/* Type object implementation */ #include "Python.h" #include "structmember.h" #include /* The *real* layout of a type object when allocated on the heap */ /* XXX Should we publish this in a header file? */ typedef struct { /* Note: there's a dependency on the order of these members in slotptr() below. */ PyTypeObject type; PyNumberMethods as_number; PyMappingMethods as_mapping; PySequenceMethods as_sequence; /* as_sequence comes after as_mapping, so that the mapping wins when both the mapping and the sequence define a given operator (e.g. __getitem__). see add_operators() below. */ PyBufferProcs as_buffer; PyObject *name, *slots; PyMemberDef members[1]; } etype; static PyMemberDef type_members[] = { {"__basicsize__", T_INT, offsetof(PyTypeObject,tp_basicsize),READONLY}, {"__itemsize__", T_INT, offsetof(PyTypeObject, tp_itemsize), READONLY}, {"__flags__", T_LONG, offsetof(PyTypeObject, tp_flags), READONLY}, {"__weakrefoffset__", T_LONG, offsetof(PyTypeObject, tp_weaklistoffset), READONLY}, {"__base__", T_OBJECT, offsetof(PyTypeObject, tp_base), READONLY}, {"__dictoffset__", T_LONG, offsetof(PyTypeObject, tp_dictoffset), READONLY}, {"__bases__", T_OBJECT, offsetof(PyTypeObject, tp_bases), READONLY}, {"__mro__", T_OBJECT, offsetof(PyTypeObject, tp_mro), READONLY}, {0} }; static PyObject * type_name(PyTypeObject *type, void *context) { char *s; s = strrchr(type->tp_name, '.'); if (s == NULL) s = type->tp_name; else s++; return PyString_FromString(s); } static PyObject * type_module(PyTypeObject *type, void *context) { PyObject *mod; char *s; s = strrchr(type->tp_name, '.'); if (s != NULL) return PyString_FromStringAndSize(type->tp_name, (int)(s - type->tp_name)); if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) return PyString_FromString("__builtin__"); mod = PyDict_GetItemString(type->tp_dict, "__module__"); if (mod != NULL && PyString_Check(mod)) { Py_INCREF(mod); return mod; } PyErr_SetString(PyExc_AttributeError, "__module__"); return NULL; } static int type_set_module(PyTypeObject *type, PyObject *value, void *context) { if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE) || strrchr(type->tp_name, '.')) { PyErr_Format(PyExc_TypeError, "can't set %s.__module__", type->tp_name); return -1; } if (!value) { PyErr_Format(PyExc_TypeError, "can't delete %s.__module__", type->tp_name); return -1; } return PyDict_SetItemString(type->tp_dict, "__module__", value); } static PyObject * type_dict(PyTypeObject *type, void *context) { if (type->tp_dict == NULL) { Py_INCREF(Py_None); return Py_None; } return PyDictProxy_New(type->tp_dict); } static PyObject * type_get_doc(PyTypeObject *type, void *context) { PyObject *result; if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE) && type->tp_doc != NULL) return PyString_FromString(type->tp_doc); result = PyDict_GetItemString(type->tp_dict, "__doc__"); if (result == NULL) { result = Py_None; Py_INCREF(result); } else if (result->ob_type->tp_descr_get) { result = result->ob_type->tp_descr_get(result, NULL, (PyObject *)type); } else { Py_INCREF(result); } return result; } static PyGetSetDef type_getsets[] = { {"__name__", (getter)type_name, NULL, NULL}, {"__module__", (getter)type_module, (setter)type_set_module, NULL}, {"__dict__", (getter)type_dict, NULL, NULL}, {"__doc__", (getter)type_get_doc, NULL, NULL}, {0} }; static int type_compare(PyObject *v, PyObject *w) { /* This is called with type objects only. So we can just compare the addresses. */ Py_uintptr_t vv = (Py_uintptr_t)v; Py_uintptr_t ww = (Py_uintptr_t)w; return (vv < ww) ? -1 : (vv > ww) ? 1 : 0; } static PyObject * type_repr(PyTypeObject *type) { PyObject *mod, *name, *rtn; char *kind; mod = type_module(type, NULL); if (mod == NULL) PyErr_Clear(); else if (!PyString_Check(mod)) { Py_DECREF(mod); mod = NULL; } name = type_name(type, NULL); if (name == NULL) return NULL; if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) kind = "class"; else kind = "type"; if (mod != NULL && strcmp(PyString_AS_STRING(mod), "__builtin__")) { rtn = PyString_FromFormat("<%s '%s.%s'>", kind, PyString_AS_STRING(mod), PyString_AS_STRING(name)); } else rtn = PyString_FromFormat("<%s '%s'>", kind, type->tp_name); Py_XDECREF(mod); Py_DECREF(name); return rtn; } static PyObject * type_call(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *obj; if (type->tp_new == NULL) { PyErr_Format(PyExc_TypeError, "cannot create '%.100s' instances", type->tp_name); return NULL; } obj = type->tp_new(type, args, kwds); if (obj != NULL) { /* Ugly exception: when the call was type(something), don't call tp_init on the result. */ if (type == &PyType_Type && PyTuple_Check(args) && PyTuple_GET_SIZE(args) == 1 && (kwds == NULL || (PyDict_Check(kwds) && PyDict_Size(kwds) == 0))) return obj; /* If the returned object is not an instance of type, it won't be initialized. */ if (!PyType_IsSubtype(obj->ob_type, type)) return obj; type = obj->ob_type; if (PyType_HasFeature(type, Py_TPFLAGS_HAVE_CLASS) && type->tp_init != NULL && type->tp_init(obj, args, kwds) < 0) { Py_DECREF(obj); obj = NULL; } } return obj; } PyObject * PyType_GenericAlloc(PyTypeObject *type, int nitems) { PyObject *obj; const size_t size = _PyObject_VAR_SIZE(type, nitems); if (PyType_IS_GC(type)) obj = _PyObject_GC_Malloc(size); else obj = PyObject_MALLOC(size); if (obj == NULL) return PyErr_NoMemory(); memset(obj, '\0', size); if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) Py_INCREF(type); if (type->tp_itemsize == 0) PyObject_INIT(obj, type); else (void) PyObject_INIT_VAR((PyVarObject *)obj, type, nitems); if (PyType_IS_GC(type)) _PyObject_GC_TRACK(obj); return obj; } PyObject * PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds) { return type->tp_alloc(type, 0); } /* Helpers for subtyping */ static int traverse_slots(PyTypeObject *type, PyObject *self, visitproc visit, void *arg) { int i, n; PyMemberDef *mp; n = type->ob_size; mp = ((etype *)type)->members; for (i = 0; i < n; i++, mp++) { if (mp->type == T_OBJECT_EX) { char *addr = (char *)self + mp->offset; PyObject *obj = *(PyObject **)addr; if (obj != NULL) { int err = visit(obj, arg); if (err) return err; } } } return 0; } static int subtype_traverse(PyObject *self, visitproc visit, void *arg) { PyTypeObject *type, *base; traverseproc basetraverse; /* Find the nearest base with a different tp_traverse, and traverse slots while we're at it */ type = self->ob_type; base = type; while ((basetraverse = base->tp_traverse) == subtype_traverse) { if (base->ob_size) { int err = traverse_slots(base, self, visit, arg); if (err) return err; } base = base->tp_base; assert(base); } if (type->tp_dictoffset != base->tp_dictoffset) { PyObject **dictptr = _PyObject_GetDictPtr(self); if (dictptr && *dictptr) { int err = visit(*dictptr, arg); if (err) return err; } } if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { /* For a heaptype, the instances count as references to the type. Traverse the type so the collector can find cycles involving this link. */ int err = visit((PyObject *)type, arg); if (err) return err; } if (basetraverse) return basetraverse(self, visit, arg); return 0; } static void clear_slots(PyTypeObject *type, PyObject *self) { int i, n; PyMemberDef *mp; n = type->ob_size; mp = ((etype *)type)->members; for (i = 0; i < n; i++, mp++) { if (mp->type == T_OBJECT_EX && !(mp->flags & READONLY)) { char *addr = (char *)self + mp->offset; PyObject *obj = *(PyObject **)addr; if (obj != NULL) { Py_DECREF(obj); *(PyObject **)addr = NULL; } } } } static int subtype_clear(PyObject *self) { PyTypeObject *type, *base; inquiry baseclear; /* Find the nearest base with a different tp_clear and clear slots while we're at it */ type = self->ob_type; base = type; while ((baseclear = base->tp_clear) == subtype_clear) { if (base->ob_size) clear_slots(base, self); base = base->tp_base; assert(base); } /* There's no need to clear the instance dict (if any); the collector will call its tp_clear handler. */ if (baseclear) return baseclear(self); return 0; } static PyObject *lookup_maybe(PyObject *, char *, PyObject **); static int call_finalizer(PyObject *self) { static PyObject *del_str = NULL; PyObject *del, *res; PyObject *error_type, *error_value, *error_traceback; /* Temporarily resurrect the object. */ assert(self->ob_refcnt == 0); self->ob_refcnt = 1; /* Save the current exception, if any. */ PyErr_Fetch(&error_type, &error_value, &error_traceback); /* Execute __del__ method, if any. */ del = lookup_maybe(self, "__del__", &del_str); if (del != NULL) { res = PyEval_CallObject(del, NULL); if (res == NULL) PyErr_WriteUnraisable(del); else Py_DECREF(res); Py_DECREF(del); } /* Restore the saved exception. */ PyErr_Restore(error_type, error_value, error_traceback); /* Undo the temporary resurrection; can't use DECREF here, it would * cause a recursive call. */ assert(self->ob_refcnt > 0); if (--self->ob_refcnt == 0) return 0; /* this is the normal path out */ /* __del__ resurrected it! Make it look like the original Py_DECREF * never happened. */ { int refcnt = self->ob_refcnt; _Py_NewReference(self); self->ob_refcnt = refcnt; } assert(_Py_AS_GC(self)->gc.gc_refs != _PyGC_REFS_UNTRACKED); /* If Py_REF_DEBUG, the original decref dropped _Py_RefTotal, but * _Py_NewReference bumped it again, so that's a wash. * If Py_TRACE_REFS, _Py_NewReference re-added self to the object * chain, so no more to do there either. * If COUNT_ALLOCS, the original decref bumped tp_frees, and * _Py_NewReference bumped tp_allocs: both of those need to be * undone. */ #ifdef COUNT_ALLOCS --self->ob_type->tp_frees; --self->ob_type->tp_allocs; #endif return -1; /* __del__ added a reference; don't delete now */ } static void subtype_dealloc(PyObject *self) { PyTypeObject *type, *base; destructor basedealloc; /* This exists so we can DECREF self->ob_type */ if (call_finalizer(self) < 0) return; /* Find the nearest base with a different tp_dealloc and clear slots while we're at it */ type = self->ob_type; base = type; while ((basedealloc = base->tp_dealloc) == subtype_dealloc) { if (base->ob_size) clear_slots(base, self); base = base->tp_base; assert(base); } /* If we added a dict, DECREF it */ if (type->tp_dictoffset && !base->tp_dictoffset) { PyObject **dictptr = _PyObject_GetDictPtr(self); if (dictptr != NULL) { PyObject *dict = *dictptr; if (dict != NULL) { Py_DECREF(dict); *dictptr = NULL; } } } /* If we added weaklist, we clear it */ if (type->tp_weaklistoffset && !base->tp_weaklistoffset) PyObject_ClearWeakRefs(self); /* Finalize GC if the base doesn't do GC and we do */ if (PyType_IS_GC(type) && !PyType_IS_GC(base)) _PyObject_GC_UNTRACK(self); /* Call the base tp_dealloc() */ assert(basedealloc); basedealloc(self); /* Can't reference self beyond this point */ if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) { Py_DECREF(type); } } static PyTypeObject *solid_base(PyTypeObject *type); /* type test with subclassing support */ int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (!(a->tp_flags & Py_TPFLAGS_HAVE_CLASS)) return b == a || b == &PyBaseObject_Type; mro = a->tp_mro; if (mro != NULL) { /* Deal with multiple inheritance without recursion by walking the MRO tuple */ int i, n; assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } else { /* a is not completely initilized yet; follow tp_base */ do { if (a == b) return 1; a = a->tp_base; } while (a != NULL); return b == &PyBaseObject_Type; } } /* Internal routines to do a method lookup in the type without looking in the instance dictionary (so we can't use PyObject_GetAttr) but still binding it to the instance. The arguments are the object, the method name as a C string, and the address of a static variable used to cache the interned Python string. Two variants: - lookup_maybe() returns NULL without raising an exception when the _PyType_Lookup() call fails; - lookup_method() always raises an exception upon errors. */ static PyObject * lookup_maybe(PyObject *self, char *attrstr, PyObject **attrobj) { PyObject *res; if (*attrobj == NULL) { *attrobj = PyString_InternFromString(attrstr); if (*attrobj == NULL) return NULL; } res = _PyType_Lookup(self->ob_type, *attrobj); if (res != NULL) { descrgetfunc f; if ((f = res->ob_type->tp_descr_get) == NULL) Py_INCREF(res); else res = f(res, self, (PyObject *)(self->ob_type)); } return res; } static PyObject * lookup_method(PyObject *self, char *attrstr, PyObject **attrobj) { PyObject *res = lookup_maybe(self, attrstr, attrobj); if (res == NULL && !PyErr_Occurred()) PyErr_SetObject(PyExc_AttributeError, *attrobj); return res; } /* A variation of PyObject_CallMethod that uses lookup_method() instead of PyObject_GetAttrString(). This uses the same convention as lookup_method to cache the interned name string object. */ static PyObject * call_method(PyObject *o, char *name, PyObject **nameobj, char *format, ...) { va_list va; PyObject *args, *func = 0, *retval; va_start(va, format); func = lookup_maybe(o, name, nameobj); if (func == NULL) { va_end(va); if (!PyErr_Occurred()) PyErr_SetObject(PyExc_AttributeError, *nameobj); return NULL; } if (format && *format) args = Py_VaBuildValue(format, va); else args = PyTuple_New(0); va_end(va); if (args == NULL) return NULL; assert(PyTuple_Check(args)); retval = PyObject_Call(func, args, NULL); Py_DECREF(args); Py_DECREF(func); return retval; } /* Clone of call_method() that returns NotImplemented when the lookup fails. */ static PyObject * call_maybe(PyObject *o, char *name, PyObject **nameobj, char *format, ...) { va_list va; PyObject *args, *func = 0, *retval; va_start(va, format); func = lookup_maybe(o, name, nameobj); if (func == NULL) { va_end(va); if (!PyErr_Occurred()) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } return NULL; } if (format && *format) args = Py_VaBuildValue(format, va); else args = PyTuple_New(0); va_end(va); if (args == NULL) return NULL; assert(PyTuple_Check(args)); retval = PyObject_Call(func, args, NULL); Py_DECREF(args); Py_DECREF(func); return retval; } /* Method resolution order algorithm from "Putting Metaclasses to Work" by Forman and Danforth (Addison-Wesley 1999). */ static int conservative_merge(PyObject *left, PyObject *right) { int left_size; int right_size; int i, j, r, ok; PyObject *temp, *rr; assert(PyList_Check(left)); assert(PyList_Check(right)); again: left_size = PyList_GET_SIZE(left); right_size = PyList_GET_SIZE(right); for (i = 0; i < left_size; i++) { for (j = 0; j < right_size; j++) { if (PyList_GET_ITEM(left, i) == PyList_GET_ITEM(right, j)) { /* found a merge point */ temp = PyList_New(0); if (temp == NULL) return -1; for (r = 0; r < j; r++) { rr = PyList_GET_ITEM(right, r); ok = PySequence_Contains(left, rr); if (ok < 0) { Py_DECREF(temp); return -1; } if (!ok) { ok = PyList_Append(temp, rr); if (ok < 0) { Py_DECREF(temp); return -1; } } } ok = PyList_SetSlice(left, i, i, temp); Py_DECREF(temp); if (ok < 0) return -1; ok = PyList_SetSlice(right, 0, j+1, NULL); if (ok < 0) return -1; goto again; } } } return PyList_SetSlice(left, left_size, left_size, right); } static int serious_order_disagreements(PyObject *left, PyObject *right) { return 0; /* XXX later -- for now, we cheat: "don't do that" */ } static int fill_classic_mro(PyObject *mro, PyObject *cls) { PyObject *bases, *base; int i, n; assert(PyList_Check(mro)); assert(PyClass_Check(cls)); i = PySequence_Contains(mro, cls); if (i < 0) return -1; if (!i) { if (PyList_Append(mro, cls) < 0) return -1; } bases = ((PyClassObject *)cls)->cl_bases; assert(bases && PyTuple_Check(bases)); n = PyTuple_GET_SIZE(bases); for (i = 0; i < n; i++) { base = PyTuple_GET_ITEM(bases, i); if (fill_classic_mro(mro, base) < 0) return -1; } return 0; } static PyObject * classic_mro(PyObject *cls) { PyObject *mro; assert(PyClass_Check(cls)); mro = PyList_New(0); if (mro != NULL) { if (fill_classic_mro(mro, cls) == 0) return mro; Py_DECREF(mro); } return NULL; } static PyObject * mro_implementation(PyTypeObject *type) { int i, n, ok; PyObject *bases, *result; if(type->tp_dict == NULL) { if(PyType_Ready(type) < 0) return NULL; } bases = type->tp_bases; n = PyTuple_GET_SIZE(bases); result = Py_BuildValue("[O]", (PyObject *)type); if (result == NULL) return NULL; for (i = 0; i < n; i++) { PyObject *base = PyTuple_GET_ITEM(bases, i); PyObject *parentMRO; if (PyType_Check(base)) parentMRO = PySequence_List( ((PyTypeObject*)base)->tp_mro); else parentMRO = classic_mro(base); if (parentMRO == NULL) { Py_DECREF(result); return NULL; } if (serious_order_disagreements(result, parentMRO)) { Py_DECREF(result); return NULL; } ok = conservative_merge(result, parentMRO); Py_DECREF(parentMRO); if (ok < 0) { Py_DECREF(result); return NULL; } } return result; } static PyObject * mro_external(PyObject *self) { PyTypeObject *type = (PyTypeObject *)self; return mro_implementation(type); } static int mro_internal(PyTypeObject *type) { PyObject *mro, *result, *tuple; if (type->ob_type == &PyType_Type) { result = mro_implementation(type); } else { static PyObject *mro_str; mro = lookup_method((PyObject *)type, "mro", &mro_str); if (mro == NULL) return -1; result = PyObject_CallObject(mro, NULL); Py_DECREF(mro); } if (result == NULL) return -1; tuple = PySequence_Tuple(result); Py_DECREF(result); type->tp_mro = tuple; return 0; } /* Calculate the best base amongst multiple base classes. This is the first one that's on the path to the "solid base". */ static PyTypeObject * best_base(PyObject *bases) { int i, n; PyTypeObject *base, *winner, *candidate, *base_i; PyObject *base_proto; assert(PyTuple_Check(bases)); n = PyTuple_GET_SIZE(bases); assert(n > 0); base = NULL; winner = NULL; for (i = 0; i < n; i++) { base_proto = PyTuple_GET_ITEM(bases, i); if (PyClass_Check(base_proto)) continue; if (!PyType_Check(base_proto)) { PyErr_SetString( PyExc_TypeError, "bases must be types"); return NULL; } base_i = (PyTypeObject *)base_proto; if (base_i->tp_dict == NULL) { if (PyType_Ready(base_i) < 0) return NULL; } candidate = solid_base(base_i); if (winner == NULL) { winner = candidate; base = base_i; } else if (PyType_IsSubtype(winner, candidate)) ; else if (PyType_IsSubtype(candidate, winner)) { winner = candidate; base = base_i; } else { PyErr_SetString( PyExc_TypeError, "multiple bases have " "instance lay-out conflict"); return NULL; } } if (base == NULL) PyErr_SetString(PyExc_TypeError, "a new-style class can't have only classic bases"); return base; } static int extra_ivars(PyTypeObject *type, PyTypeObject *base) { size_t t_size = type->tp_basicsize; size_t b_size = base->tp_basicsize; assert(t_size >= b_size); /* Else type smaller than base! */ if (type->tp_itemsize || base->tp_itemsize) { /* If itemsize is involved, stricter rules */ return t_size != b_size || type->tp_itemsize != base->tp_itemsize; } if (type->tp_weaklistoffset && base->tp_weaklistoffset == 0 && type->tp_weaklistoffset + sizeof(PyObject *) == t_size) t_size -= sizeof(PyObject *); if (type->tp_dictoffset && base->tp_dictoffset == 0 && type->tp_dictoffset + sizeof(PyObject *) == t_size) t_size -= sizeof(PyObject *); return t_size != b_size; } static PyTypeObject * solid_base(PyTypeObject *type) { PyTypeObject *base; if (type->tp_base) base = solid_base(type->tp_base); else base = &PyBaseObject_Type; if (extra_ivars(type, base)) return type; else return base; } static void object_dealloc(PyObject *); static int object_init(PyObject *, PyObject *, PyObject *); static int update_slot(PyTypeObject *, PyObject *); static void fixup_slot_dispatchers(PyTypeObject *); static PyObject * subtype_dict(PyObject *obj, void *context) { PyObject **dictptr = _PyObject_GetDictPtr(obj); PyObject *dict; if (dictptr == NULL) { PyErr_SetString(PyExc_AttributeError, "This object has no __dict__"); return NULL; } dict = *dictptr; if (dict == NULL) *dictptr = dict = PyDict_New(); Py_XINCREF(dict); return dict; } static int subtype_setdict(PyObject *obj, PyObject *value, void *context) { PyObject **dictptr = _PyObject_GetDictPtr(obj); PyObject *dict; if (dictptr == NULL) { PyErr_SetString(PyExc_AttributeError, "This object has no __dict__"); return -1; } if (value != NULL && !PyDict_Check(value)) { PyErr_SetString(PyExc_TypeError, "__dict__ must be set to a dictionary"); return -1; } dict = *dictptr; Py_XINCREF(value); *dictptr = value; Py_XDECREF(dict); return 0; } static PyGetSetDef subtype_getsets[] = { {"__dict__", subtype_dict, subtype_setdict, NULL}, {0}, }; /* bozo: __getstate__ that raises TypeError */ static PyObject * bozo_func(PyObject *self, PyObject *args) { PyErr_SetString(PyExc_TypeError, "a class that defines __slots__ without " "defining __getstate__ cannot be pickled"); return NULL; } static PyMethodDef bozo_ml = {"__getstate__", bozo_func, METH_VARARGS}; static PyObject *bozo_obj = NULL; static int valid_identifier(PyObject *s) { unsigned char *p; int i, n; if (!PyString_Check(s)) { PyErr_SetString(PyExc_TypeError, "__slots__ must be strings"); return 0; } p = (unsigned char *) PyString_AS_STRING(s); n = PyString_GET_SIZE(s); /* We must reject an empty name. As a hack, we bump the length to 1 so that the loop will balk on the trailing \0. */ if (n == 0) n = 1; for (i = 0; i < n; i++, p++) { if (!(i == 0 ? isalpha(*p) : isalnum(*p)) && *p != '_') { PyErr_SetString(PyExc_TypeError, "__slots__ must be identifiers"); return 0; } } return 1; } static PyObject * type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds) { PyObject *name, *bases, *dict; static char *kwlist[] = {"name", "bases", "dict", 0}; static char buffer[256]; PyObject *slots, *tmp, *newslots; PyTypeObject *type, *base, *tmptype, *winner; etype *et; PyMemberDef *mp; int i, nbases, nslots, slotoffset, add_dict, add_weak; assert(args != NULL && PyTuple_Check(args)); assert(kwds == NULL || PyDict_Check(kwds)); /* Special case: type(x) should return x->ob_type */ { const int nargs = PyTuple_GET_SIZE(args); const int nkwds = kwds == NULL ? 0 : PyDict_Size(kwds); if (PyType_CheckExact(metatype) && nargs == 1 && nkwds == 0) { PyObject *x = PyTuple_GET_ITEM(args, 0); Py_INCREF(x->ob_type); return (PyObject *) x->ob_type; } /* SF bug 475327 -- if that didn't trigger, we need 3 arguments. but PyArg_ParseTupleAndKeywords below may give a msg saying type() needs exactly 3. */ if (nargs + nkwds != 3) { PyErr_SetString(PyExc_TypeError, "type() takes 1 or 3 arguments"); return NULL; } } /* Check arguments: (name, bases, dict) */ if (!PyArg_ParseTupleAndKeywords(args, kwds, "SO!O!:type", kwlist, &name, &PyTuple_Type, &bases, &PyDict_Type, &dict)) return NULL; /* Determine the proper metatype to deal with this, and check for metatype conflicts while we're at it. Note that if some other metatype wins to contract, it's possible that its instances are not types. */ nbases = PyTuple_GET_SIZE(bases); winner = metatype; for (i = 0; i < nbases; i++) { tmp = PyTuple_GET_ITEM(bases, i); tmptype = tmp->ob_type; if (tmptype == &PyClass_Type) continue; /* Special case classic classes */ if (PyType_IsSubtype(winner, tmptype)) continue; if (PyType_IsSubtype(tmptype, winner)) { winner = tmptype; continue; } PyErr_SetString(PyExc_TypeError, "metatype conflict among bases"); return NULL; } if (winner != metatype) { if (winner->tp_new != type_new) /* Pass it to the winner */ return winner->tp_new(winner, args, kwds); metatype = winner; } /* Adjust for empty tuple bases */ if (nbases == 0) { bases = Py_BuildValue("(O)", &PyBaseObject_Type); if (bases == NULL) return NULL; nbases = 1; } else Py_INCREF(bases); /* XXX From here until type is allocated, "return NULL" leaks bases! */ /* Calculate best base, and check that all bases are type objects */ base = best_base(bases); if (base == NULL) return NULL; if (!PyType_HasFeature(base, Py_TPFLAGS_BASETYPE)) { PyErr_Format(PyExc_TypeError, "type '%.100s' is not an acceptable base type", base->tp_name); return NULL; } /* Check for a __slots__ sequence variable in dict, and count it */ slots = PyDict_GetItemString(dict, "__slots__"); nslots = 0; add_dict = 0; add_weak = 0; if (slots != NULL) { /* Make it into a tuple */ if (PyString_Check(slots)) slots = Py_BuildValue("(O)", slots); else slots = PySequence_Tuple(slots); if (slots == NULL) return NULL; nslots = PyTuple_GET_SIZE(slots); if (nslots > 0 && base->tp_itemsize != 0) { PyErr_Format(PyExc_TypeError, "nonempty __slots__ " "not supported for subtype of '%s'", base->tp_name); return NULL; } for (i = 0; i < nslots; i++) { if (!valid_identifier(PyTuple_GET_ITEM(slots, i))) { Py_DECREF(slots); return NULL; } } newslots = PyTuple_New(nslots); if (newslots == NULL) return NULL; for (i = 0; i < nslots; i++) { tmp = PyTuple_GET_ITEM(slots, i); if (_Py_Mangle(PyString_AS_STRING(name), PyString_AS_STRING(tmp), buffer, sizeof(buffer))) { tmp = PyString_FromString(buffer); } else { Py_INCREF(tmp); } PyTuple_SET_ITEM(newslots, i, tmp); } Py_DECREF(slots); slots = newslots; } if (slots != NULL) { /* See if *this* class defines __getstate__ */ PyObject *getstate = PyDict_GetItemString(dict, "__getstate__"); if (getstate == NULL) { /* If not, provide a bozo that raises TypeError */ if (bozo_obj == NULL) { bozo_obj = PyCFunction_New(&bozo_ml, NULL); if (bozo_obj == NULL) { /* XXX decref various things */ return NULL; } } if (PyDict_SetItemString(dict, "__getstate__", bozo_obj) < 0) { /* XXX decref various things */ return NULL; } } } if (slots == NULL && base->tp_dictoffset == 0 && (base->tp_setattro == PyObject_GenericSetAttr || base->tp_setattro == NULL)) { add_dict++; } if (slots == NULL && base->tp_weaklistoffset == 0 && base->tp_itemsize == 0) { nslots++; add_weak++; } /* XXX From here until type is safely allocated, "return NULL" may leak slots! */ /* Allocate the type object */ type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots); if (type == NULL) return NULL; /* Keep name and slots alive in the extended type object */ et = (etype *)type; Py_INCREF(name); et->name = name; et->slots = slots; /* Initialize tp_flags */ type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE | Py_TPFLAGS_BASETYPE; if (base->tp_flags & Py_TPFLAGS_HAVE_GC) type->tp_flags |= Py_TPFLAGS_HAVE_GC; /* It's a new-style number unless it specifically inherits any old-style numeric behavior */ if ((base->tp_flags & Py_TPFLAGS_CHECKTYPES) || (base->tp_as_number == NULL)) type->tp_flags |= Py_TPFLAGS_CHECKTYPES; /* Initialize essential fields */ type->tp_as_number = &et->as_number; type->tp_as_sequence = &et->as_sequence; type->tp_as_mapping = &et->as_mapping; type->tp_as_buffer = &et->as_buffer; type->tp_name = PyString_AS_STRING(name); /* Set