj: object = None [clinic start generated code]*/ static PyObject * _ssl__SSLContext__wrap_bio_impl(PySSLContext *self, PySSLMemoryBIO *incoming, PySSLMemoryBIO *outgoing, int server_side, PyObject *hostname_obj) /*[clinic end generated code: output=4fe4ba75ad95940d input=17725ecdac0bf220]*/ { char *hostname = NULL; PyObject *res; /* server_hostname is either None (or absent), or to be encoded using the idna encoding. */ if (hostname_obj != Py_None) { if (!PyArg_Parse(hostname_obj, "et", "idna", &hostname)) return NULL; } res = (PyObject *) newPySSLSocket(self, NULL, server_side, hostname, incoming, outgoing); PyMem_Free(hostname); return res; } /*[clinic input] _ssl._SSLContext.session_stats [clinic start generated code]*/ static PyObject * _ssl__SSLContext_session_stats_impl(PySSLContext *self) /*[clinic end generated code: output=0d96411c42893bfb input=7e0a81fb11102c8b]*/ { int r; PyObject *value, *stats = PyDict_New(); if (!stats) return NULL; #define ADD_STATS(SSL_NAME, KEY_NAME) \ value = PyLong_FromLong(SSL_CTX_sess_ ## SSL_NAME (self->ctx)); \ if (value == NULL) \ goto error; \ r = PyDict_SetItemString(stats, KEY_NAME, value); \ Py_DECREF(value); \ if (r < 0) \ goto error; ADD_STATS(number, "number"); ADD_STATS(connect, "connect"); ADD_STATS(connect_good, "connect_good"); ADD_STATS(connect_renegotiate, "connect_renegotiate"); ADD_STATS(accept, "accept"); ADD_STATS(accept_good, "accept_good"); ADD_STATS(accept_renegotiate, "accept_renegotiate"); ADD_STATS(accept, "accept"); ADD_STATS(hits, "hits"); ADD_STATS(misses, "misses"); ADD_STATS(timeouts, "timeouts"); ADD_STATS(cache_full, "cache_full"); #undef ADD_STATS return stats; error: Py_DECREF(stats); return NULL; } /*[clinic input] _ssl._SSLContext.set_default_verify_paths [clinic start generated code]*/ static PyObject * _ssl__SSLContext_set_default_verify_paths_impl(PySSLContext *self) /*[clinic end generated code: output=0bee74e6e09deaaa input=35f3408021463d74]*/ { if (!SSL_CTX_set_default_verify_paths(self->ctx)) { _setSSLError(NULL, 0, __FILE__, __LINE__); return NULL; } Py_RETURN_NONE; } #ifndef OPENSSL_NO_ECDH /*[clinic input] _ssl._SSLContext.set_ecdh_curve name: object / [clinic start generated code]*/ static PyObject * _ssl__SSLContext_set_ecdh_curve(PySSLContext *self, PyObject *name) /*[clinic end generated code: output=23022c196e40d7d2 input=c2bafb6f6e34726b]*/ { PyObject *name_bytes; int nid; EC_KEY *key; if (!PyUnicode_FSConverter(name, &name_bytes)) return NULL; assert(PyBytes_Check(name_bytes)); nid = OBJ_sn2nid(PyBytes_AS_STRING(name_bytes)); Py_DECREF(name_bytes); if (nid == 0) { PyErr_Format(PyExc_ValueError, "unknown elliptic curve name %R", name); return NULL; } key = EC_KEY_new_by_curve_name(nid); if (key == NULL) { _setSSLError(NULL, 0, __FILE__, __LINE__); return NULL; } SSL_CTX_set_tmp_ecdh(self->ctx, key); EC_KEY_free(key); Py_RETURN_NONE; } #endif #if HAVE_SNI && !defined(OPENSSL_NO_TLSEXT) static int _servername_callback(SSL *s, int *al, void *args) { int ret; PySSLContext *ssl_ctx = (PySSLContext *) args; PySSLSocket *ssl; PyObject *servername_o; PyObject *servername_idna; PyObject *result; /* The high-level ssl.SSLSocket object */ PyObject *ssl_socket; const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); #ifdef WITH_THREAD PyGILState_STATE gstate = PyGILState_Ensure(); #endif if (ssl_ctx->set_hostname == NULL) { /* remove race condition in this the call back while if removing the * callback is in progress */ #ifdef WITH_THREAD PyGILState_Release(gstate); #endif return SSL_TLSEXT_ERR_OK; } ssl = SSL_get_app_data(s); assert(PySSLSocket_Check(ssl)); /* The servername callback expects an argument that represents the current * SSL connection and that has a .context attribute that can be changed to * identify the requested hostname. Since the official API is the Python * level API we want to pass the callback a Python level object rather than * a _ssl.SSLSocket instance. If there's an "owner" (typically an * SSLObject) that will be passed. Otherwise if there's a socket then that * will be passed. If both do not exist only then the C-level object is * passed. */ if (ssl->owner) ssl_socket = PyWeakref_GetObject(ssl->owner); else if (ssl->Socket) ssl_socket = PyWeakref_GetObject(ssl->Socket); else ssl_socket = (PyObject *) ssl; Py_INCREF(ssl_socket); if (ssl_socket == Py_None) goto error; if (servername == NULL) { result = PyObject_CallFunctionObjArgs(ssl_ctx->set_hostname, ssl_socket, Py_None, ssl_ctx, NULL); } else { servername_o = PyBytes_FromString(servername); if (servername_o == NULL) { PyErr_WriteUnraisable((PyObject *) ssl_ctx); goto error; } servername_idna = PyUnicode_FromEncodedObject(servername_o, "idna", NULL); if (servername_idna == NULL) { PyErr_WriteUnraisable(servername_o); Py_DECREF(servername_o); goto error; } Py_DECREF(servername_o); result = PyObject_CallFunctionObjArgs(ssl_ctx->set_hostname, ssl_socket, servername_idna, ssl_ctx, NULL); Py_DECREF(servername_idna); } Py_DECREF(ssl_socket); if (result == NULL) { PyErr_WriteUnraisable(ssl_ctx->set_hostname); *al = SSL_AD_HANDSHAKE_FAILURE; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } else { if (result != Py_None) { *al = (int) PyLong_AsLong(result); if (PyErr_Occurred()) { PyErr_WriteUnraisable(result); *al = SSL_AD_INTERNAL_ERROR; } ret = SSL_TLSEXT_ERR_ALERT_FATAL; } else { ret = SSL_TLSEXT_ERR_OK; } Py_DECREF(result); } #ifdef WITH_THREAD PyGILState_Release(gstate); #endif return ret; error: Py_DECREF(ssl_socket); *al = SSL_AD_INTERNAL_ERROR; ret = SSL_TLSEXT_ERR_ALERT_FATAL; #ifdef WITH_THREAD PyGILState_Release(gstate); #endif return ret; } #endif /*[clinic input] _ssl._SSLContext.set_servername_callback method as cb: object / Set a callback that will be called when a server name is provided by the SSL/TLS client in the SNI extension. If the argument is None then the callback is disabled. The method is called with the SSLSocket, the server name as a string, and the SSLContext object. See RFC 6066 for details of the SNI extension. [clinic start generated code]*/ static PyObject * _ssl__SSLContext_set_servername_callback(PySSLContext *self, PyObject *cb) /*[clinic end generated code: output=3439a1b2d5d3b7ea input=a2a83620197d602b]*/ { #if HAVE_SNI && !defined(OPENSSL_NO_TLSEXT) Py_CLEAR(self->set_hostname); if (cb == Py_None) { SSL_CTX_set_tlsext_servername_callback(self->ctx, NULL); } else { if (!PyCallable_Check(cb)) { SSL_CTX_set_tlsext_servername_callback(self->ctx, NULL); PyErr_SetString(PyExc_TypeError, "not a callable object"); return NULL; } Py_INCREF(cb); self->set_hostname = cb; SSL_CTX_set_tlsext_servername_callback(self->ctx, _servername_callback); SSL_CTX_set_tlsext_servername_arg(self->ctx, self); } Py_RETURN_NONE; #else PyErr_SetString(PyExc_NotImplementedError, "The TLS extension servername callback, " "SSL_CTX_set_tlsext_servername_callback, " "is not in the current OpenSSL library."); return NULL; #endif } /*[clinic input] _ssl._SSLContext.cert_store_stats Returns quantities of loaded X.509 certificates. X.509 certificates with a CA extension and certificate revocation lists inside the context's cert store. NOTE: Certificates in a capath directory aren't loaded unless they have been used at least once. [clinic start generated code]*/ static PyObject * _ssl__SSLContext_cert_store_stats_impl(PySSLContext *self) /*[clinic end generated code: output=5f356f4d9cca874d input=eb40dd0f6d0e40cf]*/ { X509_STORE *store; X509_OBJECT *obj; int x509 = 0, crl = 0, pkey = 0, ca = 0, i; store = SSL_CTX_get_cert_store(self->ctx); for (i = 0; i < sk_X509_OBJECT_num(store->objs); i++) { obj = sk_X509_OBJECT_value(store->objs, i); switch (obj->type) { case X509_LU_X509: x509++; if (X509_check_ca(obj->data.x509)) { ca++; } break; case X509_LU_CRL: crl++; break; case X509_LU_PKEY: pkey++; break; default: /* Ignore X509_LU_FAIL, X509_LU_RETRY, X509_LU_PKEY. * As far as I can tell they are internal states and never * stored in a cert store */ break; } } return Py_BuildValue("{sisisi}", "x509", x509, "crl", crl, "x509_ca", ca); } /*[clinic input] _ssl._SSLContext.get_ca_certs binary_form: bool = False Returns a list of dicts with information of loaded CA certs. If the optional argument is True, returns a DER-encoded copy of the CA certificate. NOTE: Certificates in a capath directory aren't loaded unless they have been used at least once. [clinic start generated code]*/ static PyObject * _ssl__SSLContext_get_ca_certs_impl(PySSLContext *self, int binary_form) /*[clinic end generated code: output=0d58f148f37e2938 input=6887b5a09b7f9076]*/ { X509_STORE *store; PyObject *ci = NULL, *rlist = NULL; int i; if ((rlist = PyList_New(0)) == NULL) { return NULL; } store = SSL_CTX_get_cert_store(self->ctx); for (i = 0; i < sk_X509_OBJECT_num(store->objs); i++) { X509_OBJECT *obj; X509 *cert; obj = sk_X509_OBJECT_value(store->objs, i); if (obj->type != X509_LU_X509) { /* not a x509 cert */ continue; } /* CA for any purpose */ cert = obj->data.x509; if (!X509_check_ca(cert)) { continue; } if (binary_form) { ci = _certificate_to_der(cert); } else { ci = _decode_certificate(cert); } if (ci == NULL) { goto error; } if (PyList_Append(rlist, ci) == -1) { goto error; } Py_CLEAR(ci); } return rlist; error: Py_XDECREF(ci); Py_XDECREF(rlist); return NULL; } static PyGetSetDef context_getsetlist[] = { {"check_hostname", (getter) get_check_hostname, (setter) set_check_hostname, NULL}, {"options", (getter) get_options, (setter) set_options, NULL}, {"verify_flags", (getter) get_verify_flags, (setter) set_verify_flags, NULL}, {"verify_mode", (getter) get_verify_mode, (setter) set_verify_mode, NULL}, {NULL}, /* sentinel */ }; static struct PyMethodDef context_methods[] = { _SSL__SSLCONTEXT__WRAP_SOCKET_METHODDEF _SSL__SSLCONTEXT__WRAP_BIO_METHODDEF _SSL__SSLCONTEXT_SET_CIPHERS_METHODDEF _SSL__SSLCONTEXT__SET_ALPN_PROTOCOLS_METHODDEF _SSL__SSLCONTEXT__SET_NPN_PROTOCOLS_METHODDEF _SSL__SSLCONTEXT_LOAD_CERT_CHAIN_METHODDEF _SSL__SSLCONTEXT_LOAD_DH_PARAMS_METHODDEF _SSL__SSLCONTEXT_LOAD_VERIFY_LOCATIONS_METHODDEF _SSL__SSLCONTEXT_SESSION_STATS_METHODDEF _SSL__SSLCONTEXT_SET_DEFAULT_VERIFY_PATHS_METHODDEF _SSL__SSLCONTEXT_SET_ECDH_CURVE_METHODDEF _SSL__SSLCONTEXT_SET_SERVERNAME_CALLBACK_METHODDEF _SSL__SSLCONTEXT_CERT_STORE_STATS_METHODDEF _SSL__SSLCONTEXT_GET_CA_CERTS_METHODDEF {NULL, NULL} /* sentinel */ }; static PyTypeObject PySSLContext_Type = { PyVarObject_HEAD_INIT(NULL, 0) "_ssl._SSLContext", /*tp_name*/ sizeof(PySSLContext), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)context_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ (traverseproc) context_traverse, /*tp_traverse*/ (inquiry) context_clear, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ context_methods, /*tp_methods*/ 0, /*tp_members*/ context_getsetlist, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ _ssl__SSLContext, /*tp_new*/ }; /* * MemoryBIO objects */ /*[clinic input] @classmethod _ssl.MemoryBIO.__new__ [clinic start generated code]*/ static PyObject * _ssl_MemoryBIO_impl(PyTypeObject *type) /*[clinic end generated code: output=8820a58db78330ac input=26d22e4909ecb1b5]*/ { BIO *bio; PySSLMemoryBIO *self; bio = BIO_new(BIO_s_mem()); if (bio == NULL) { PyErr_SetString(PySSLErrorObject, "failed to allocate BIO"); return NULL; } /* Since our BIO is non-blocking an empty read() does not indicate EOF, * just that no data is currently available. The SSL routines should retry * the read, which we can achieve by calling BIO_set_retry_read(). */ BIO_set_retry_read(bio); BIO_set_mem_eof_return(bio, -1); assert(type != NULL && type->tp_alloc != NULL); self = (PySSLMemoryBIO *) type->tp_alloc(type, 0); if (self == NULL) { BIO_free(bio); return NULL; } self->bio = bio; self->eof_written = 0; return (PyObject *) self; } static void memory_bio_dealloc(PySSLMemoryBIO *self) { BIO_free(self->bio); Py_TYPE(self)->tp_free(self); } static PyObject * memory_bio_get_pending(PySSLMemoryBIO *self, void *c) { return PyLong_FromLong(BIO_ctrl_pending(self->bio)); } PyDoc_STRVAR(PySSL_memory_bio_pending_doc, "The number of bytes pending in the memory BIO."); static PyObject * memory_bio_get_eof(PySSLMemoryBIO *self, void *c) { return PyBool_FromLong((BIO_ctrl_pending(self->bio) == 0) && self->eof_written); } PyDoc_STRVAR(PySSL_memory_bio_eof_doc, "Whether the memory BIO is at EOF."); /*[clinic input] _ssl.MemoryBIO.read size as len: int = -1 / Read up to size bytes from the memory BIO. If size is not specified, read the entire buffer. If the return value is an empty bytes instance, this means either EOF or that no data is available. Use the "eof" property to distinguish between the two. [clinic start generated code]*/ static PyObject * _ssl_MemoryBIO_read_impl(PySSLMemoryBIO *self, int len) /*[clinic end generated code: output=a657aa1e79cd01b3 input=574d7be06a902366]*/ { int avail, nbytes; PyObject *result; avail = BIO_ctrl_pending(self->bio); if ((len < 0) || (len > avail)) len = avail; result = PyBytes_FromStringAndSize(NULL, len); if ((result == NULL) || (len == 0)) return result; nbytes = BIO_read(self->bio, PyBytes_AS_STRING(result), len); /* There should never be any short reads but check anyway. */ if ((nbytes < len) && (_PyBytes_Resize(&result, len) < 0)) { Py_DECREF(result); return NULL; } return result; } /*[clinic input] _ssl.MemoryBIO.write b: Py_buffer / Writes the bytes b into the memory BIO. Returns the number of bytes written. [clinic start generated code]*/ static PyObject * _ssl_MemoryBIO_write_impl(PySSLMemoryBIO *self, Py_buffer *b) /*[clinic end generated code: output=156ec59110d75935 input=e45757b3e17c4808]*/ { int nbytes; if (b->len > INT_MAX) { PyErr_Format(PyExc_OverflowError, "string longer than %d bytes", INT_MAX); return NULL; } if (self->eof_written) { PyErr_SetString(PySSLErrorObject, "cannot write() after write_eof()"); return NULL; } nbytes = BIO_write(self->bio, b->buf, b->len); if (nbytes < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); return NULL; } return PyLong_FromLong(nbytes); } /*[clinic input] _ssl.MemoryBIO.write_eof Write an EOF marker to the memory BIO. When all data has been read, the "eof" property will be True. [clinic start generated code]*/ static PyObject * _ssl_MemoryBIO_write_eof_impl(PySSLMemoryBIO *self) /*[clinic end generated code: output=d4106276ccd1ed34 input=56a945f1d29e8bd6]*/ { self->eof_written = 1; /* After an EOF is written, a zero return from read() should be a real EOF * i.e. it should not be retried. Clear the SHOULD_RETRY flag. */ BIO_clear_retry_flags(self->bio); BIO_set_mem_eof_return(self->bio, 0); Py_RETURN_NONE; } static PyGetSetDef memory_bio_getsetlist[] = { {"pending", (getter) memory_bio_get_pending, NULL, PySSL_memory_bio_pending_doc}, {"eof", (getter) memory_bio_get_eof, NULL, PySSL_memory_bio_eof_doc}, {NULL}, /* sentinel */ }; static struct PyMethodDef memory_bio_methods[] = { _SSL_MEMORYBIO_READ_METHODDEF _SSL_MEMORYBIO_WRITE_METHODDEF _SSL_MEMORYBIO_WRITE_EOF_METHODDEF {NULL, NULL} /* sentinel */ }; static PyTypeObject PySSLMemoryBIO_Type = { PyVarObject_HEAD_INIT(NULL, 0) "_ssl.MemoryBIO", /*tp_name*/ sizeof(PySSLMemoryBIO), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)memory_bio_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ memory_bio_methods, /*tp_methods*/ 0, /*tp_members*/ memory_bio_getsetlist, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ _ssl_MemoryBIO, /*tp_new*/ }; /* helper routines for seeding the SSL PRNG */ /*[clinic input] _ssl.RAND_add string as view: Py_buffer(accept={str, buffer}) entropy: double / Mix string into the OpenSSL PRNG state. entropy (a float) is a lower bound on the entropy contained in string. See RFC 1750. [clinic start generated code]*/ static PyObject * _ssl_RAND_add_impl(PyModuleDef *module, Py_buffer *view, double entropy) /*[clinic end generated code: output=0f8d5c8cce328958 input=580c85e6a3a4fe29]*/ { const char *buf; Py_ssize_t len, written; buf = (const char *)view->buf; len = view->len; do { written = Py_MIN(len, INT_MAX); RAND_add(buf, (int)written, entropy); buf += written; len -= written; } while (len); Py_INCREF(Py_None); return Py_None; } static PyObject * PySSL_RAND(int len, int pseudo) { int ok; PyObject *bytes; unsigned long err; const char *errstr; PyObject *v; if (len < 0) { PyErr_SetString(PyExc_ValueError, "num must be positive"); return NULL; } bytes = PyBytes_FromStringAndSize(NULL, len); if (bytes == NULL) return NULL; if (pseudo) { ok = RAND_pseudo_bytes((unsigned char*)PyBytes_AS_STRING(bytes), len); if (ok == 0 || ok == 1) return Py_BuildValue("NO", bytes, ok == 1 ? Py_True : Py_False); } else { ok = RAND_bytes((unsigned char*)PyBytes_AS_STRING(bytes), len); if (ok == 1) return bytes; } Py_DECREF(bytes); err = ERR_get_error(); errstr = ERR_reason_error_string(err); v = Py_BuildValue("(ks)", err, errstr); if (v != NULL) { PyErr_SetObject(PySSLErrorObject, v); Py_DECREF(v); } return NULL; } /*[clinic input] _ssl.RAND_bytes n: int / Generate n cryptographically strong pseudo-random bytes. [clinic start generated code]*/ static PyObject * _ssl_RAND_bytes_impl(PyModuleDef *module, int n) /*[clinic end generated code: output=7d8741bdc1d435f3 input=678ddf2872dfebfc]*/ { return PySSL_RAND(n, 0); } /*[clinic input] _ssl.RAND_pseudo_bytes n: int / Generate n pseudo-random bytes. Return a pair (bytes, is_cryptographic). is_cryptographic is True if the bytes generated are cryptographically strong. [clinic start generated code]*/ static PyObject * _ssl_RAND_pseudo_bytes_impl(PyModuleDef *module, int n) /*[clinic end generated code: output=dd673813107f3875 input=58312bd53f9bbdd0]*/ { return PySSL_RAND(n, 1); } /*[clinic input] _ssl.RAND_status Returns 1 if the OpenSSL PRNG has been seeded with enough data and 0 if not. It is necessary to seed the PRNG with RAND_add() on some platforms before using the ssl() function. [clinic start generated code]*/ static PyObject * _ssl_RAND_status_impl(PyModuleDef *module) /*[clinic end generated code: output=7f7ef57bc7dd1d1c input=8a774b02d1dc81f3]*/ { return PyLong_FromLong(RAND_status()); } #ifdef HAVE_RAND_EGD /*[clinic input] _ssl.RAND_egd path: object(converter="PyUnicode_FSConverter") / Queries the entropy gather daemon (EGD) on the socket named by 'path'. Returns number of bytes read. Raises SSLError if connection to EGD fails or if it does not provide enough data to seed PRNG. [clinic start generated code]*/ static PyObject * _ssl_RAND_egd_impl(PyModuleDef *module, PyObject *path) /*[clinic end generated code: output=8e728e501e28541b input=1aeb7eb948312195]*/ { int bytes = RAND_egd(PyBytes_AsString(path)); Py_DECREF(path); if (bytes == -1) { PyErr_SetString(PySSLErrorObject, "EGD connection failed or EGD did not return " "enough data to seed the PRNG"); return NULL; } return PyLong_FromLong(bytes); } #endif /* HAVE_RAND_EGD */ /*[clinic input] _ssl.get_default_verify_paths Return search paths and environment vars that are used by SSLContext's set_default_verify_paths() to load default CAs. The values are 'cert_file_env', 'cert_file', 'cert_dir_env', 'cert_dir'. [clinic start generated code]*/ static PyObject * _ssl_get_default_verify_paths_impl(PyModuleDef *module) /*[clinic end generated code: output=5a2820ce7e3304d3 input=5210c953d98c3eb5]*/ { PyObject *ofile_env = NULL; PyObject *ofile = NULL; PyObject *odir_env = NULL; PyObject *odir = NULL; #define CONVERT(info, target) { \ const char *tmp = (info); \ target = NULL; \ if (!tmp) { Py_INCREF(Py_None); target = Py_None; } \ else if ((target = PyUnicode_DecodeFSDefault(tmp)) == NULL) { \ target = PyBytes_FromString(tmp); } \ if (!target) goto error; \ } CONVERT(X509_get_default_cert_file_env(), ofile_env); CONVERT(X509_get_default_cert_file(), ofile); CONVERT(X509_get_default_cert_dir_env(), odir_env); CONVERT(X509_get_default_cert_dir(), odir); #undef CONVERT return Py_BuildValue("NNNN", ofile_env, ofile, odir_env, odir); error: Py_XDECREF(ofile_env); Py_XDECREF(ofile); Py_XDECREF(odir_env); Py_XDECREF(odir); return NULL; } static PyObject* asn1obj2py(ASN1_OBJECT *obj) { int nid; const char *ln, *sn; char buf[100]; Py_ssize_t buflen; nid = OBJ_obj2nid(obj); if (nid == NID_undef) { PyErr_Format(PyExc_ValueError, "Unknown object"); return NULL; } sn = OBJ_nid2sn(nid); ln = OBJ_nid2ln(nid); buflen = OBJ_obj2txt(buf, sizeof(buf), obj, 1); if (buflen < 0) { _setSSLError(NULL, 0, __FILE__, __LINE__); return NULL; } if (buflen) { return Py_BuildValue("isss#", nid, sn, ln, buf, buflen); } else { return Py_BuildValue("issO", nid, sn, ln, Py_None); } } /*[clinic input] _ssl.txt2obj txt: str name: bool = False Lookup NID, short name, long name and OID of an ASN1_OBJECT. By default objects are looked up by OID. With name=True short and long name are also matched. [clinic start generated code]*/ static PyObject * _ssl_txt2obj_impl(PyModuleDef *module, const char *txt, int name) /*[clinic end generated code: output=2ae2c30531b8809f input=1c1e7d0aa7c48602]*/ { PyObject *result = NULL; ASN1_OBJECT *obj; obj = OBJ_txt2obj(txt, name ? 