tp_base and tp_bases */ type->tp_bases = bases; Py_INCREF(base); type->tp_base = base; /* Initialize tp_dict from passed-in dict */ type->tp_dict = dict = PyDict_Copy(dict); if (dict == NULL) { Py_DECREF(type); return NULL; } /* Set __module__ in the dict */ if (PyDict_GetItemString(dict, "__module__") == NULL) { tmp = PyEval_GetGlobals(); if (tmp != NULL) { tmp = PyDict_GetItemString(tmp, "__name__"); if (tmp != NULL) { if (PyDict_SetItemString(dict, "__module__", tmp) < 0) return NULL; } } } /* Set tp_doc to a copy of dict['__doc__'], if the latter is there and is a string. The __doc__ accessor will first look for tp_doc; if that fails, it will still look into __dict__. */ { PyObject *doc = PyDict_GetItemString(dict, "__doc__"); if (doc != NULL && PyString_Check(doc)) { const size_t n = (size_t)PyString_GET_SIZE(doc); type->tp_doc = (char *)PyObject_MALLOC(n+1); if (type->tp_doc == NULL) { Py_DECREF(type); return NULL; } memcpy(type->tp_doc, PyString_AS_STRING(doc), n+1); } } /* Special-case __new__: if it's a plain function, make it a static function */ tmp = PyDict_GetItemString(dict, "__new__"); if (tmp != NULL && PyFunction_Check(tmp)) { tmp = PyStaticMethod_New(tmp); if (tmp == NULL) { Py_DECREF(type); return NULL; } PyDict_SetItemString(dict, "__new__", tmp); Py_DECREF(tmp); } /* Add descriptors for custom slots from __slots__, or for __dict__ */ mp = et->members; slotoffset = base->tp_basicsize; if (slots != NULL) { for (i = 0; i < nslots; i++, mp++) { mp->name = PyString_AS_STRING( PyTuple_GET_ITEM(slots, i)); mp->type = T_OBJECT_EX; mp->offset = slotoffset; if (base->tp_weaklistoffset == 0 && strcmp(mp->name, "__weakref__") == 0) { mp->type = T_OBJECT; mp->flags = READONLY; type->tp_weaklistoffset = slotoffset; } slotoffset += sizeof(PyObject *); } } else { if (add_dict) { if (base->tp_itemsize) type->tp_dictoffset = -(long)sizeof(PyObject *); else type->tp_dictoffset = slotoffset; slotoffset += sizeof(PyObject *); type->tp_getset = subtype_getsets; } if (add_weak) { assert(!base->tp_itemsize); type->tp_weaklistoffset = slotoffset; mp->name = "__weakref__"; mp->type = T_OBJECT; mp->offset = slotoffset; mp->flags = READONLY; mp++; slotoffset += sizeof(PyObject *); } } type->tp_basicsize = slotoffset; type->tp_itemsize = base->tp_itemsize; type->tp_members = et->members; /* Special case some slots */ if (type->tp_dictoffset != 0 || nslots > 0) { if (base->tp_getattr == NULL && base->tp_getattro == NULL) type->tp_getattro = PyObject_GenericGetAttr; if (base->tp_setattr == NULL && base->tp_setattro == NULL) type->tp_setattro = PyObject_GenericSetAttr; } type->tp_dealloc = subtype_dealloc; /* Enable GC unless there are really no instance variables possible */ if (!(type->tp_basicsize == sizeof(PyObject) && type->tp_itemsize == 0)) type->tp_flags |= Py_TPFLAGS_HAVE_GC; /* Always override allocation strategy to use regular heap */ type->tp_alloc = PyType_GenericAlloc; if (type->tp_flags & Py_TPFLAGS_HAVE_GC) { type->tp_free = PyObject_GC_Del; type->tp_traverse = subtype_traverse; type->tp_clear = subtype_clear; } else type->tp_free = PyObject_Del; /* Initialize the rest */ if (PyType_Ready(type) < 0) { Py_DECREF(type); return NULL; } /* Put the proper slots in place */ fixup_slot_dispatchers(type); return (PyObject *)type; } /* Internal API to look for a name through the MRO. This returns a borrowed reference, and doesn't set an exception! */ PyObject * _PyType_Lookup(PyTypeObject *type, PyObject *name) { int i, n; PyObject *mro, *res, *base, *dict; /* Look in tp_dict of types in MRO */ mro = type->tp_mro; /* If mro is NULL, the type is either not yet initialized by PyType_Ready(), or already cleared by type_clear(). Either way the safest thing to do is to return NULL. */ if (mro == NULL) return NULL; assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { base = PyTuple_GET_ITEM(mro, i); if (PyClass_Check(base)) dict = ((PyClassObject *)base)->cl_dict; else { assert(PyType_Check(base)); dict = ((PyTypeObject *)base)->tp_dict; } assert(dict && PyDict_Check(dict)); res = PyDict_GetItem(dict, name); if (res != NULL) return res; } return NULL; } /* This is similar to PyObject_GenericGetAttr(), but uses _PyType_Lookup() instead of just looking in type->tp_dict. */ static PyObject * type_getattro(PyTypeObject *type, PyObject *name) { PyTypeObject *metatype = type->ob_type; PyObject *meta_attribute, *attribute; descrgetfunc meta_get; /* Initialize this type (we'll assume the metatype is initialized) */ if (type->tp_dict == NULL) { if (PyType_Ready(type) < 0) return NULL; } /* No readable descriptor found yet */ meta_get = NULL; /* Look for the attribute in the metatype */ meta_attribute = _PyType_Lookup(metatype, name); if (meta_attribute != NULL) { meta_get = meta_attribute->ob_type->tp_descr_get; if (meta_get != NULL && PyDescr_IsData(meta_attribute)) { /* Data descriptors implement tp_descr_set to intercept * writes. Assume the attribute is not overridden in * type's tp_dict (and bases): call the descriptor now. */ return meta_get(meta_attribute, (PyObject *)type, (PyObject *)metatype); } } /* No data descriptor found on metatype. Look in tp_dict of this * type and its bases */ attribute = _PyType_Lookup(type, name); if (attribute != NULL) { /* Implement descriptor functionality, if any */ descrgetfunc local_get = attribute->ob_type->tp_descr_get; if (local_get != NULL) { /* NULL 2nd argument indicates the descriptor was * found on the target object itself (or a base) */ return local_get(attribute, (PyObject *)NULL, (PyObject *)type); } Py_INCREF(attribute); return attribute; } /* No attribute found in local __dict__ (or bases): use the * descriptor from the metatype, if any */ if (meta_get != NULL) return meta_get(meta_attribute, (PyObject *)type, (PyObject *)metatype); /* If an ordinary attribute was found on the metatype, return it now */ if (meta_attribute != NULL) { Py_INCREF(meta_attribute); return meta_attribute; } /* Give up */ PyErr_Format(PyExc_AttributeError, "type object '%.50s' has no attribute '%.400s'", type->tp_name, PyString_AS_STRING(name)); return NULL; } static int type_setattro(PyTypeObject *type, PyObject *name, PyObject *value) { if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { PyErr_Format( PyExc_TypeError, "can't set attributes of built-in/extension type '%s'", type->tp_name); return -1; } if (PyObject_GenericSetAttr((PyObject *)type, name, value) < 0) return -1; return update_slot(type, name); } static void type_dealloc(PyTypeObject *type) { etype *et; /* Assert this is a heap-allocated type object */ assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE); _PyObject_GC_UNTRACK(type); PyObject_ClearWeakRefs((PyObject *)type); et = (etype *)type; Py_XDECREF(type->tp_base); Py_XDECREF(type->tp_dict); Py_XDECREF(type->tp_bases); Py_XDECREF(type->tp_mro); Py_XDECREF(type->tp_cache); Py_XDECREF(type->tp_subclasses); Py_XDECREF(et->name); Py_XDECREF(et->slots); type->ob_type->tp_free((PyObject *)type); } static PyObject * type_subclasses(PyTypeObject *type, PyObject *args_ignored) { PyObject *list, *raw, *ref; int i, n; list = PyList_New(0); if (list == NULL) return NULL; raw = type->tp_subclasses; if (raw == NULL) return list; assert(PyList_Check(raw)); n = PyList_GET_SIZE(raw); for (i = 0; i < n; i++) { ref = PyList_GET_ITEM(raw, i); assert(PyWeakref_CheckRef(ref)); ref = PyWeakref_GET_OBJECT(ref); if (ref != Py_None) { if (PyList_Append(list, ref) < 0) { Py_DECREF(list); return NULL; } } } return list; } static PyMethodDef type_methods[] = { {"mro", (PyCFunction)mro_external, METH_NOARGS, "mro() -> list\nreturn a type's method resolution order"}, {"__subclasses__", (PyCFunction)type_subclasses, METH_NOARGS, "__subclasses__() -> list of immediate subclasses"}, {0} }; PyDoc_STRVAR(type_doc, "type(object) -> the object's type\n" "type(name, bases, dict) -> a new type"); static int type_traverse(PyTypeObject *type, visitproc visit, void *arg) { int err; /* Because of type_is_gc(), the collector only calls this for heaptypes. */ assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE); #define VISIT(SLOT) \ if (SLOT) { \ err = visit((PyObject *)(SLOT), arg); \ if (err) \ return err; \ } VISIT(type->tp_dict); VISIT(type->tp_cache); VISIT(type->tp_mro); VISIT(type->tp_bases); VISIT(type->tp_base); /* There's no need to visit type->tp_subclasses or ((etype *)type)->slots, because they can't be involved in cycles; tp_subclasses is a list of weak references, and slots is a tuple of strings. */ #undef VISIT return 0; } static int type_clear(PyTypeObject *type) { PyObject *tmp; /* Because of type_is_gc(), the collector only calls this for heaptypes. */ assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE); #define CLEAR(SLOT) \ if (SLOT) { \ tmp = (PyObject *)(SLOT); \ SLOT = NULL; \ Py_DECREF(tmp); \ } /* The only field we need to clear is tp_mro, which is part of a hard cycle (its first element is the class itself) that won't be broken otherwise (it's a tuple and tuples don't have a tp_clear handler). None of the other fields need to be cleared, and here's why: tp_dict: It is a dict, so the collector will call its tp_clear. tp_cache: Not used; if it were, it would be a dict. tp_bases, tp_base: If these are involved in a cycle, there must be at least one other, mutable object in the cycle, e.g. a base class's dict; the cycle will be broken that way. tp_subclasses: A list of weak references can't be part of a cycle; and lists have their own tp_clear. slots (in etype): A tuple of strings can't be part of a cycle. */ CLEAR(type->tp_mro); #undef CLEAR return 0; } static int type_is_gc(PyTypeObject *type) { return type->tp_flags & Py_TPFLAGS_HEAPTYPE; } PyTypeObject PyType_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, /* ob_size */ "type", /* tp_name */ sizeof(etype), /* tp_basicsize */ sizeof(PyMemberDef), /* tp_itemsize */ (destructor)type_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ type_compare, /* tp_compare */ (reprfunc)type_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)_Py_HashPointer, /* tp_hash */ (ternaryfunc)type_call, /* tp_call */ 0, /* tp_str */ (getattrofunc)type_getattro, /* tp_getattro */ (setattrofunc)type_setattro, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE, /* tp_flags */ type_doc, /* tp_doc */ (traverseproc)type_traverse, /* tp_traverse */ (inquiry)type_clear, /* tp_clear */ 0, /* tp_richcompare */ offsetof(PyTypeObject, tp_weaklist), /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ type_methods, /* tp_methods */ type_members, /* tp_members */ type_getsets, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ offsetof(PyTypeObject, tp_dict), /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ type_new, /* tp_new */ PyObject_GC_Del, /* tp_free */ (inquiry)type_is_gc, /* tp_is_gc */ }; /* The base type of all types (eventually)... except itself. */ static int object_init(PyObject *self, PyObject *args, PyObject *kwds) { return 0; } static void object_dealloc(PyObject *self) { self->ob_type->tp_free(self); } static PyObject * object_repr(PyObject *self) { PyTypeObject *type; PyObject *mod, *name, *rtn; type = self->ob_type; mod = type_module(type, NULL); if (mod == NULL) PyErr_Clear(); else if (!PyString_Check(mod)) { Py_DECREF(mod); mod = NULL; } name = type_name(type, NULL); if (name == NULL) return NULL; if (mod != NULL && strcmp(PyString_AS_STRING(mod), "__builtin__")) rtn = PyString_FromFormat("<%s.