0 : 1); if (obj == NULL) { PyErr_Format(PyExc_ValueError, "unknown object '%.100s'", txt); return NULL; } result = asn1obj2py(obj); ASN1_OBJECT_free(obj); return result; } /*[clinic input] _ssl.nid2obj nid: int / Lookup NID, short name, long name and OID of an ASN1_OBJECT by NID. [clinic start generated code]*/ static PyObject * _ssl_nid2obj_impl(PyModuleDef *module, int nid) /*[clinic end generated code: output=8db1df89e44badb8 input=51787a3bee7d8f98]*/ { PyObject *result = NULL; ASN1_OBJECT *obj; if (nid < NID_undef) { PyErr_SetString(PyExc_ValueError, "NID must be positive."); return NULL; } obj = OBJ_nid2obj(nid); if (obj == NULL) { PyErr_Format(PyExc_ValueError, "unknown NID %i", nid); return NULL; } result = asn1obj2py(obj); ASN1_OBJECT_free(obj); return result; } #ifdef _MSC_VER static PyObject* certEncodingType(DWORD encodingType) { static PyObject *x509_asn = NULL; static PyObject *pkcs_7_asn = NULL; if (x509_asn == NULL) { x509_asn = PyUnicode_InternFromString("x509_asn"); if (x509_asn == NULL) return NULL; } if (pkcs_7_asn == NULL) { pkcs_7_asn = PyUnicode_InternFromString("pkcs_7_asn"); if (pkcs_7_asn == NULL) return NULL; } switch(encodingType) { case X509_ASN_ENCODING: Py_INCREF(x509_asn); return x509_asn; case PKCS_7_ASN_ENCODING: Py_INCREF(pkcs_7_asn); return pkcs_7_asn; default: return PyLong_FromLong(encodingType); } } static PyObject* parseKeyUsage(PCCERT_CONTEXT pCertCtx, DWORD flags) { CERT_ENHKEY_USAGE *usage; DWORD size, error, i; PyObject *retval; if (!CertGetEnhancedKeyUsage(pCertCtx, flags, NULL, &size)) { error = GetLastError(); if (error == CRYPT_E_NOT_FOUND) { Py_RETURN_TRUE; } return PyErr_SetFromWindowsErr(error); } usage = (CERT_ENHKEY_USAGE*)PyMem_Malloc(size); if (usage == NULL) { return PyErr_NoMemory(); } /* Now get the actual enhanced usage property */ if (!CertGetEnhancedKeyUsage(pCertCtx, flags, usage, &size)) { PyMem_Free(usage); error = GetLastError(); if (error == CRYPT_E_NOT_FOUND) { Py_RETURN_TRUE; } return PyErr_SetFromWindowsErr(error); } retval = PySet_New(NULL); if (retval == NULL) { goto error; } for (i = 0; i < usage->cUsageIdentifier; ++i) { if (usage->rgpszUsageIdentifier[i]) { PyObject *oid; int err; oid = PyUnicode_FromString(usage->rgpszUsageIdentifier[i]); if (oid == NULL) { Py_CLEAR(retval); goto error; } err = PySet_Add(retval, oid); Py_DECREF(oid); if (err == -1) { Py_CLEAR(retval); goto error; } } } error: PyMem_Free(usage); return retval; } /*[clinic input] _ssl.enum_certificates store_name: str Retrieve certificates from Windows' cert store. store_name may be one of 'CA', 'ROOT' or 'MY'. The system may provide more cert storages, too. The function returns a list of (bytes, encoding_type, trust) tuples. The encoding_type flag can be interpreted with X509_ASN_ENCODING or PKCS_7_ASN_ENCODING. The trust setting is either a set of OIDs or the boolean True. [clinic start generated code]*/ static PyObject * _ssl_enum_certificates_impl(PyModuleDef *module, const char *store_name) /*[clinic end generated code: output=cc4ebc10b8adacfc input=915f60d70461ea4e]*/ { HCERTSTORE hStore = NULL; PCCERT_CONTEXT pCertCtx = NULL; PyObject *keyusage = NULL, *cert = NULL, *enc = NULL, *tup = NULL; PyObject *result = NULL; result = PyList_New(0); if (result == NULL) { return NULL; } hStore = CertOpenStore(CERT_STORE_PROV_SYSTEM_A, 0, (HCRYPTPROV)NULL, CERT_STORE_READONLY_FLAG | CERT_SYSTEM_STORE_LOCAL_MACHINE, store_name); if (hStore == NULL) { Py_DECREF(result); return PyErr_SetFromWindowsErr(GetLastError()); } while (pCertCtx = CertEnumCertificatesInStore(hStore, pCertCtx)) { cert = PyBytes_FromStringAndSize((const char*)pCertCtx->pbCertEncoded, pCertCtx->cbCertEncoded); if (!cert) { Py_CLEAR(result); break; } if ((enc = certEncodingType(pCertCtx->dwCertEncodingType)) == NULL) { Py_CLEAR(result); break; } keyusage = parseKeyUsage(pCertCtx, CERT_FIND_PROP_ONLY_ENHKEY_USAGE_FLAG); if (keyusage == Py_True) { Py_DECREF(keyusage); keyusage = parseKeyUsage(pCertCtx, CERT_FIND_EXT_ONLY_ENHKEY_USAGE_FLAG); } if (keyusage == NULL) { Py_CLEAR(result); break; } if ((tup = PyTuple_New(3)) == NULL) { Py_CLEAR(result); break; } PyTuple_SET_ITEM(tup, 0, cert); cert = NULL; PyTuple_SET_ITEM(tup, 1, enc); enc = NULL; PyTuple_SET_ITEM(tup, 2, keyusage); keyusage = NULL; if (PyList_Append(result, tup) < 0) { Py_CLEAR(result); break; } Py_CLEAR(tup); } if (pCertCtx) { /* loop ended with an error, need to clean up context manually */ CertFreeCertificateContext(pCertCtx); } /* In error cases cert, enc and tup may not be NULL */ Py_XDECREF(cert); Py_XDECREF(enc); Py_XDECREF(keyusage); Py_XDECREF(tup); if (!CertCloseStore(hStore, 0)) { /* This error case might shadow another exception.