%s object at %p>", PyString_AS_STRING(mod), PyString_AS_STRING(name), self); else rtn = PyString_FromFormat("<%s object at %p>", type->tp_name, self); Py_XDECREF(mod); Py_DECREF(name); return rtn; } static PyObject * object_str(PyObject *self) { unaryfunc f; f = self->ob_type->tp_repr; if (f == NULL) f = object_repr; return f(self); } static long object_hash(PyObject *self) { return _Py_HashPointer(self); } static PyObject * object_get_class(PyObject *self, void *closure) { Py_INCREF(self->ob_type); return (PyObject *)(self->ob_type); } static int equiv_structs(PyTypeObject *a, PyTypeObject *b) { return a == b || (a != NULL && b != NULL && a->tp_basicsize == b->tp_basicsize && a->tp_itemsize == b->tp_itemsize && a->tp_dictoffset == b->tp_dictoffset && a->tp_weaklistoffset == b->tp_weaklistoffset && ((a->tp_flags & Py_TPFLAGS_HAVE_GC) == (b->tp_flags & Py_TPFLAGS_HAVE_GC))); } static int same_slots_added(PyTypeObject *a, PyTypeObject *b) { PyTypeObject *base = a->tp_base; int size; if (base != b->tp_base) return 0; if (equiv_structs(a, base) && equiv_structs(b, base)) return 1; size = base->tp_basicsize; if (a->tp_dictoffset == size && b->tp_dictoffset == size) size += sizeof(PyObject *); if (a->tp_weaklistoffset == size && b->tp_weaklistoffset == size) size += sizeof(PyObject *); return size == a->tp_basicsize && size == b->tp_basicsize; } static int object_set_class(PyObject *self, PyObject *value, void *closure) { PyTypeObject *old = self->ob_type; PyTypeObject *new, *newbase, *oldbase; if (value == NULL) { PyErr_SetString(PyExc_TypeError, "can't delete __class__ attribute"); return -1; } if (!PyType_Check(value)) { PyErr_Format(PyExc_TypeError, "__class__ must be set to new-style class, not '%s' object", value->ob_type->tp_name); return -1; } new = (PyTypeObject *)value; if (new->tp_dealloc != old->tp_dealloc || new->tp_free != old->tp_free) { PyErr_Format(PyExc_TypeError, "__class__ assignment: " "'%s' deallocator differs from '%s'", new->tp_name, old->tp_name); return -1; } newbase = new; oldbase = old; while (equiv_structs(newbase, newbase->tp_base)) newbase = newbase->tp_base; while (equiv_structs(oldbase, oldbase->tp_base)) oldbase = oldbase->tp_base; if (newbase != oldbase && (newbase->tp_base != oldbase->tp_base || !same_slots_added(newbase, oldbase))) { PyErr_Format(PyExc_TypeError, "__class__ assignment: " "'%s' object layout differs from '%s'", new->tp_name, old->tp_name); return -1; } if (new->tp_flags & Py_TPFLAGS_HEAPTYPE) { Py_INCREF(new); } self->ob_type = new; if (old->tp_flags & Py_TPFLAGS_HEAPTYPE) { Py_DECREF(old); } return 0; } static PyGetSetDef object_getsets[] = { {"__class__", object_get_class, object_set_class, "the object's class"}, {0} }; static PyObject * object_reduce(PyObject *self, PyObject *args) { /* Call copy_reg._reduce(self) */ static PyObject *copy_reg_str; PyObject *copy_reg, *res; if (!copy_reg_str) { copy_reg_str = PyString_InternFromString("copy_reg"); if (copy_reg_str == NULL) return NULL; } copy_reg = PyImport_Import(copy_reg_str); if (!copy_reg) return NULL; res = PyEval_CallMethod(copy_reg, "_reduce", "(O)", self); Py_DECREF(copy_reg); return res; } static PyMethodDef object_methods[] = { {"__reduce__", object_reduce, METH_NOARGS, "helper for pickle"}, {0} }; PyTypeObject PyBaseObject_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, /* ob_size */ "object", /* tp_name */ sizeof(PyObject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)object_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ object_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ object_hash, /* tp_hash */ 0, /* tp_call */ object_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ PyObject_GenericSetAttr, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ "The most base type", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ object_methods, /* tp_methods */ 0, /* tp_members */ object_getsets, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ object_init, /* tp_init */ PyType_GenericAlloc, /* tp_alloc */ PyType_GenericNew, /* tp_new */ PyObject_Del, /* tp_free */ }; /* Initialize the __dict__ in a type object */ static PyObject * create_specialmethod(PyMethodDef *meth, PyObject *(*func)(PyObject *)) { PyObject *cfunc; PyObject *result; cfunc = PyCFunction_New(meth, NULL); if (cfunc == NULL) return NULL; result = func(cfunc); Py_DECREF(cfunc); return result; } static int add_methods(PyTypeObject *type, PyMethodDef *meth) { PyObject *dict = type->tp_dict; for (; meth->ml_name != NULL; meth++) { PyObject *descr; if (PyDict_GetItemString(dict, meth->ml_name)) continue; if (meth->ml_flags & METH_CLASS) { if (meth->ml_flags & METH_STATIC) { PyErr_SetString(PyExc_ValueError, "method cannot be both class and static"); return -1; } descr = create_specialmethod(meth, PyClassMethod_New); } else if (meth->ml_flags & METH_STATIC) { descr = create_specialmethod(meth, PyStaticMethod_New); } else { descr = PyDescr_NewMethod(type, meth); } if (descr == NULL) return -1; if (PyDict_SetItemString(dict, meth->ml_name, descr) < 0) return -1; Py_DECREF(descr); } return 0; } static int add_members(PyTypeObject *type, PyMemberDef *memb) { PyObject *dict = type->tp_dict; for (; memb->name != NULL; memb++) { PyObject *descr; if (PyDict_GetItemString(dict, memb->name)) continue; descr = PyDescr_NewMember(type, memb); if (descr == NULL) return -1; if (PyDict_SetItemString(dict, memb->name, descr) < 0) return -1; Py_DECREF(descr); } return 0; } static int add_getset(PyTypeObject *type, PyGetSetDef *gsp) { PyObject *dict = type->tp_dict; for (; gsp->name != NULL; gsp++) { PyObject *descr; if (PyDict_GetItemString(dict, gsp->name)) continue; descr = PyDescr_NewGetSet(type, gsp); if (descr == NULL) return -1; if (PyDict_SetItemString(dict, gsp->name, descr) < 0) return -1; Py_DECREF(descr); } return 0; } static void inherit_special(PyTypeObject *type, PyTypeObject *base) { int oldsize, newsize; /* Special flag magic */ if (!type->tp_as_buffer && base->tp_as_buffer) { type->tp_flags &= ~Py_TPFLAGS_HAVE_GETCHARBUFFER; type->tp_flags |= base->tp_flags & Py_TPFLAGS_HAVE_GETCHARBUFFER; } if (!type->tp_as_sequence && base->tp_as_sequence) { type->tp_flags &= ~Py_TPFLAGS_HAVE_SEQUENCE_IN; type->tp_flags |= base->tp_flags & Py_TPFLAGS_HAVE_SEQUENCE_IN; } if ((type->tp_flags & Py_TPFLAGS_HAVE_INPLACEOPS) != (base->tp_flags & Py_TPFLAGS_HAVE_INPLACEOPS)) { if ((!type->tp_as_number && base->tp_as_number) || (!type->tp_as_sequence && base->tp_as_sequence)) { type->tp_flags &= ~Py_TPFLAGS_HAVE_INPLACEOPS; if (!type->tp_as_number && !type->tp_as_sequence) { type->tp_flags |= base->tp_flags & Py_TPFLAGS_HAVE_INPLACEOPS; } } /* Wow */ } if (!type->tp_as_number && base->tp_as_number) { type->tp_flags &= ~Py_TPFLAGS_CHECKTYPES; type->tp_flags |= base->tp_flags & Py_TPFLAGS_CHECKTYPES; } /* Copying basicsize is connected to the GC flags */ oldsize = base->tp_basicsize; newsize = type->tp_basicsize ? type->tp_basicsize : oldsize; if (!(type->tp_flags & Py_TPFLAGS_HAVE_GC) && (base->tp_flags & Py_TPFLAGS_HAVE_GC) && (type->tp_flags & Py_TPFLAGS_HAVE_RICHCOMPARE/*GC slots exist*/) && (!type->tp_traverse && !type->tp_clear)) { type->tp_flags |= Py_TPFLAGS_HAVE_GC; if (type->tp_traverse == NULL) type->tp_traverse = base->tp_traverse; if (type->tp_clear == NULL) type->tp_clear = base->tp_clear; } if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_CLASS) { /* The condition below could use some explanation. It appears that tp_new is not inherited for static types whose base class is 'object'; this seems to be a precaution so that old extension types don't suddenly become callable (object.__new__ wouldn't insure the invariants that the extension type's own factory function ensures). Heap types, of course, are under our control, so they do inherit tp_new; static extension types that specify some other built-in type as the default are considered new-style-aware so they also inherit object.__new__. */ if (base != &PyBaseObject_Type || (type->tp_flags & Py_TPFLAGS_HEAPTYPE)) { if (type->tp_new == NULL) type->tp_new = base->tp_new; } } type->tp_basicsize = newsize; /* Copy other non-function slots */ #undef COPYVAL #define COPYVAL(SLOT) \ if (type->SLOT == 0) type->SLOT = base->SLOT COPYVAL(tp_itemsize); if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_WEAKREFS) { COPYVAL(tp_weaklistoffset); } if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_CLASS) { COPYVAL(tp_dictoffset); } } static void inherit_slots(PyTypeObject *type, PyTypeObject *base) { PyTypeObject *basebase; #undef SLOTDEFINED #undef COPYSLOT #undef COPYNUM #undef COPYSEQ #undef COPYMAP #undef COPYBUF #define SLOTDEFINED(SLOT) \ (base->SLOT != 0 && \ (basebase == NULL || base->SLOT != basebase->SLOT)) #define COPYSLOT(SLOT) \ if (!type->SLOT && SLOTDEFINED(SLOT)) type->SLOT = base->SLOT #define COPYNUM(SLOT) COPYSLOT(tp_as_number->SLOT) #define COPYSEQ(SLOT) COPYSLOT(tp_as_sequence->SLOT) #define COPYMAP(SLOT) COPYSLOT(tp_as_mapping->SLOT) #define COPYBUF(SLOT) COPYSLOT(tp_as_buffer->SLOT) /* This won't inherit indirect slots (from tp_as_number etc.) if type doesn't provide the space. */ if (type->tp_as_number != NULL && base->tp_as_number != NULL) { basebase = base->tp_base; if (basebase->tp_as_number == NULL) basebase = NULL; COPYNUM(nb_add); COPYNUM(nb_subtract); COPYNUM(nb_multiply); COPYNUM(nb_divide); COPYNUM(nb_remainder); COPYNUM(nb_divmod); COPYNUM(nb_power); COPYNUM(nb_negative); COPYNUM(nb_positive); COPYNUM(nb_absolute); COPYNUM(nb_nonzero); COPYNUM(nb_invert); COPYNUM(nb_lshift); COPYNUM(nb_rshift); COPYNUM(nb_and); COPYNUM(nb_xor); COPYNUM(nb_or); COPYNUM(nb_coerce); COPYNUM(nb_int); COPYNUM(nb_long); COPYNUM(nb_float); COPYNUM(nb_oct); COPYNUM(nb_hex); COPYNUM(nb_inplace_add); COPYNUM(nb_inplace_subtract); COPYNUM(nb_inplace_multiply); COPYNUM(nb_inplace_divide); COPYNUM(nb_inplace_remainder); COPYNUM(nb_inplace_power); COPYNUM(nb_inplace_lshift); COPYNUM(nb_inplace_rshift); COPYNUM(nb_inplace_and); COPYNUM(nb_inplace_xor); COPYNUM(nb_inplace_or); if (base->tp_flags & Py_TPFLAGS_CHECKTYPES) { COPYNUM(nb_true_divide); COPYNUM(nb_floor_divide); COPYNUM(nb_inplace_true_divide); COPYNUM(nb_inplace_floor_divide); } } if (type->tp_as_sequence != NULL && base->tp_as_sequence != NULL) { basebase = base->tp_base; if (basebase->tp_as_sequence == NULL) basebase = NULL; COPYSEQ(sq_length); COPYSEQ(sq_concat); COPYSEQ(sq_repeat); COPYSEQ(sq_item); COPYSEQ(sq_slice); COPYSEQ(sq_ass_item); COPYSEQ(sq_ass_slice); COPYSEQ(sq_contains); COPYSEQ(sq_inplace_concat); COPYSEQ(sq_inplace_repeat); } if (type->tp_as_mapping != NULL && base->tp_as_mapping != NULL) { basebase = base->tp_base; if (basebase->tp_as_mapping == NULL) basebase = NULL; COPYMAP(mp_length); COPYMAP(mp_subscript); COPYMAP(mp_ass_subscript); } if (type->tp_as_buffer != NULL && base->tp_as_buffer != NULL) { basebase = base->tp_base; if (basebase->tp_as_buffer == NULL) basebase = NULL; COPYBUF(bf_getreadbuffer); COPYBUF(bf_getwritebuffer); COPYBUF(bf_getsegcount); COPYBUF(bf_getcharbuffer); } basebase = base->tp_base; COPYSLOT(tp_dealloc); COPYSLOT(tp_print); if (type->tp_getattr == NULL && type->tp_getattro == NULL) { type->tp_getattr = base->tp_getattr; type->tp_getattro = base->tp_getattro; } if (type->tp_setattr == NULL && type->tp_setattro == NULL) { type->tp_setattr = base->tp_setattr; type->tp_setattro = base->tp_setattro; } /* tp_compare see tp_richcompare */ COPYSLOT(tp_repr); /* tp_hash see tp_richcompare */ COPYSLOT(tp_call); COPYSLOT(tp_str); if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_RICHCOMPARE) { if (type->tp_compare == NULL && type->tp_richcompare == NULL && type->tp_hash == NULL) { type->tp_compare = base->tp_compare; type->tp_richcompare = base->tp_richcompare; type->tp_hash = base->tp_hash; } } else { COPYSLOT(tp_compare); } if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_ITER) { COPYSLOT(tp_iter); COPYSLOT(tp_iternext); } if (type->tp_flags & base->tp_flags & Py_TPFLAGS_HAVE_CLASS) { COPYSLOT(tp_descr_get); COPYSLOT(tp_descr_set); COPYSLOT(tp_dictoffset); COPYSLOT(tp_init); COPYSLOT(tp_alloc); COPYSLOT(tp_free); COPYSLOT(tp_is_gc); } } static int add_operators(PyTypeObject *); static int add_subclass(PyTypeObject *base, PyTypeObject *type); int PyType_Ready(PyTypeObject *type) { PyObject *dict, *bases; PyTypeObject *base; int i, n; if (type->tp_flags & Py_TPFLAGS_READY) { assert(type->tp_dict != NULL); return 0; } assert((type->tp_flags & Py_TPFLAGS_READYING) == 0); type->tp_flags |= Py_TPFLAGS_READYING; /* Initialize tp_base (defaults to BaseObject unless that's us) */ base = type->tp_base; if (base == NULL && type != &PyBaseObject_Type) base = type->tp_base = &PyBaseObject_Type; /* Initialize ob_type if NULL. This means extensions that want to be compilable separately on Windows can call PyType_Ready() instead of initializing the ob_type field of their type objects. */ if (type->ob_type == NULL) type->ob_type = base->ob_type; /* Initialize tp_bases */ bases = type->tp_bases; if (bases == NULL) { if (base == NULL) bases = PyTuple_New(0); else bases = Py_BuildValue("(O)", base); if (bases == NULL) goto error; type->tp_bases = bases; } /* Initialize the base class */ if (base && base->tp_dict == NULL) { if (PyType_Ready(base) < 0) goto error; } /* Initialize tp_dict */ dict = type->tp_dict; if (dict == NULL) { dict = PyDict_New(); if (dict == NULL) goto error; type->tp_dict = dict; } /* Add type-specific descriptors to tp_dict */ if (add_operators(type) < 0) goto error; if (type->tp_methods != NULL) { if (add_methods(type, type->tp_methods) < 0) goto error; } if (type->tp_members != NULL) { if (add_members(type, type->tp_members) < 0) goto error; } if (type->tp_getset != NULL) { if (add_getset(type, type->tp_getset) < 0) goto error; } /* Calculate method resolution order */ if (mro_internal(type) < 0) { goto error; } /* Inherit special flags from dominant base */ if (type->tp_base != NULL) inherit_special(type, type->tp_base); /* Initialize tp_dict properly */ bases = type->tp_mro; assert(bases != NULL); assert(PyTuple_Check(bases)); n = PyTuple_GET_SIZE(bases); for (i = 1; i < n; i++) { PyObject *b = PyTuple_GET_ITEM(bases, i); if (PyType_Check(b)) inherit_slots(type, (PyTypeObject *)b); } /* if the type dictionary doesn't contain a __doc__, set it from the tp_doc slot. */ if (PyDict_GetItemString(type->tp_dict, "__doc__") == NULL) { if (type->tp_doc != NULL) { PyObject *doc = PyString_FromString(type->tp_doc); PyDict_SetItemString(type->tp_dict, "__doc__", doc); Py_DECREF(doc); } else { PyDict_SetItemString(type->tp_dict, "__doc__", Py_None); } } /* Some more special stuff */ base = type->tp_base; if (base != NULL) { if (type->tp_as_number == NULL) type->tp_as_number = base->tp_as_number; if (type->tp_as_sequence == NULL) type->tp_as_sequence = base->tp_as_sequence; if (type->tp_as_mapping == NULL) type->tp_as_mapping = base->tp_as_mapping; } /* Link into each base class's list of subclasses */ bases = type->tp_bases; n = PyTuple_GET_SIZE(bases); for (i = 0; i < n; i++) { PyObject *b = PyTuple_GET_ITEM(bases, i); if (PyType_Check(b) && add_subclass((PyTypeObject *)b, type) < 0) goto error; } /* All done -- set the ready flag */ assert(type->tp_dict != NULL); type->tp_flags = (type->tp_flags & ~Py_TPFLAGS_READYING) | Py_TPFLAGS_READY; return 0; error: type->tp_flags &= ~Py_TPFLAGS_READYING; return -1; } static int add_subclass(PyTypeObject *base, PyTypeObject *type) { int i; PyObject *list, *ref, *new; list = base->tp_subclasses; if (list == NULL) { base->tp_subclasses = list = PyList_New(0); if (list == NULL) return -1; } assert(PyList_Check(list)); new = PyWeakref_NewRef((PyObject *)type, NULL); i = PyList_GET_SIZE(list); while (--i >= 0) { ref = PyList_GET_ITEM(list, i); assert(PyWeakref_CheckRef(ref)); if (PyWeakref_GET_OBJECT(ref) == Py_None) return PyList_SetItem(list, i, new); } i = PyList_Append(list, new); Py_DECREF(new); return i; } /* Generic wrappers for overloadable 'operators' such as __getitem__ */ /* There's a wrapper *function* for each distinct function typedef used for type object slots (e.g. binaryfunc, ternaryfunc, etc.). There's a wrapper *table* for each distinct operation (e.g. __len__, __add__). Most tables have only one entry; the tables for binary operators have two entries, one regular and one with reversed arguments. */ static PyObject * wrap_inquiry(PyObject *self, PyObject *args, void *wrapped) { inquiry func = (inquiry)wrapped; int res; if (!PyArg_ParseTuple(args, "")) return NULL; res = (*func)(self); if (res == -1 && PyErr_Occurred()) return NULL; return PyInt_FromLong((long)res); } static PyObject * wrap_binaryfunc(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; return (*func)(self, other); } static PyObject * wrap_binaryfunc_l(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; if (!(self->ob_type->tp_flags & Py_TPFLAGS_CHECKTYPES) && !PyType_IsSubtype(other->ob_type, self->ob_type)) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } return (*func)(self, other); } static PyObject * wrap_binaryfunc_r(PyObject *self, PyObject *args, void *wrapped) { binaryfunc func = (binaryfunc)wrapped; PyObject *other; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; if (!(self->ob_type->tp_flags & Py_TPFLAGS_CHECKTYPES) && !PyType_IsSubtype(other->ob_type, self->ob_type)) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } return (*func)(other, self); } static PyObject * wrap_coercefunc(PyObject *self, PyObject *args, void *wrapped) { coercion func = (coercion)wrapped; PyObject *other, *res; int ok; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; ok = func(&self, &other); if (ok < 0) return NULL; if (ok > 0) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } res = PyTuple_New(2); if (res == NULL) { Py_DECREF(self); Py_DECREF(other); return NULL; } PyTuple_SET_ITEM(res, 0, self); PyTuple_SET_ITEM(res, 1, other); return res; } static PyObject * wrap_ternaryfunc(PyObject *self, PyObject *args, void *wrapped) { ternaryfunc func = (ternaryfunc)wrapped; PyObject *other; PyObject *third = Py_None; /* Note: This wrapper only works for __pow__() */ if (!PyArg_ParseTuple(args, "O|O", &other, &third)) return NULL; return (*func)(self, other, third); } static PyObject * wrap_ternaryfunc_r(PyObject *self, PyObject *args, void *wrapped) { ternaryfunc func = (ternaryfunc)wrapped; PyObject *other; PyObject *third = Py_None; /* Note: This wrapper only works for __pow__() */ if (!PyArg_ParseTuple(args, "O|O", &other, &third)) return NULL; return (*func)(other, self, third); } static PyObject * wrap_unaryfunc(PyObject *self, PyObject *args, void *wrapped) { unaryfunc func = (unaryfunc)wrapped; if (!PyArg_ParseTuple(args, "")) return NULL; return (*func)(self); } static PyObject * wrap_intargfunc(PyObject *self, PyObject *args, void *wrapped) { intargfunc func = (intargfunc)wrapped; int i; if (!PyArg_ParseTuple(args, "i", &i)) return NULL; return (*func)(self, i); } static int getindex(PyObject *self, PyObject *arg) { int i; i = PyInt_AsLong(arg); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) { PySequenceMethods *sq = self->ob_type->tp_as_sequence; if (sq && sq->sq_length) { int n = (*sq->sq_length)(self); if (n < 0) return -1; i += n; } } return i; } static PyObject * wrap_sq_item(PyObject *self, PyObject *args, void *wrapped) { intargfunc func = (intargfunc)wrapped; PyObject *arg; int i; if (PyTuple_GET_SIZE(args) == 1) { arg = PyTuple_GET_ITEM(args, 0); i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; return (*func)(self, i); } PyArg_ParseTuple(args, "O", &arg); assert(PyErr_Occurred()); return NULL; } static PyObject * wrap_intintargfunc(PyObject *self, PyObject *args, void *wrapped) { intintargfunc func = (intintargfunc)wrapped; int i, j; if (!PyArg_ParseTuple(args, "ii", &i, &j)) return NULL; return (*func)(self, i, j); } static PyObject * wrap_sq_setitem(PyObject *self, PyObject *args, void *wrapped) { intobjargproc func = (intobjargproc)wrapped; int i, res; PyObject *arg, *value; if (!PyArg_ParseTuple(args, "OO", &arg, &value)) return NULL; i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; res = (*func)(self, i, value); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_sq_delitem(PyObject *self, PyObject *args, void *wrapped) { intobjargproc func = (intobjargproc)wrapped; int i, res; PyObject *arg; if (!PyArg_ParseTuple(args, "O", &arg)) return NULL; i = getindex(self, arg); if (i == -1 && PyErr_Occurred()) return NULL; res = (*func)(self, i, NULL); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_intintobjargproc(PyObject *self, PyObject *args, void *wrapped) { intintobjargproc func = (intintobjargproc)wrapped; int i, j, res; PyObject *value; if (!PyArg_ParseTuple(args, "iiO", &i, &j, &value)) return NULL; res = (*func)(self, i, j, value); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_delslice(PyObject *self, PyObject *args, void *wrapped) { intintobjargproc func = (intintobjargproc)wrapped; int i, j, res; if (!PyArg_ParseTuple(args, "ii", &i, &j)) return NULL; res = (*func)(self, i, j, NULL); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } /* XXX objobjproc is a misnomer; should be objargpred */ static PyObject * wrap_objobjproc(PyObject *self, PyObject *args, void *wrapped) { objobjproc func = (objobjproc)wrapped; int res; PyObject *value; if (!PyArg_ParseTuple(args, "O", &value)) return NULL; res = (*func)(self, value); if (res == -1 && PyErr_Occurred()) return NULL; return PyInt_FromLong((long)res); } static PyObject * wrap_objobjargproc(PyObject *self, PyObject *args, void *wrapped) { objobjargproc func = (objobjargproc)wrapped; int res; PyObject *key, *value; if (!PyArg_ParseTuple(args, "OO", &key, &value)) return NULL; res = (*func)(self, key, value); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_delitem(PyObject *self, PyObject *args, void *wrapped) { objobjargproc func = (objobjargproc)wrapped; int res; PyObject *key; if (!PyArg_ParseTuple(args, "O", &key)) return NULL; res = (*func)(self, key, NULL); if (res == -1 && PyErr_Occurred()) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_cmpfunc(PyObject *self, PyObject *args, void *wrapped) { cmpfunc func = (cmpfunc)wrapped; int res; PyObject *other; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; if (other->ob_type->tp_compare != func && !PyType_IsSubtype(other->ob_type, self->ob_type)) { PyErr_Format( PyExc_TypeError, "%s.__cmp__(x,y) requires y to be a '%s', not a '%s'", self->ob_type->tp_name, self->ob_type->tp_name, other->ob_type->tp_name); return NULL; } res = (*func)(self, other); if (PyErr_Occurred()) return NULL; return PyInt_FromLong((long)res); } static PyObject * wrap_setattr(PyObject *self, PyObject *args, void *wrapped) { setattrofunc func = (setattrofunc)wrapped; int res; PyObject *name, *value; if (!PyArg_ParseTuple(args, "OO", &name, &value)) return NULL; res = (*func)(self, name, value); if (res < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_delattr(PyObject *self, PyObject *args, void *wrapped) { setattrofunc func = (setattrofunc)wrapped; int res; PyObject *name; if (!PyArg_ParseTuple(args, "O", &name)) return NULL; res = (*func)(self, name, NULL); if (res < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_hashfunc(PyObject *self, PyObject *args, void *wrapped) { hashfunc func = (hashfunc)wrapped; long res; if (!PyArg_ParseTuple(args, "")) return NULL; res = (*func)(self); if (res == -1 && PyErr_Occurred()) return NULL; return PyInt_FromLong(res); } static PyObject * wrap_call(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds) { ternaryfunc func = (ternaryfunc)wrapped; return (*func)(self, args, kwds); } static PyObject * wrap_richcmpfunc(PyObject *self, PyObject *args, void *wrapped, int op) { richcmpfunc func = (richcmpfunc)wrapped; PyObject *other; if (!PyArg_ParseTuple(args, "O", &other)) return NULL; return (*func)(self, other, op); } #undef RICHCMP_WRAPPER #define RICHCMP_WRAPPER(NAME, OP) \ static PyObject * \ richcmp_##NAME(PyObject *self, PyObject *args, void *wrapped) \ { \ return wrap_richcmpfunc(self, args, wrapped, OP); \ } RICHCMP_WRAPPER(lt, Py_LT) RICHCMP_WRAPPER(le, Py_LE) RICHCMP_WRAPPER(eq, Py_EQ) RICHCMP_WRAPPER(ne, Py_NE) RICHCMP_WRAPPER(gt, Py_GT) RICHCMP_WRAPPER(ge, Py_GE) static PyObject * wrap_next(PyObject *self, PyObject *args, void *wrapped) { unaryfunc func = (unaryfunc)wrapped; PyObject *res; if (!PyArg_ParseTuple(args, "")) return NULL; res = (*func)(self); if (res == NULL && !PyErr_Occurred()) PyErr_SetNone(PyExc_StopIteration); return res; } static PyObject * wrap_descr_get(PyObject *self, PyObject *args, void *wrapped) { descrgetfunc func = (descrgetfunc)wrapped; PyObject *obj; PyObject *type = NULL; if (!PyArg_ParseTuple(args, "O|O", &obj, &type)) return NULL; return (*func)(self, obj, type); } static PyObject * wrap_descr_set(PyObject *self, PyObject *args, void *wrapped) { descrsetfunc func = (descrsetfunc)wrapped; PyObject *obj, *value; int ret; if (!PyArg_ParseTuple(args, "OO", &obj, &value)) return NULL; ret = (*func)(self, obj, value); if (ret < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * wrap_init(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds) { initproc func = (initproc)wrapped; if (func(self, args, kwds) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject * tp_new_wrapper(PyObject *self, PyObject *args, PyObject *kwds) { PyTypeObject *type, *subtype, *staticbase; PyObject *arg0, *res; if (self == NULL || !PyType_Check(self)) Py_FatalError("__new__() called with non-type 'self'"); type = (PyTypeObject *)self; if (!PyTuple_Check(args) || PyTuple_GET_SIZE(args) < 1) { PyErr_Format(PyExc_TypeError, "%s.__new__(): not enough arguments", type->tp_name); return NULL; } arg0 = PyTuple_GET_ITEM(args, 0); if (!PyType_Check(arg0)) { PyErr_Format(PyExc_TypeError, "%s.__new__(X): X is not a type object (%s)", type->tp_name, arg0->ob_type->tp_name); return NULL; } subtype = (PyTypeObject *)arg0; if (!PyType_IsSubtype(subtype, type)) { PyErr_Format(PyExc_TypeError, "%s.__new__(%s): %s is not a subtype of %s", type->tp_name, subtype->tp_name, subtype->tp_name, type->tp_name); return NULL; } /* Check that the use doesn't do something silly and unsafe like object.__new__(dict). To do this, we check that the most derived base that's not a heap type is this type. */ staticbase = subtype; while (staticbase && (staticbase->tp_flags & Py_TPFLAGS_HEAPTYPE)) staticbase = staticbase->tp_base; if (staticbase->tp_new != type->tp_new) { PyErr_Format(PyExc_TypeError, "%s.__new__(%s) is not safe, use %s.__new__()", type->tp_name, subtype->tp_name, staticbase == NULL ? "?" : staticbase->tp_name); return NULL; } args = PyTuple_GetSlice(args, 1, PyTuple_GET_SIZE(args)); if (args == NULL) return NULL; res = type->tp_new(subtype, args, kwds); Py_DECREF(args); return res; } static struct PyMethodDef tp_new_methoddef[] = { {"__new__", (PyCFunction)tp_new_wrapper, METH_KEYWORDS, "T.