*/ Py_XDECREF(result); return PyErr_SetFromWindowsErr(GetLastError()); } return result; } /*[clinic input] _ssl.enum_crls store_name: str Retrieve CRLs from Windows' cert store. store_name may be one of 'CA', 'ROOT' or 'MY'. The system may provide more cert storages, too. The function returns a list of (bytes, encoding_type) tuples. The encoding_type flag can be interpreted with X509_ASN_ENCODING or PKCS_7_ASN_ENCODING. [clinic start generated code]*/ static PyObject * _ssl_enum_crls_impl(PyModuleDef *module, const char *store_name) /*[clinic end generated code: output=763490a2aa1c50d5 input=a1f1d7629f1c5d3d]*/ { HCERTSTORE hStore = NULL; PCCRL_CONTEXT pCrlCtx = NULL; PyObject *crl = NULL, *enc = NULL, *tup = NULL; PyObject *result = NULL; result = PyList_New(0); if (result == NULL) { return NULL; } hStore = CertOpenStore(CERT_STORE_PROV_SYSTEM_A, 0, (HCRYPTPROV)NULL, CERT_STORE_READONLY_FLAG | CERT_SYSTEM_STORE_LOCAL_MACHINE, store_name); if (hStore == NULL) { Py_DECREF(result); return PyErr_SetFromWindowsErr(GetLastError()); } while (pCrlCtx = CertEnumCRLsInStore(hStore, pCrlCtx)) { crl = PyBytes_FromStringAndSize((const char*)pCrlCtx->pbCrlEncoded, pCrlCtx->cbCrlEncoded); if (!crl) { Py_CLEAR(result); break; } if ((enc = certEncodingType(pCrlCtx->dwCertEncodingType)) == NULL) { Py_CLEAR(result); break; } if ((tup = PyTuple_New(2)) == NULL) { Py_CLEAR(result); break; } PyTuple_SET_ITEM(tup, 0, crl); crl = NULL; PyTuple_SET_ITEM(tup, 1, enc); enc = NULL; if (PyList_Append(result, tup) < 0) { Py_CLEAR(result); break; } Py_CLEAR(tup); } if (pCrlCtx) { /* loop ended with an error, need to clean up context manually */ CertFreeCRLContext(pCrlCtx); } /* In error cases cert, enc and tup may not be NULL */ Py_XDECREF(crl); Py_XDECREF(enc); Py_XDECREF(tup); if (!CertCloseStore(hStore, 0)) { /* This error case might shadow another exception.*/ Py_XDECREF(result); return PyErr_SetFromWindowsErr(GetLastError()); } return result; } #endif /* _MSC_VER */ /* List of functions exported by this module. */ static PyMethodDef PySSL_methods[] = { _SSL__TEST_DECODE_CERT_METHODDEF _SSL_RAND_ADD_METHODDEF _SSL_RAND_BYTES_METHODDEF _SSL_RAND_PSEUDO_BYTES_METHODDEF _SSL_RAND_EGD_METHODDEF _SSL_RAND_STATUS_METHODDEF _SSL_GET_DEFAULT_VERIFY_PATHS_METHODDEF _SSL_ENUM_CERTIFICATES_METHODDEF _SSL_ENUM_CRLS_METHODDEF _SSL_TXT2OBJ_METHODDEF _SSL_NID2OBJ_METHODDEF {NULL, NULL} /* Sentinel */ }; #ifdef WITH_THREAD /* an implementation of OpenSSL threading operations in terms of the Python C thread library */ static PyThread_type_lock *_ssl_locks = NULL; #if OPENSSL_VERSION_NUMBER >= 0x10000000 /* use new CRYPTO_THREADID API. */ static void _ssl_threadid_callback(CRYPTO_THREADID *id) { CRYPTO_THREADID_set_numeric(id, (unsigned long)PyThread_get_thread_ident()); } #else /* deprecated CRYPTO_set_id_callback() API. */ static unsigned long _ssl_thread_id_function (void) { return PyThread_get_thread_ident(); } #endif static void _ssl_thread_locking_function (int mode, int n, const char *file, int line) { /* this function is needed to perform locking on shared data structures. (Note that OpenSSL uses a number of global data structures that will be implicitly shared whenever multiple threads use OpenSSL.) Multi-threaded applications will crash at random if it is not set. locking_function() must be able to handle up to CRYPTO_num_locks() different mutex locks. It sets the n-th lock if mode & CRYPTO_LOCK, and releases it otherwise. file and line are the file number of the function setting the lock. They can be useful for debugging. */ if ((_ssl_locks == NULL) || (n < 0) || ((unsigned)n >= _ssl_locks_count)) return; if (mode & CRYPTO_LOCK) { PyThread_acquire_lock(_ssl_locks[n], 1); } else { PyThread_release_lock(_ssl_locks[n]); } } static int _setup_ssl_threads(void) { unsigned int i; if (_ssl_locks == NULL) { _ssl_locks_count = CRYPTO_num_locks(); _ssl_locks = PyMem_New(PyThread_type_lock, _ssl_locks_count); if (_ssl_locks == NULL) { PyErr_NoMemory(); return 0; } memset(_ssl_locks, 0, sizeof(PyThread_type_lock) * _ssl_locks_count); for (i = 0; i < _ssl_locks_count; i++) { _ssl_locks[i] = PyThread_allocate_lock(); if (_ssl_locks[i] == NULL) { unsigned int j; for (j = 0; j < i; j++) { PyThread_free_lock(_ssl_locks[j]); } PyMem_Free(_ssl_locks); return 0; } } CRYPTO_set_locking_callback(_ssl_thread_locking_function); #if OPENSSL_VERSION_NUMBER >= 0x10000000 CRYPTO_THREADID_set_callback(_ssl_threadid_callback); #else CRYPTO_set_id_callback(_ssl_thread_id_function); #endif } return 1; } #endif /* def HAVE_THREAD */ PyDoc_STRVAR(module_doc, "Implementation module for SSL socket operations. See the socket module\n\ for documentation."); static struct PyModuleDef _sslmodule = { PyModuleDef_HEAD_INIT, "_ssl", module_doc, -1, PySSL_methods, NULL, NULL, NULL, NULL }; static void parse_openssl_version(unsigned long libver, unsigned int *major, unsigned int *minor, unsigned int *fix, unsigned int *patch, unsigned int *status) { *status = libver & 0xF; libver >>= 4; *patch = libver & 0xFF; libver >>= 8; *fix = libver & 0xFF; libver >>= 8; *minor = libver & 0xFF; libver >>= 8; *major = libver & 0xFF; } PyMODINIT_FUNC PyInit__ssl(void) { PyObject *m, *d, *r; unsigned long libver; unsigned int major, minor, fix, patch, status; PySocketModule_APIObject *socket_api; struct py_ssl_error_code *errcode; struct py_ssl_library_code *libcode; if (PyType_Ready(&PySSLContext_Type) < 0) return NULL; if (PyType_Ready(&PySSLSocket_Type) < 0) return NULL; if (PyType_Ready(&PySSLMemoryBIO_Type) < 0) return NULL; m = PyModule_Create(&_sslmodule); if (m == NULL) return NULL; d = PyModule_GetDict(m); /* Load _socket module and its C API */ socket_api = PySocketModule_ImportModuleAndAPI(); if (!socket_api) return NULL; PySocketModule = *socket_api; /* Init OpenSSL */ SSL_load_error_strings(); SSL_library_init(); #ifdef WITH_THREAD /* note that this will start threading if not already started */ if (!_setup_ssl_threads()) { return NULL; } #endif OpenSSL_add_all_algorithms(); /* Add symbols to module dict */ sslerror_type_slots[0].pfunc = PyExc_OSError; PySSLErrorObject = PyType_FromSpec(&sslerror_type_spec); if (PySSLErrorObject == NULL) return NULL; PySSLZeroReturnErrorObject = PyErr_NewExceptionWithDoc( "ssl.SSLZeroReturnError", SSLZeroReturnError_doc, PySSLErrorObject, NULL); PySSLWantReadErrorObject = PyErr_NewExceptionWithDoc( "ssl.SSLWantReadError", SSLWantReadError_doc, PySSLErrorObject, NULL); PySSLWantWriteErrorObject = PyErr_NewExceptionWithDoc( "ssl.SSLWantWriteError", SSLWantWriteError_doc, PySSLErrorObject, NULL); PySSLSyscallErrorObject = PyErr_NewExceptionWithDoc( "ssl.SSLSyscallError", SSLSyscallError_doc, PySSLErrorObject, NULL); PySSLEOFErrorObject = PyErr_NewExceptionWithDoc( "ssl.SSLEOFError", SSLEOFError_doc, PySSLErrorObject, NULL); if (PySSLZeroReturnErrorObject == NULL || PySSLWantReadErrorObject == NULL || PySSLWantWriteErrorObject == NULL || PySSLSyscallErrorObject == NULL || PySSLEOFErrorObject == NULL) return NULL; if (PyDict_SetItemString(d, "SSLError", PySSLErrorObject) != 0 || PyDict_SetItemString(d, "SSLZeroReturnError", PySSLZeroReturnErrorObject) != 0 || PyDict_SetItemString(d, "SSLWantReadError", PySSLWantReadErrorObject) != 0 || PyDict_SetItemString(d, "SSLWantWriteError", PySSLWantWriteErrorObject) != 0 || PyDict_SetItemString(d, "SSLSyscallError", PySSLSyscallErrorObject) != 0 || PyDict_SetItemString(d, "SSLEOFError", PySSLEOFErrorObject) != 0) return NULL; if (PyDict_SetItemString(d, "_SSLContext", (PyObject *)&PySSLContext_Type) != 0) return NULL; if (PyDict_SetItemString(d, "_SSLSocket", (PyObject *)&PySSLSocket_Type) != 0) return NULL; if (PyDict_SetItemString(d, "MemoryBIO", (PyObject *)&PySSLMemoryBIO_Type) != 0) return NULL; PyModule_AddIntConstant(m, "SSL_ERROR_ZERO_RETURN", PY_SSL_ERROR_ZERO_RETURN); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_READ", PY_SSL_ERROR_WANT_READ); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_WRITE", PY_SSL_ERROR_WANT_WRITE); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_X509_LOOKUP", PY_SSL_ERROR_WANT_X509_LOOKUP); PyModule_AddIntConstant(m, "SSL_ERROR_SYSCALL", PY_SSL_ERROR_SYSCALL); PyModule_AddIntConstant(m, "SSL_ERROR_SSL", PY_SSL_ERROR_SSL); PyModule_AddIntConstant(m, "SSL_ERROR_WANT_CONNECT", PY_SSL_ERROR_WANT_CONNECT); /* non ssl.h errorcodes */ PyModule_AddIntConstant(m, "SSL_ERROR_EOF", PY_SSL_ERROR_EOF); PyModule_AddIntConstant(m, "SSL_ERROR_INVALID_ERROR_CODE", PY_SSL_ERROR_INVALID_ERROR_CODE); /* cert requirements */ PyModule_AddIntConstant(m, "CERT_NONE", PY_SSL_CERT_NONE); PyModule_AddIntConstant(m, "CERT_OPTIONAL", PY_SSL_CERT_OPTIONAL); PyModule_AddIntConstant(m, "CERT_REQUIRED", PY_SSL_CERT_REQUIRED); /* CRL verification for verification_flags */ PyModule_AddIntConstant(m, "VERIFY_DEFAULT", 0); PyModule_AddIntConstant(m, "VERIFY_CRL_CHECK_LEAF", X509_V_FLAG_CRL_CHECK); PyModule_AddIntConstant(m, "VERIFY_CRL_CHECK_CHAIN", X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); PyModule_AddIntConstant(m, "VERIFY_X509_STRICT", X509_V_FLAG_X509_STRICT); #ifdef X509_V_FLAG_TRUSTED_FIRST PyModule_AddIntConstant(m, "VERIFY_X509_TRUSTED_FIRST", X509_V_FLAG_TRUSTED_FIRST); #endif /* Alert Descriptions from ssl.h */ /* note RESERVED constants no longer intended for use have been removed */ /* http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-6 */ #define ADD_AD_CONSTANT(s) \ PyModule_AddIntConstant(m, "ALERT_DESCRIPTION_"#s, \ SSL_AD_##s) ADD_AD_CONSTANT(CLOSE_NOTIFY); ADD_AD_CONSTANT(UNEXPECTED_MESSAGE); ADD_AD_CONSTANT(BAD_RECORD_MAC); ADD_AD_CONSTANT(RECORD_OVERFLOW); ADD_AD_CONSTANT(DECOMPRESSION_FAILURE); ADD_AD_CONSTANT(HANDSHAKE_FAILURE); ADD_AD_CONSTANT(BAD_CERTIFICATE); ADD_AD_CONSTANT(UNSUPPORTED_CERTIFICATE); ADD_AD_CONSTANT(CERTIFICATE_REVOKED); ADD_AD_CONSTANT(CERTIFICATE_EXPIRED); ADD_AD_CONSTANT(CERTIFICATE_UNKNOWN); ADD_AD_CONSTANT(ILLEGAL_PARAMETER); ADD_AD_CONSTANT(UNKNOWN_CA); ADD_AD_CONSTANT(ACCESS_DENIED); ADD_AD_CONSTANT(DECODE_ERROR); ADD_AD_CONSTANT(DECRYPT_ERROR); ADD_AD_CONSTANT(PROTOCOL_VERSION); ADD_AD_CONSTANT(INSUFFICIENT_SECURITY); ADD_AD_CONSTANT(INTERNAL_ERROR); ADD_AD_CONSTANT(USER_CANCELLED); ADD_AD_CONSTANT(NO_RENEGOTIATION); /* Not all constants are in old OpenSSL versions */ #ifdef SSL_AD_UNSUPPORTED_EXTENSION ADD_AD_CONSTANT(UNSUPPORTED_EXTENSION); #endif #ifdef SSL_AD_CERTIFICATE_UNOBTAINABLE ADD_AD_CONSTANT(CERTIFICATE_UNOBTAINABLE); #endif #ifdef SSL_AD_UNRECOGNIZED_NAME ADD_AD_CONSTANT(UNRECOGNIZED_NAME); #endif #ifdef SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE ADD_AD_CONSTANT(BAD_CERTIFICATE_STATUS_RESPONSE); #endif #ifdef SSL_AD_BAD_CERTIFICATE_HASH_VALUE ADD_AD_CONSTANT(BAD_CERTIFICATE_HASH_VALUE); #endif #ifdef SSL_AD_UNKNOWN_PSK_IDENTITY ADD_AD_CONSTANT(UNKNOWN_PSK_IDENTITY); #endif #undef ADD_AD_CONSTANT /* protocol versions */ #ifndef OPENSSL_NO_SSL2 PyModule_AddIntConstant(m, "PROTOCOL_SSLv2", PY_SSL_VERSION_SSL2); #endif #ifndef OPENSSL_NO_SSL3 PyModule_AddIntConstant(m, "PROTOCOL_SSLv3", PY_SSL_VERSION_SSL3); #endif PyModule_AddIntConstant(m, "PROTOCOL_SSLv23", PY_SSL_VERSION_SSL23); PyModule_AddIntConstant(m, "PROTOCOL_TLSv1", PY_SSL_VERSION_TLS1); #if HAVE_TLSv1_2 PyModule_AddIntConstant(m, "PROTOCOL_TLSv1_1", PY_SSL_VERSION_TLS1_1); PyModule_AddIntConstant(m, "PROTOCOL_TLSv1_2", PY_SSL_VERSION_TLS1_2); #endif /* protocol options */ PyModule_AddIntConstant(m, "OP_ALL", SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS); PyModule_AddIntConstant(m, "OP_NO_SSLv2", SSL_OP_NO_SSLv2); PyModule_AddIntConstant(m, "OP_NO_SSLv3", SSL_OP_NO_SSLv3); PyModule_AddIntConstant(m, "OP_NO_TLSv1", SSL_OP_NO_TLSv1); #if HAVE_TLSv1_2 PyModule_AddIntConstant(m, "OP_NO_TLSv1_1", SSL_OP_NO_TLSv1_1); PyModule_AddIntConstant(m, "OP_NO_TLSv1_2", SSL_OP_NO_TLSv1_2); #endif PyModule_AddIntConstant(m, "OP_CIPHER_SERVER_PREFERENCE", SSL_OP_CIPHER_SERVER_PREFERENCE); PyModule_AddIntConstant(m, "OP_SINGLE_DH_USE", SSL_OP_SINGLE_DH_USE); #ifdef SSL_OP_SINGLE_ECDH_USE PyModule_AddIntConstant(m, "OP_SINGLE_ECDH_USE", SSL_OP_SINGLE_ECDH_USE); #endif #ifdef SSL_OP_NO_COMPRESSION PyModule_AddIntConstant(m, "OP_NO_COMPRESSION", SSL_OP_NO_COMPRESSION); #endif #if HAVE_SNI r = Py_True; #else r = Py_False; #endif Py_INCREF(r); PyModule_AddObject(m, "HAS_SNI", r); r = Py_True; Py_INCREF(r); PyModule_AddObject(m, "HAS_TLS_UNIQUE", r); #ifdef OPENSSL_NO_ECDH r = Py_False; #else r = Py_True; #endif Py_INCREF(r); PyModule_AddObject(m, "HAS_ECDH", r); #ifdef OPENSSL_NPN_NEGOTIATED r = Py_True; #else r = Py_False; #endif Py_INCREF(r); PyModule_AddObject(m, "HAS_NPN", r); #ifdef HAVE_ALPN r = Py_True; #else r = Py_False; #endif Py_INCREF(r); PyModule_AddObject(m, "HAS_ALPN", r); /* Mappings for error codes */ err_codes_to_names = PyDict_New(); err_names_to_codes = PyDict_New(); if (err_codes_to_names == NULL || err_names_to_codes == NULL) return NULL; errcode = error_codes; while (errcode->mnemonic != NULL) { PyObject *mnemo, *key; mnemo = PyUnicode_FromString(errcode->mnemonic); key = Py_BuildValue("ii", errcode->library, errcode->reason); if (mnemo == NULL || key == NULL) return NULL; if (PyDict_SetItem(err_codes_to_names, key, mnemo)) return NULL; if (PyDict_SetItem(err_names_to_codes, mnemo, key)) return NULL; Py_DECREF(key); Py_DECREF(mnemo); errcode++; } if (PyModule_AddObject(m, "err_codes_to_names", err_codes_to_names)) return NULL; if (PyModule_AddObject(m, "err_names_to_codes", err_names_to_codes)) return NULL; lib_codes_to_names = PyDict_New(); if (lib_codes_to_names == NULL) return NULL; libcode = library_codes; while (libcode->library != NULL) { PyObject *mnemo, *key; key = PyLong_FromLong(libcode->code); mnemo = PyUnicode_FromString(libcode->library); if (key == NULL || mnemo == NULL) return NULL; if (PyDict_SetItem(lib_codes_to_names, key, mnemo)) return NULL; Py_DECREF(key); Py_DECREF(mnemo); libcode++; } if (PyModule_AddObject(m, "lib_codes_to_names", lib_codes_to_names)) return NULL; /* OpenSSL version */ /* SSLeay() gives us the version of the library linked against, which could be different from the headers version. */ libver = SSLeay(); r = PyLong_FromUnsignedLong(libver); if (r == NULL) return NULL; if (PyModule_AddObject(m, "OPENSSL_VERSION_NUMBER", r)) return NULL; parse_openssl_version(libver, &major, &minor, &fix, &patch, &status); r = Py_BuildValue("IIIII", major, minor, fix, patch, status); if (r == NULL || PyModule_AddObject(m, "OPENSSL_VERSION_INFO", r)) return NULL; r = PyUnicode_FromString(SSLeay_version(SSLEAY_VERSION)); if (r == NULL || PyModule_AddObject(m, "OPENSSL_VERSION", r)) return NULL; libver = OPENSSL_VERSION_NUMBER; parse_openssl_version(libver, &major, &minor, &fix, &patch, &status); r = Py_BuildValue("IIIII", major, minor, fix, patch, status); if (r == NULL || PyModule_AddObject(m, "_OPENSSL_API_VERSION", r)) return NULL; return m; }