__new__(S, ...) -> a new object with type S, a subtype of T"}, {0} }; static int add_tp_new_wrapper(PyTypeObject *type) { PyObject *func; if (PyDict_GetItemString(type->tp_dict, "__new__") != NULL) return 0; func = PyCFunction_New(tp_new_methoddef, (PyObject *)type); if (func == NULL) return -1; return PyDict_SetItemString(type->tp_dict, "__new__", func); } /* Slot wrappers that call the corresponding __foo__ slot. See comments below at override_slots() for more explanation. */ #define SLOT0(FUNCNAME, OPSTR) \ static PyObject * \ FUNCNAME(PyObject *self) \ { \ static PyObject *cache_str; \ return call_method(self, OPSTR, &cache_str, "()"); \ } #define SLOT1(FUNCNAME, OPSTR, ARG1TYPE, ARGCODES) \ static PyObject * \ FUNCNAME(PyObject *self, ARG1TYPE arg1) \ { \ static PyObject *cache_str; \ return call_method(self, OPSTR, &cache_str, "(" ARGCODES ")", arg1); \ } #define SLOT1BINFULL(FUNCNAME, TESTFUNC, SLOTNAME, OPSTR, ROPSTR) \ static PyObject * \ FUNCNAME(PyObject *self, PyObject *other) \ { \ static PyObject *cache_str, *rcache_str; \ int do_other = self->ob_type != other->ob_type && \ other->ob_type->tp_as_number != NULL && \ other->ob_type->tp_as_number->SLOTNAME == TESTFUNC; \ if (self->ob_type->tp_as_number != NULL && \ self->ob_type->tp_as_number->SLOTNAME == TESTFUNC) { \ PyObject *r; \ if (do_other && \ PyType_IsSubtype(other->ob_type, self->ob_type)) { \ r = call_maybe( \ other, ROPSTR, &rcache_str, "(O)", self); \ if (r != Py_NotImplemented) \ return r; \ Py_DECREF(r); \ do_other = 0; \ } \ r = call_maybe( \ self, OPSTR, &cache_str, "(O)", other); \ if (r != Py_NotImplemented || \ other->ob_type == self->ob_type) \ return r; \ Py_DECREF(r); \ } \ if (do_other) { \ return call_maybe( \ other, ROPSTR, &rcache_str, "(O)", self); \ } \ Py_INCREF(Py_NotImplemented); \ return Py_NotImplemented; \ } #define SLOT1BIN(FUNCNAME, SLOTNAME, OPSTR, ROPSTR) \ SLOT1BINFULL(FUNCNAME, FUNCNAME, SLOTNAME, OPSTR, ROPSTR) #define SLOT2(FUNCNAME, OPSTR, ARG1TYPE, ARG2TYPE, ARGCODES) \ static PyObject * \ FUNCNAME(PyObject *self, ARG1TYPE arg1, ARG2TYPE arg2) \ { \ static PyObject *cache_str; \ return call_method(self, OPSTR, &cache_str, \ "(" ARGCODES ")", arg1, arg2); \ } static int slot_sq_length(PyObject *self) { static PyObject *len_str; PyObject *res = call_method(self, "__len__", &len_str, "()"); int len; if (res == NULL) return -1; len = (int)PyInt_AsLong(res); Py_DECREF(res); return len; } SLOT1(slot_sq_concat, "__add__", PyObject *, "O") SLOT1(slot_sq_repeat, "__mul__", int, "i") /* Super-optimized version of slot_sq_item. Other slots could do the same... */ static PyObject * slot_sq_item(PyObject *self, int i) { static PyObject *getitem_str; PyObject *func, *args = NULL, *ival = NULL, *retval = NULL; descrgetfunc f; if (getitem_str == NULL) { getitem_str = PyString_InternFromString("__getitem__"); if (getitem_str == NULL) return NULL; } func = _PyType_Lookup(self->ob_type, getitem_str); if (func != NULL) { if ((f = func->ob_type->tp_descr_get) == NULL) Py_INCREF(func); else func = f(func, self, (PyObject *)(self->ob_type)); ival = PyInt_FromLong(i); if (ival != NULL) { args = PyTuple_New(1); if (args != NULL) { PyTuple_SET_ITEM(args, 0, ival); retval = PyObject_Call(func, args, NULL); Py_XDECREF(args); Py_XDECREF(func); return retval; } } } else { PyErr_SetObject(PyExc_AttributeError, getitem_str); } Py_XDECREF(args); Py_XDECREF(ival); Py_XDECREF(func); return NULL; } SLOT2(slot_sq_slice, "__getslice__", int, int, "ii") static int slot_sq_ass_item(PyObject *self, int index, PyObject *value) { PyObject *res; static PyObject *delitem_str, *setitem_str; if (value == NULL) res = call_method(self, "__delitem__", &delitem_str, "(i)", index); else res = call_method(self, "__setitem__", &setitem_str, "(iO)", index, value); if (res == NULL) return -1; Py_DECREF(res); return 0; } static int slot_sq_ass_slice(PyObject *self, int i, int j, PyObject *value) { PyObject *res; static PyObject *delslice_str, *setslice_str; if (value == NULL) res = call_method(self, "__delslice__", &delslice_str, "(ii)", i, j); else res = call_method(self, "__setslice__", &setslice_str, "(iiO)", i, j, value); if (res == NULL) return -1; Py_DECREF(res); return 0; } static int slot_sq_contains(PyObject *self, PyObject *value) { PyObject *func, *res, *args; static PyObject *contains_str; func = lookup_maybe(self, "__contains__", &contains_str); if (func != NULL) { args = Py_BuildValue("(O)", value); if (args == NULL) res = NULL; else { res = PyObject_Call(func, args, NULL); Py_DECREF(args); } Py_DECREF(func); if (res == NULL) return -1; return PyObject_IsTrue(res); } else if (PyErr_Occurred()) return -1; else { return _PySequence_IterSearch(self, value, PY_ITERSEARCH_CONTAINS); } } SLOT1(slot_sq_inplace_concat, "__iadd__", PyObject *, "O") SLOT1(slot_sq_inplace_repeat, "__imul__", int, "i") #define slot_mp_length slot_sq_length SLOT1(slot_mp_subscript, "__getitem__", PyObject *, "O") static int slot_mp_ass_subscript(PyObject *self, PyObject *key, PyObject *value) { PyObject *res; static PyObject *delitem_str, *setitem_str; if (value == NULL) res = call_method(self, "__delitem__", &delitem_str, "(O)", key); else res = call_method(self, "__setitem__", &setitem_str, "(OO)", key, value); if (res == NULL) return -1; Py_DECREF(res); return 0; } SLOT1BIN(slot_nb_add, nb_add, "__add__", "__radd__") SLOT1BIN(slot_nb_subtract, nb_subtract, "__sub__", "__rsub__") SLOT1BIN(slot_nb_multiply, nb_multiply, "__mul__", "__rmul__") SLOT1BIN(slot_nb_divide, nb_divide, "__div__", "__rdiv__") SLOT1BIN(slot_nb_remainder, nb_remainder, "__mod__", "__rmod__") SLOT1BIN(slot_nb_divmod, nb_divmod, "__divmod__", "__rdivmod__") static PyObject *slot_nb_power(PyObject *, PyObject *, PyObject *); SLOT1BINFULL(slot_nb_power_binary, slot_nb_power, nb_power, "__pow__", "__rpow__") static PyObject * slot_nb_power(PyObject *self, PyObject *other, PyObject *modulus) { static PyObject *pow_str; if (modulus == Py_None) return slot_nb_power_binary(self, other); /* Three-arg power doesn't use __rpow__. But ternary_op can call this when the second argument's type uses slot_nb_power, so check before calling self.__pow__. */ if (self->ob_type->tp_as_number != NULL && self->ob_type->tp_as_number->nb_power == slot_nb_power) { return call_method(self, "__pow__", &pow_str, "(OO)", other, modulus); } Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } SLOT0(slot_nb_negative, "__neg__") SLOT0(slot_nb_positive, "__pos__") SLOT0(slot_nb_absolute, "__abs__") static int slot_nb_nonzero(PyObject *self) { PyObject *func, *res; static PyObject *nonzero_str, *len_str; func = lookup_maybe(self, "__nonzero__", &nonzero_str); if (func == NULL) { if (PyErr_Occurred()) return -1; func = lookup_maybe(self, "__len__", &len_str); if (func == NULL) { if (PyErr_Occurred()) return -1; else return 1; } } res = PyObject_CallObject(func, NULL); Py_DECREF(func); if (res == NULL) return -1; return PyObject_IsTrue(res); } SLOT0(slot_nb_invert, "__invert__") SLOT1BIN(slot_nb_lshift, nb_lshift, "__lshift__", "__rlshift__") SLOT1BIN(slot_nb_rshift, nb_rshift, "__rshift__", "__rrshift__") SLOT1BIN(slot_nb_and, nb_and, "__and__", "__rand__") SLOT1BIN(slot_nb_xor, nb_xor, "__xor__", "__rxor__") SLOT1BIN(slot_nb_or, nb_or, "__or__", "__ror__") static int slot_nb_coerce(PyObject **a, PyObject **b) { static PyObject *coerce_str; PyObject *self = *a, *other = *b; if (self->ob_type->tp_as_number != NULL && self->ob_type->tp_as_number->nb_coerce == slot_nb_coerce) { PyObject *r; r = call_maybe( self, "__coerce__", &coerce_str, "(O)", other); if (r == NULL) return -1; if (r == Py_NotImplemented) { Py_DECREF(r); } else { if (!PyTuple_Check(r) || PyTuple_GET_SIZE(r) != 2) { PyErr_SetString(PyExc_TypeError, "__coerce__ didn't return a 2-tuple"); Py_DECREF(r); return -1; } *a = PyTuple_GET_ITEM(r, 0); Py_INCREF(*a); *b = PyTuple_GET_ITEM(r, 1); Py_INCREF(*b); Py_DECREF(r); return 0; } } if (other->ob_type->tp_as_number != NULL && other->ob_type->tp_as_number->nb_coerce == slot_nb_coerce) { PyObject *r; r = call_maybe( other, "__coerce__", &coerce_str, "(O)", self); if (r == NULL) return -1; if (r == Py_NotImplemented) { Py_DECREF(r); return 1; } if (!PyTuple_Check(r) || PyTuple_GET_SIZE(r) != 2) { PyErr_SetString(PyExc_TypeError, "__coerce__ didn't return a 2-tuple"); Py_DECREF(r); return -1; } *a = PyTuple_GET_ITEM(r, 1); Py_INCREF(*a); *b = PyTuple_GET_ITEM(r, 0); Py_INCREF(*b); Py_DECREF(r); return 0; } return 1; } SLOT0(slot_nb_int, "__int__") SLOT0(slot_nb_long, "__long__") SLOT0(slot_nb_float, "__float__") SLOT0(slot_nb_oct, "__oct__") SLOT0(slot_nb_hex, "__hex__") SLOT1(slot_nb_inplace_add, "__iadd__", PyObject *, "O") SLOT1(slot_nb_inplace_subtract, "__isub__", PyObject *, "O") SLOT1(slot_nb_inplace_multiply, "__imul__", PyObject *, "O") SLOT1(slot_nb_inplace_divide, "__idiv__", PyObject *, "O") SLOT1(slot_nb_inplace_remainder, "__imod__", PyObject *, "O") SLOT2(slot_nb_inplace_power, "__ipow__", PyObject *, PyObject *, "OO") SLOT1(slot_nb_inplace_lshift, "__ilshift__", PyObject *, "O") SLOT1(slot_nb_inplace_rshift, "__irshift__", PyObject *, "O") SLOT1(slot_nb_inplace_and, "__iand__", PyObject *, "O") SLOT1(slot_nb_inplace_xor, "__ixor__", PyObject *, "O") SLOT1(slot_nb_inplace_or, "__ior__", PyObject *, "O") SLOT1BIN(slot_nb_floor_divide, nb_floor_divide, "__floordiv__", "__rfloordiv__") SLOT1BIN(slot_nb_true_divide, nb_true_divide, "__truediv__", "__rtruediv__") SLOT1(slot_nb_inplace_floor_divide, "__ifloordiv__", PyObject *, "O") SLOT1(slot_nb_inplace_true_divide, "__itruediv__", PyObject *, "O") static int half_compare(PyObject *self, PyObject *other) { PyObject *func, *args, *res; static PyObject *cmp_str; int c; func = lookup_method(self, "__cmp__", &cmp_str); if (func == NULL) { PyErr_Clear(); } else { args = Py_BuildValue("(O)", other); if (args == NULL) res = NULL; else { res = PyObject_Call(func, args, NULL); Py_DECREF(args); } Py_DECREF(func); if (res != Py_NotImplemented) { if (res == NULL) return -2; c = PyInt_AsLong(res); Py_DECREF(res); if (c == -1 && PyErr_Occurred()) return -2; return (c < 0) ? -1 : (c > 0) ? 1 : 0; } Py_DECREF(res); } return 2; } /* This slot is published for the benefit of try_3way_compare in object.c */ int _PyObject_SlotCompare(PyObject *self, PyObject *other) { int c; if (self->ob_type->tp_compare == _PyObject_SlotCompare) { c = half_compare(self, other); if (c <= 1) return c; } if (other->ob_type->tp_compare == _PyObject_SlotCompare) { c = half_compare(other, self); if (c < -1) return -2; if (c <= 1) return -c; } return (void *)self < (void *)other ? -1 : (void *)self > (void *)other ? 1 : 0; } static PyObject * slot_tp_repr(PyObject *self) { PyObject *func, *res; static PyObject *repr_str; func = lookup_method(self, "__repr__", &repr_str); if (func != NULL) { res = PyEval_CallObject(func, NULL); Py_DECREF(func); return res; } PyErr_Clear(); return PyString_FromFormat("<%s object at %p>", self->ob_type->tp_name, self); } static PyObject * slot_tp_str(PyObject *self) { PyObject *func, *res; static PyObject *str_str; func = lookup_method(self, "__str__", &str_str); if (func != NULL) { res = PyEval_CallObject(func, NULL); Py_DECREF(func); return res; } else { PyErr_Clear(); return slot_tp_repr(self); } } static long slot_tp_hash(PyObject *self) { PyObject *func, *res; static PyObject *hash_str, *eq_str, *cmp_str; long h; func = lookup_method(self, "__hash__", &hash_str); if (func != NULL) { res = PyEval_CallObject(func, NULL); Py_DECREF(func); if (res == NULL) return -1; h = PyInt_AsLong(res); } else { PyErr_Clear(); func = lookup_method(self, "__eq__", &eq_str); if (func == NULL) { PyErr_Clear(); func = lookup_method(self, "__cmp__", &cmp_str); } if (func != NULL) { Py_DECREF(func); PyErr_SetString(PyExc_TypeError, "unhashable type"); return -1; } PyErr_Clear(); h = _Py_HashPointer((void *)self); } if (h == -1 && !PyErr_Occurred()) h = -2; return h; } static PyObject * slot_tp_call(PyObject *self, PyObject *args, PyObject *kwds) { static PyObject *call_str; PyObject *meth = lookup_method(self, "__call__", &call_str); PyObject *res; if (meth == NULL) return NULL; res = PyObject_Call(meth, args, kwds); Py_DECREF(meth); return res; } /* There are two slot dispatch functions for tp_getattro. - slot_tp_getattro() is used when __getattribute__ is overridden but no __getattr__ hook is present; - slot_tp_getattr_hook() is used when a __getattr__ hook is present. The code in update_one_slot() always installs slot_tp_getattr_hook(); this detects the absence of __getattr__ and then installs the simpler slot if necessary. */ static PyObject * slot_tp_getattro(PyObject *self, PyObject *name) { static PyObject *getattribute_str = NULL; return call_method(self, "__getattribute__", &getattribute_str, "(O)", name); } static PyObject * slot_tp_getattr_hook(PyObject *self, PyObject *name) { PyTypeObject *tp = self->ob_type; PyObject *getattr, *getattribute, *res; static PyObject *getattribute_str = NULL; static PyObject *getattr_str = NULL; if (getattr_str == NULL) { getattr_str = PyString_InternFromString("__getattr__"); if (getattr_str == NULL) return NULL; } if (getattribute_str == NULL) { getattribute_str = PyString_InternFromString("__getattribute__"); if (getattribute_str == NULL) return NULL; } getattr = _PyType_Lookup(tp, getattr_str); if (getattr == NULL) { /* No __getattr__ hook: use a simpler dispatcher */ tp->tp_getattro = slot_tp_getattro; return slot_tp_getattro(self, name); } getattribute = _PyType_Lookup(tp, getattribute_str); if (getattribute == NULL || (getattribute->ob_type == &PyWrapperDescr_Type && ((PyWrapperDescrObject *)getattribute)->d_wrapped == (void *)PyObject_GenericGetAttr)) res = PyObject_GenericGetAttr(self, name); else res = PyObject_CallFunction(getattribute, "OO", self, name); if (res == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); res = PyObject_CallFunction(getattr, "OO", self, name); } return res; } static int slot_tp_setattro(PyObject *self, PyObject *name, PyObject *value) { PyObject *res; static PyObject *delattr_str, *setattr_str; if (value == NULL) res = call_method(self, "__delattr__", &delattr_str, "(O)", name); else res = call_method(self, "__setattr__", &setattr_str, "(OO)", name, value); if (res == NULL) return -1; Py_DECREF(res); return 0; } /* Map rich comparison operators to their __xx__ namesakes */ static char *name_op[] = { "__lt__", "__le__", "__eq__", "__ne__", "__gt__", "__ge__", }; static PyObject * half_richcompare(PyObject *self, PyObject *other, int op) { PyObject *func, *args, *res; static PyObject *op_str[6]; func = lookup_method(self, name_op[op], &op_str[op]); if (func == NULL) { PyErr_Clear(); Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } args = Py_BuildValue("(O)", other); if (args == NULL) res = NULL; else { res = PyObject_Call(func, args, NULL); Py_DECREF(args); } Py_DECREF(func); return res; } /* Map rich comparison operators to their swapped version, e.g. LT --> GT */ static int swapped_op[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; static PyObject * slot_tp_richcompare(PyObject *self, PyObject *other, int op) { PyObject *res; if (self->ob_type->tp_richcompare == slot_tp_richcompare) { res = half_richcompare(self, other, op); if (res != Py_NotImplemented) return res; Py_DECREF(res); } if (other->ob_type->tp_richcompare == slot_tp_richcompare) { res = half_richcompare(other, self, swapped_op[op]); if (res != Py_NotImplemented) { return res; } Py_DECREF(res); } Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } static PyObject * slot_tp_iter(PyObject *self) { PyObject *func, *res; static PyObject *iter_str, *getitem_str; func = lookup_method(self, "__iter__", &iter_str); if (func != NULL) { res = PyObject_CallObject(func, NULL); Py_DECREF(func); return res; } PyErr_Clear(); func = lookup_method(self, "__getitem__", &getitem_str); if (func == NULL) { PyErr_SetString(PyExc_TypeError, "iteration over non-sequence"); return NULL; } Py_DECREF(func); return PySeqIter_New(self); } static PyObject * slot_tp_iternext(PyObject *self) { static PyObject *next_str; return call_method(self, "next", &next_str, "()"); } static PyObject * slot_tp_descr_get(PyObject *self, PyObject *obj, PyObject *type) { PyTypeObject *tp = self->ob_type; PyObject *get; static PyObject *get_str = NULL; if (get_str == NULL) { get_str = PyString_InternFromString("__get__"); if (get_str == NULL) return NULL; } get = _PyType_Lookup(tp, get_str); if (get == NULL) { /* Avoid further slowdowns */ if (tp->tp_descr_get == slot_tp_descr_get) tp->tp_descr_get = NULL; Py_INCREF(self); return self; } if (obj == NULL) obj = Py_None; if (type == NULL) type = Py_None; return PyObject_CallFunction(get, "OOO", self, obj, type); } static int slot_tp_descr_set(PyObject *self, PyObject *target, PyObject *value) { PyObject *res; static PyObject *del_str, *set_str; if (value == NULL) res = call_method(self, "__delete__", &del_str, "(O)", target); else res = call_method(self, "__set__", &set_str, "(OO)", target, value); if (res == NULL) return -1; Py_DECREF(res); return 0; } static int slot_tp_init(PyObject *self, PyObject *args, PyObject *kwds) { static PyObject *init_str; PyObject *meth = lookup_method(self, "__init__", &init_str); PyObject *res; if (meth == NULL) return -1; res = PyObject_Call(meth, args, kwds); Py_DECREF(meth); if (res == NULL) return -1; Py_DECREF(res); return 0; } static PyObject * slot_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { PyObject *func = PyObject_GetAttrString((PyObject *)type, "__new__"); PyObject *newargs, *x; int i, n; if (func == NULL) return NULL; assert(PyTuple_Check(args)); n = PyTuple_GET_SIZE(args); newargs = PyTuple_New(n+1); if (newargs == NULL) return NULL; Py_INCREF(type); PyTuple_SET_ITEM(newargs, 0, (PyObject *)type); for (i = 0; i < n; i++) { x = PyTuple_GET_ITEM(args, i); Py_INCREF(x); PyTuple_SET_ITEM(newargs, i+1, x); } x = PyObject_Call(func, newargs, kwds); Py_DECREF(newargs); Py_DECREF(func); return x; } /* Table mapping __foo__ names to tp_foo offsets and slot_tp_foo wrapper functions. The offsets here are relative to the 'etype' structure, which incorporates the additional structures used for numbers, sequences and mappings. Note that multiple names may map to the same slot (e.g. __eq__, __ne__ etc. all map to tp_richcompare) and one name may map to multiple slots (e.g. __str__ affects tp_str as well as tp_repr). The table is terminated with an all-zero entry. (This table is further initialized and sorted in init_slotdefs() below.) */ typedef struct wrapperbase slotdef; #undef TPSLOT #undef FLSLOT #undef ETSLOT #undef SQSLOT #undef MPSLOT #undef NBSLOT #undef UNSLOT #undef IBSLOT #undef BINSLOT #undef RBINSLOT #define TPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ {NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, DOC} #define FLSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC, FLAGS) \ {NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \ DOC, FLAGS} #define ETSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ {NAME, offsetof(etype, SLOT), (void *)(FUNCTION), WRAPPER, DOC} #define SQSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_sequence.SLOT, FUNCTION, WRAPPER, DOC) #define MPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_mapping.SLOT, FUNCTION, WRAPPER, DOC) #define NBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, DOC) #define UNSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \ "x." NAME "() <==> " DOC) #define IBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \ "x." NAME "(y) <==> x" DOC "y") #define BINSLOT(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \ "x." NAME "(y) <==> x" DOC "y") #define RBINSLOT(NAME, SLOT, FUNCTION, DOC) \ ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \ "x." NAME "(y) <==> y" DOC "x") static slotdef slotdefs[] = { SQSLOT("__len__", sq_length, slot_sq_length, wrap_inquiry, "x.__len__() <==> len(x)"), SQSLOT("__add__", sq_concat, slot_sq_concat, wrap_binaryfunc, "x.__add__(y) <==> x+y"), SQSLOT("__mul__", sq_repeat, slot_sq_repeat, wrap_intargfunc, "x.__mul__(n) <==> x*n"), SQSLOT("__rmul__", sq_repeat, slot_sq_repeat, wrap_intargfunc, "x.__rmul__(n) <==> n*x"), SQSLOT("__getitem__", sq_item, slot_sq_item, wrap_sq_item, "x.__getitem__(y) <==> x[y]"), SQSLOT("__getslice__", sq_slice, slot_sq_slice, wrap_intintargfunc, "x.__getslice__(i, j) <==> x[i:j]"), SQSLOT("__setitem__", sq_ass_item, slot_sq_ass_item, wrap_sq_setitem, "x.__setitem__(i, y) <==> x[i]=y"), SQSLOT("__delitem__", sq_ass_item, slot_sq_ass_item, wrap_sq_delitem, "x.__delitem__(y) <==> del x[y]"), SQSLOT("__setslice__", sq_ass_slice, slot_sq_ass_slice, wrap_intintobjargproc, "x.__setslice__(i, j, y) <==> x[i:j]=y"), SQSLOT("__delslice__", sq_ass_slice, slot_sq_ass_slice, wrap_delslice, "x.__delslice__(i, j) <==> del x[i:j]"), SQSLOT("__contains__", sq_contains, slot_sq_contains, wrap_objobjproc, "x.__contains__(y) <==> y in x"), SQSLOT("__iadd__", sq_inplace_concat, slot_sq_inplace_concat, wrap_binaryfunc, "x.__iadd__(y) <==> x+=y"), SQSLOT("__imul__", sq_inplace_repeat, slot_sq_inplace_repeat, wrap_intargfunc, "x.__imul__(y) <==> x*=y"), MPSLOT("__len__", mp_length, slot_mp_length, wrap_inquiry, "x.__len__() <==> len(x)"), MPSLOT("__getitem__", mp_subscript, slot_mp_subscript, wrap_binaryfunc, "x.__getitem__(y) <==> x[y]"), MPSLOT("__setitem__", mp_ass_subscript, slot_mp_ass_subscript, wrap_objobjargproc, "x.__setitem__(i, y) <==> x[i]=y"), MPSLOT("__delitem__", mp_ass_subscript, slot_mp_ass_subscript, wrap_delitem, "x.__delitem__(y) <==> del x[y]"), BINSLOT("__add__", nb_add, slot_nb_add, "+"), RBINSLOT("__radd__", nb_add, slot_nb_add, "+"), BINSLOT("__sub__", nb_subtract, slot_nb_subtract, "-"), RBINSLOT("__rsub__", nb_subtract, slot_nb_subtract, "-"), BINSLOT("__mul__", nb_multiply, slot_nb_multiply, "*"), RBINSLOT("__rmul__", nb_multiply, slot_nb_multiply, "*"), BINSLOT("__div__", nb_divide, slot_nb_divide, "/"), RBINSLOT("__rdiv__", nb_divide, slot_nb_divide, "/"), BINSLOT("__mod__", nb_remainder, slot_nb_remainder, "%"), RBINSLOT("__rmod__", nb_remainder, slot_nb_remainder, "%"), BINSLOT("__divmod__", nb_divmod, slot_nb_divmod, "divmod(x, y)"), RBINSLOT("__rdivmod__", nb_divmod, slot_nb_divmod, "divmod(y, x)"), NBSLOT("__pow__", nb_power, slot_nb_power, wrap_ternaryfunc, "x.__pow__(y[, z]) <==> pow(x, y[, z])"), NBSLOT("__rpow__", nb_power, slot_nb_power, wrap_ternaryfunc_r, "y.__rpow__(x[, z]) <==> pow(x, y[, z])"), UNSLOT("__neg__", nb_negative, slot_nb_negative, wrap_unaryfunc, "-x"), UNSLOT("__pos__", nb_positive, slot_nb_positive, wrap_unaryfunc, "+x"), UNSLOT("__abs__", nb_absolute, slot_nb_absolute, wrap_unaryfunc, "abs(x)"), UNSLOT("__nonzero__", nb_nonzero, slot_nb_nonzero, wrap_inquiry, "x != 0"), UNSLOT("__invert__", nb_invert, slot_nb_invert, wrap_unaryfunc, "~x"), BINSLOT("__lshift__", nb_lshift, slot_nb_lshift, "<<"), RBINSLOT("__rlshift__", nb_lshift, slot_nb_lshift, "<<"), BINSLOT("__rshift__", nb_rshift, slot_nb_rshift, ">>"), RBINSLOT("__rrshift__", nb_rshift, slot_nb_rshift, ">>"), BINSLOT("__and__", nb_and, slot_nb_and, "&"), RBINSLOT("__rand__", nb_and, slot_nb_and, "&"), BINSLOT("__xor__", nb_xor, slot_nb_xor, "^"), RBINSLOT("__rxor__", nb_xor, slot_nb_xor, "^"), BINSLOT("__or__", nb_or, slot_nb_or, "|"), RBINSLOT("__ror__", nb_or, slot_nb_or, "|"), NBSLOT("__coerce__", nb_coerce, slot_nb_coerce, wrap_coercefunc, "x.__coerce__(y) <==> coerce(x, y)"), UNSLOT("__int__", nb_int, slot_nb_int, wrap_unaryfunc, "int(x)"), UNSLOT("__long__", nb_long, slot_nb_long, wrap_unaryfunc, "long(x)"), UNSLOT("__float__", nb_float, slot_nb_float, wrap_unaryfunc, "float(x)"), UNSLOT("__oct__", nb_oct, slot_nb_oct, wrap_unaryfunc, "oct(x)"), UNSLOT("__hex__", nb_hex, slot_nb_hex, wrap_unaryfunc, "hex(x)"), IBSLOT("__iadd__", nb_inplace_add, slot_nb_inplace_add, wrap_binaryfunc, "+"), IBSLOT("__isub__", nb_inplace_subtract, slot_nb_inplace_subtract, wrap_binaryfunc, "-"), IBSLOT("__imul__", nb_inplace_multiply, slot_nb_inplace_multiply, wrap_binaryfunc, "*"), IBSLOT("__idiv__", nb_inplace_divide, slot_nb_inplace_divide, wrap_binaryfunc, "/"), IBSLOT("__imod__", nb_inplace_remainder, slot_nb_inplace_remainder, wrap_binaryfunc, "%"), IBSLOT("__ipow__", nb_inplace_power, slot_nb_inplace_power, wrap_ternaryfunc, "**"), IBSLOT("__ilshift__", nb_inplace_lshift, slot_nb_inplace_lshift, wrap_binaryfunc, "<<"), IBSLOT("__irshift__", nb_inplace_rshift, slot_nb_inplace_rshift, wrap_binaryfunc, ">>"), IBSLOT("__iand__", nb_inplace_and, slot_nb_inplace_and, wrap_binaryfunc, "&"), IBSLOT("__ixor__", nb_inplace_xor, slot_nb_inplace_xor, wrap_binaryfunc, "^"), IBSLOT("__ior__", nb_inplace_or, slot_nb_inplace_or, wrap_binaryfunc, "|"), BINSLOT("__floordiv__", nb_floor_divide, slot_nb_floor_divide, "//"), RBINSLOT("__rfloordiv__", nb_floor_divide, slot_nb_floor_divide, "//"), BINSLOT("__truediv__", nb_true_divide, slot_nb_true_divide, "/"), RBINSLOT("__rtruediv__", nb_true_divide, slot_nb_true_divide, "/"), IBSLOT("__ifloordiv__", nb_inplace_floor_divide, slot_nb_inplace_floor_divide, wrap_binaryfunc, "//"), IBSLOT("__itruediv__", nb_inplace_true_divide, slot_nb_inplace_true_divide, wrap_binaryfunc, "/"), TPSLOT("__str__", tp_str, slot_tp_str, wrap_unaryfunc, "x.__str__() <==> str(x)"), TPSLOT("__str__", tp_print, NULL, NULL, ""), TPSLOT("__repr__", tp_repr, slot_tp_repr, wrap_unaryfunc, "x.__repr__() <==> repr(x)"), TPSLOT("__repr__", tp_print, NULL, NULL, ""), TPSLOT("__cmp__", tp_compare, _PyObject_SlotCompare, wrap_cmpfunc, "x.__cmp__(y) <==> cmp(x,y)"), TPSLOT("__hash__", tp_hash, slot_tp_hash, wrap_hashfunc, "x.__hash__() <==> hash(x)"), FLSLOT("__call__", tp_call, slot_tp_call, (wrapperfunc)wrap_call, "x.__call__(...) <==> x(...)", PyWrapperFlag_KEYWORDS), TPSLOT("__getattribute__", tp_getattro, slot_tp_getattr_hook, wrap_binaryfunc, "x.__getattribute__('name') <==> x.name"), TPSLOT("__getattribute__", tp_getattr, NULL, NULL, ""), TPSLOT("__getattr__", tp_getattro, slot_tp_getattr_hook, NULL, ""), TPSLOT("__getattr__", tp_getattr, NULL, NULL, ""), TPSLOT("__setattr__", tp_setattro, slot_tp_setattro, wrap_setattr, "x.__setattr__('name', value) <==> x.name = value"), TPSLOT("__setattr__", tp_setattr, NULL, NULL, ""), TPSLOT("__delattr__", tp_setattro, slot_tp_setattro, wrap_delattr, "x.__delattr__('name') <==> del x.name"), TPSLOT("__delattr__", tp_setattr, NULL, NULL, ""), TPSLOT("__lt__", tp_richcompare, slot_tp_richcompare, richcmp_lt, "x.__lt__(y) <==> x x<=y"), TPSLOT("__eq__", tp_richcompare, slot_tp_richcompare, richcmp_eq, "x.__eq__(y) <==> x==y"), TPSLOT("__ne__", tp_richcompare, slot_tp_richcompare, richcmp_ne, "x.__ne__(y) <==> x!=y"), TPSLOT("__gt__", tp_richcompare, slot_tp_richcompare, richcmp_gt, "x.__gt__(y) <==> x>y"), TPSLOT("__ge__", tp_richcompare, slot_tp_richcompare, richcmp_ge, "x.__ge__(y) <==> x>=y"), TPSLOT("__iter__", tp_iter, slot_tp_iter, wrap_unaryfunc, "x.__iter__() <==> iter(x)"), TPSLOT("next", tp_iternext, slot_tp_iternext, wrap_next, "x.next() -> the next value, or raise StopIteration"), TPSLOT("__get__", tp_descr_get, slot_tp_descr_get, wrap_descr_get, "descr.__get__(obj[, type]) -> value"), TPSLOT("__set__", tp_descr_set, slot_tp_descr_set, wrap_descr_set, "descr.__set__(obj, value)"), FLSLOT("__init__", tp_init, slot_tp_init, (wrapperfunc)wrap_init, "x.__init__(...) initializes x; " "see x.__class__.__doc__ for signature", PyWrapperFlag_KEYWORDS), TPSLOT("__new__", tp_new, slot_tp_new, NULL, ""), {NULL} }; /* Given a type pointer and an offset gotten from a slotdef entry, return a pointer to the actual slot. This is not quite the same as simply adding the offset to the type pointer, since it takes care to indirect through the proper indirection pointer (as_buffer, etc.); it returns NULL if the indirection pointer is NULL. */ static void ** slotptr(PyTypeObject *type, int offset) { char *ptr; /* Note: this depends on the order of the members of etype! */ assert(offset >= 0); assert(offset < offsetof(etype, as_buffer)); if (offset >= offsetof(etype, as_sequence)) { ptr = (void *)type->tp_as_sequence; offset -= offsetof(etype, as_sequence); } else if (offset >= offsetof(etype, as_mapping)) { ptr = (void *)type->tp_as_mapping; offset -= offsetof(etype, as_mapping); } else if (offset >= offsetof(etype, as_number)) { ptr = (void *)type->tp_as_number; offset -= offsetof(etype, as_number); } else { ptr = (void *)type; } if (ptr != NULL) ptr += offset; return (void **)ptr; } /* Length of array of slotdef pointers used to store slots with the same __name__. There should be at most MAX_EQUIV-1 slotdef entries with the same __name__, for any __name__. Since that's a static property, it is appropriate to declare fixed-size arrays for this. */ #define MAX_EQUIV 10 /* Return a slot pointer for a given name, but ONLY if the attribute has exactly one slot function. The name must be an interned string. */ static void ** resolve_slotdups(PyTypeObject *type, PyObject *name) { /* XXX Maybe this could be optimized more -- but is it worth it? */ /* pname and ptrs act as a little cache */ static PyObject *pname; static slotdef *ptrs[MAX_EQUIV]; slotdef *p, **pp; void **res, **ptr; if (pname != name) { /* Collect all slotdefs that match name into ptrs. */ pname = name; pp = ptrs; for (p = slotdefs; p->name_strobj; p++) { if (p->name_strobj == name) *pp++ = p; } *pp = NULL; } /* Look in all matching slots of the type; if exactly one of these has a filled-in slot, return its value. Otherwise return NULL. */ res = NULL; for (pp = ptrs; *pp; pp++) { ptr = slotptr(type, (*pp)->offset); if (ptr == NULL || *ptr == NULL) continue; if (res != NULL) return NULL; res = ptr; } return res; } /* Common code for update_these_slots() and fixup_slot_dispatchers(). This does some incredibly complex thinking and then sticks something into the slot. (It sees if the adjacent slotdefs for the same slot have conflicting interests, and then stores a generic wrapper or a specific function into the slot.) Return a pointer to the next slotdef with a different offset, because that's convenient for fixup_slot_dispatchers(). */ static slotdef * update_one_slot(PyTypeObject *type, slotdef *p) { PyObject *descr; PyWrapperDescrObject *d; void *generic = NULL, *specific = NULL; int use_generic = 0; int offset = p->offset; void **ptr = slotptr(type, offset); if (ptr == NULL) { do { ++p; } while (p->offset == offset); return p; } do { descr = _PyType_Lookup(type, p->name_strobj); if (descr == NULL) continue; if (descr->ob_type == &PyWrapperDescr_Type) { void **tptr = resolve_slotdups(type, p->name_strobj); if (tptr == NULL || tptr == ptr) generic = p->function; d = (PyWrapperDescrObject *)descr; if (d->d_base->wrapper == p->wrapper && PyType_IsSubtype(type, d->d_type)) { if (specific == NULL || specific == d->d_wrapped) specific = d->d_wrapped; else use_generic = 1; } } else { use_generic = 1; generic = p->function; } } while ((++p)->offset == offset); if (specific && !use_generic) *ptr = specific; else *ptr = generic; return p; } static int recurse_down_subclasses(PyTypeObject *type, slotdef **pp, PyObject *name); /* In the type, update the slots whose slotdefs are gathered in the pp0 array, and then do the same for all this type's subtypes. */ static int update_these_slots(PyTypeObject *type, slotdef **pp0, PyObject *name) { slotdef **pp; for (pp = pp0; *pp; pp++) update_one_slot(type, *pp); return recurse_down_subclasses(type, pp0, name); } /* Update the slots whose slotdefs are gathered in the pp array in all (direct or indirect) subclasses of type. */ static int recurse_down_subclasses(PyTypeObject *type, slotdef **pp, PyObject *name) { PyTypeObject *subclass; PyObject *ref, *subclasses, *dict; int i, n; subclasses = type->tp_subclasses; if (subclasses == NULL) return 0; assert(PyList_Check(subclasses)); n = PyList_GET_SIZE(subclasses); for (i = 0; i < n; i++) { ref = PyList_GET_ITEM(subclasses, i); assert(PyWeakref_CheckRef(ref)); subclass = (PyTypeObject *)PyWeakref_GET_OBJECT(ref); assert(subclass != NULL); if ((PyObject *)subclass == Py_None) continue; assert(PyType_Check(subclass)); /* Avoid recursing down into unaffected classes */ dict = subclass->tp_dict; if (dict != NULL && PyDict_Check(dict) && PyDict_GetItem(dict, name) != NULL) continue; if (update_these_slots(subclass, pp, name) < 0) return -1; } return 0; } /* Comparison function for qsort() to compare slotdefs by their offset, and for equal offset by their address (to force a stable sort). */ static int slotdef_cmp(const void *aa, const void *bb) { const slotdef *a = (const slotdef *)aa, *b = (const slotdef *)bb; int c = a->offset - b->offset; if (c != 0) return c; else return a - b; } /* Initialize the slotdefs table by adding interned string objects for the names and sorting the entries. */ static void init_slotdefs(void) { slotdef *p; static int initialized = 0; if (initialized) return; for (p = slotdefs; p->name; p++) { p->name_strobj = PyString_InternFromString(p->name); if (!p->name_strobj) Py_FatalError("Out of memory interning slotdef names"); } qsort((void *)slotdefs, (size_t)(p-slotdefs), sizeof(slotdef), slotdef_cmp); initialized = 1; } /* Update the slots after assignment to a class (type) attribute. */ static int update_slot(PyTypeObject *type, PyObject *name) { slotdef *ptrs[MAX_EQUIV]; slotdef *p; slotdef **pp; int offset; init_slotdefs(); pp = ptrs; for (p = slotdefs; p->name; p++) { /* XXX assume name is interned! */ if (p->name_strobj == name) *pp++ = p; } *pp = NULL; for (pp = ptrs; *pp; pp++) { p = *pp; offset = p->offset; while (p > slotdefs && (p-1)->offset == offset) --p; *pp = p; } if (ptrs[0] == NULL) return 0; /* Not an attribute that affects any slots */ return update_these_slots(type, ptrs, name); } /* Store the proper functions in the slot dispatches at class (type) definition time, based upon which operations the class overrides in its dict. */ static void fixup_slot_dispatchers(PyTypeObject *type) { slotdef *p; init_slotdefs(); for (p = slotdefs; p->name; ) p = update_one_slot(type, p); } /* This function is called by PyType_Ready() to populate the type's dictionary with method descriptors for function slots. For each function slot (like tp_repr) that's defined in the type, one or more corresponding descriptors are added in the type's tp_dict dictionary under the appropriate name (like __repr__). Some function slots cause more than one descriptor to be added (for example, the nb_add slot adds both __add__ and __radd__ descriptors) and some function slots compete for the same descriptor (for example both sq_item and mp_subscript generate a __getitem__ descriptor). In the latter case, the first slotdef entry encoutered wins. Since slotdef entries are sorted by the offset of the slot in the etype struct, this gives us some control over disambiguating between competing slots: the members of struct etype are listed from most general to least general, so the most general slot is preferred. In particular, because as_mapping comes before as_sequence, for a type that defines both mp_subscript and sq_item, mp_subscript wins. This only adds new descriptors and doesn't overwrite entries in tp_dict that were previously defined. The descriptors contain a reference to the C function they must call, so that it's safe if they are copied into a subtype's __dict__ and the subtype has a different C function in its slot -- calling the method defined by the descriptor will call the C function that was used to create it, rather than the C function present in the slot when it is called. (This is important because a subtype may have a C function in the slot that calls the method from the dictionary, and we want to avoid infinite recursion here.) */ static int add_operators(PyTypeObject *type) { PyObject *dict = type->tp_dict; slotdef *p; PyObject *descr; void **ptr; init_slotdefs(); for (p = slotdefs; p->name; p++) { if (p->wrapper == NULL) continue; ptr = slotptr(type, p->offset); if (!ptr || !*ptr) continue; if (PyDict_GetItem(dict, p->name_strobj)) continue; descr = PyDescr_NewWrapper(type, p, *ptr); if (descr == NULL) return -1; if (PyDict_SetItem(dict, p->name_strobj, descr) < 0) return -1; Py_DECREF(descr); } if (type->tp_new != NULL) { if (add_tp_new_wrapper(type) < 0) return -1; } return 0; } /* Cooperative 'super' */ typedef struct { PyObject_HEAD PyTypeObject *type; PyObject *obj; } superobject; static PyMemberDef super_members[] = { {"__thisclass__", T_OBJECT, offsetof(superobject, type), READONLY, "the class invoking super()"}, {"__self__", T_OBJECT, offsetof(superobject, obj), READONLY, "the instance invoking super(); may be None"}, {0} }; static void super_dealloc(PyObject *self) { superobject *su = (superobject *)self; _PyObject_GC_UNTRACK(self); Py_XDECREF(su->obj); Py_XDECREF(su->type); self->ob_type->tp_free(self); } static PyObject * super_repr(PyObject *self) { superobject *su = (superobject *)self; if (su->obj) return PyString_FromFormat( ", <%s object>>", su->type ? su->type->tp_name : "NULL", su->obj->ob_type->tp_name); else return PyString_FromFormat( ", NULL>", su->type ? su->type->tp_name : "NULL"); } static PyObject * super_getattro(PyObject *self, PyObject *name) { superobject *su = (superobject *)self; if (su->obj != NULL) { PyObject *mro, *res, *tmp, *dict; PyTypeObject *starttype; descrgetfunc f; int i, n; starttype = su->obj->ob_type; mro = starttype->tp_mro; if (mro == NULL) n = 0; else { assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); } for (i = 0; i < n; i++) { if ((PyObject *)(su->type) == PyTuple_GET_ITEM(mro, i)) break; } if (i >= n && PyType_Check(su->obj)) { starttype = (PyTypeObject *)(su->obj); mro = starttype->tp_mro; if (mro == NULL) n = 0; else { assert(PyTuple_Check(mro)); n = PyTuple_GET_SIZE(mro); } for (i = 0; i < n; i++) { if ((PyObject *)(su->type) == PyTuple_GET_ITEM(mro, i)) break; } } i++; res = NULL; for (; i < n; i++) { tmp = PyTuple_GET_ITEM(mro, i); if (PyType_Check(tmp)) dict = ((PyTypeObject *)tmp)->tp_dict; else if (PyClass_Check(tmp)) dict = ((PyClassObject *)tmp)->cl_dict; else continue; res = PyDict_GetItem(dict, name); if (res != NULL && !PyDescr_IsData(res)) { Py_INCREF(res); f = res->ob_type->tp_descr_get; if (f != NULL) { tmp = f(res, su->obj, (PyObject *)starttype); Py_DECREF(res); res = tmp; } return res; } } } return PyObject_GenericGetAttr(self, name); } static int supercheck(PyTypeObject *type, PyObject *obj) { if (!PyType_IsSubtype(obj->ob_type, type) && !(PyType_Check(obj) && PyType_IsSubtype((PyTypeObject *)obj, type))) { PyErr_SetString(PyExc_TypeError, "super(type, obj): " "obj must be an instance or subtype of type"); return -1; } else return 0; } static PyObject * super_descr_get(PyObject *self, PyObject *obj, PyObject *type) { superobject *su = (superobject *)self; superobject *new; if (obj == NULL || obj == Py_None || su->obj != NULL) { /* Not binding to an object, or already bound */ Py_INCREF(self); return self; } if (su->ob_type != &PySuper_Type) /* If su is an instance of a subclass of super, call its type */ return PyObject_CallFunction((PyObject *)su->ob_type, "OO", su->type, obj); else { /* Inline the common case */ if (supercheck(su->type, obj) < 0) return NULL; new = (superobject *)PySuper_Type.tp_new(&PySuper_Type, NULL, NULL); if (new == NULL) return NULL; Py_INCREF(su->type); Py_INCREF(obj); new->type = su->type; new->obj = obj; return (PyObject *)new; } } static int super_init(PyObject *self, PyObject *args, PyObject *kwds) { superobject *su = (superobject *)self; PyTypeObject *type; PyObject *obj = NULL; if (!PyArg_ParseTuple(args, "O!|O:super", &PyType_Type, &type, &obj)) return -1; if (obj == Py_None) obj = NULL; if (obj != NULL && supercheck(type, obj) < 0) return -1; Py_INCREF(type); Py_XINCREF(obj); su->type = type; su->obj = obj; return 0; } PyDoc_STRVAR(super_doc, "super(type) -> unbound super object\n" "super(type, obj) -> bound super object; requires isinstance(obj, type)\n" "super(type, type2) -> bound super object; requires issubclass(type2, type)\n" "Typical use to call a cooperative superclass method:\n" "class C(B):\n" " def meth(self, arg):\n" " super(C, self).meth(arg)"); static int super_traverse(PyObject *self, visitproc visit, void *arg) { superobject *su = (superobject *)self; int err; #define VISIT(SLOT) \ if (SLOT) { \ err = visit((PyObject *)(SLOT), arg); \ if (err) \ return err; \ } VISIT(su->obj); VISIT(su->type); #undef VISIT return 0; } PyTypeObject PySuper_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, /* ob_size */ "super", /* tp_name */ sizeof(superobject), /* tp_basicsize */ 0, /* tp_itemsize */ /* methods */ super_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ super_repr, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ super_getattro, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE, /* tp_flags */ super_doc, /* tp_doc */ super_traverse, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ 0, /* tp_methods */ super_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ super_descr_get, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ super_init, /* tp_init */ PyType_GenericAlloc, /* tp_alloc */ PyType_GenericNew, /* tp_new */ PyObject_GC_Del, /* tp_free */ };