/* Module that wraps all OpenSSL hash algorithms */ /* * Copyright (C) 2005-2010 Gregory P. Smith (greg@krypto.org) * Licensed to PSF under a Contributor Agreement. * * Derived from a skeleton of shamodule.c containing work performed by: * * Andrew Kuchling (amk@amk.ca) * Greg Stein (gstein@lyra.org) * */ #define PY_SSIZE_T_CLEAN #include "Python.h" #include "structmember.h" #include "hashlib.h" #include "pystrhex.h" /* EVP is the preferred interface to hashing in OpenSSL */ #include #include /* We use the object interface to discover what hashes OpenSSL supports. */ #include #include "openssl/err.h" #if (OPENSSL_VERSION_NUMBER < 0x10100000L) || defined(LIBRESSL_VERSION_NUMBER) /* OpenSSL < 1.1.0 */ #define EVP_MD_CTX_new EVP_MD_CTX_create #define EVP_MD_CTX_free EVP_MD_CTX_destroy #endif #define MUNCH_SIZE INT_MAX typedef struct { PyObject_HEAD EVP_MD_CTX *ctx; /* OpenSSL message digest context */ PyThread_type_lock lock; /* OpenSSL context lock */ } EVPobject; static PyTypeObject EVPtype; #include "clinic/_hashopenssl.c.h" /*[clinic input] module _hashlib class _hashlib.HASH "EVPobject *" "&EVPtype" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=a881a5092eecad28]*/ /* LCOV_EXCL_START */ static PyObject * _setException(PyObject *exc) { unsigned long errcode; const char *lib, *func, *reason; errcode = ERR_peek_last_error(); if (!errcode) { PyErr_SetString(exc, "unknown reasons"); return NULL; } ERR_clear_error(); lib = ERR_lib_error_string(errcode); func = ERR_func_error_string(errcode); reason = ERR_reason_error_string(errcode); if (lib && func) { PyErr_Format(exc, "[%s: %s] %s", lib, func, reason); } else if (lib) { PyErr_Format(exc, "[%s] %s", lib, reason); } else { PyErr_SetString(exc, reason); } return NULL; } /* LCOV_EXCL_STOP */ static EVPobject * newEVPobject(void) { EVPobject *retval = (EVPobject *)PyObject_New(EVPobject, &EVPtype); if (retval == NULL) { return NULL; } retval->lock = NULL; retval->ctx = EVP_MD_CTX_new(); if (retval->ctx == NULL) { Py_DECREF(retval); PyErr_NoMemory(); return NULL; } return retval; } static int EVP_hash(EVPobject *self, const void *vp, Py_ssize_t len) { unsigned int process; const unsigned char *cp = (const unsigned char *)vp; while (0 < len) { if (len > (Py_ssize_t)MUNCH_SIZE) process = MUNCH_SIZE; else process = Py_SAFE_DOWNCAST(len, Py_ssize_t, unsigned int); if (!EVP_DigestUpdate(self->ctx, (const void*)cp, process)) { _setException(PyExc_ValueError); return -1; } len -= process; cp += process; } return 0; } /* Internal methods for a hash object */ static void EVP_dealloc(EVPobject *self) { if (self->lock != NULL) PyThread_free_lock(self->lock); EVP_MD_CTX_free(self->ctx); PyObject_Del(self); } static int locked_EVP_MD_CTX_copy(EVP_MD_CTX *new_ctx_p, EVPobject *self) { int result; ENTER_HASHLIB(self); result = EVP_MD_CTX_copy(new_ctx_p, self->ctx); LEAVE_HASHLIB(self); return result; } /* External methods for a hash object */ /*[clinic input] _hashlib.HASH.copy as EVP_copy Return a copy of the hash object. [clinic start generated code]*/ static PyObject * EVP_copy_impl(EVPobject *self) /*[clinic end generated code: output=b370c21cdb8ca0b4 input=31455b6a3e638069]*/ { EVPobject *newobj; if ( (newobj = newEVPobject())==NULL) return NULL; if (!locked_EVP_MD_CTX_copy(newobj->ctx, self)) { Py_DECREF(newobj); return _setException(PyExc_ValueError); } return (PyObject *)newobj; } /*[clinic input] _hashlib.HASH.digest as EVP_digest Return the digest value as a bytes object. [clinic start generated code]*/ static PyObject * EVP_digest_impl(EVPobject *self) /*[clinic end generated code: output=0f6a3a0da46dc12d input=03561809a419bf00]*/ { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; PyObject *retval; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } retval = PyBytes_FromStringAndSize((const char *)digest, digest_size); EVP_MD_CTX_free(temp_ctx); return retval; } /*[clinic input] _hashlib.HASH.hexdigest as EVP_hexdigest Return the digest value as a string of hexadecimal digits. [clinic start generated code]*/ static PyObject * EVP_hexdigest_impl(EVPobject *self) /*[clinic end generated code: output=18e6decbaf197296 input=aff9cf0e4c741a9a]*/ { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } /* Get the raw (binary) digest value */ if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } EVP_MD_CTX_free(temp_ctx); return _Py_strhex((const char *)digest, (Py_ssize_t)digest_size); } /*[clinic input] _hashlib.HASH.update as EVP_update obj: object / Update this hash object's state with the provided string. [clinic start generated code]*/ static PyObject * EVP_update(EVPobject *self, PyObject *obj) /*[clinic end generated code: output=ec1d55ed2432e966 input=9b30ec848f015501]*/ { int result; Py_buffer view; GET_BUFFER_VIEW_OR_ERROUT(obj, &view); if (self->lock == NULL && view.len >= HASHLIB_GIL_MINSIZE) { self->lock = PyThread_allocate_lock(); /* fail? lock = NULL and we fail over to non-threaded code. */ } if (self->lock != NULL) { Py_BEGIN_ALLOW_THREADS PyThread_acquire_lock(self->lock, 1); result = EVP_hash(self, view.buf, view.len); PyThread_release_lock(self->lock); Py_END_ALLOW_THREADS } else { result = EVP_hash(self, view.buf, view.len); } PyBuffer_Release(&view); if (result == -1) return NULL; Py_RETURN_NONE; } static PyMethodDef EVP_methods[] = { EVP_UPDATE_METHODDEF EVP_DIGEST_METHODDEF EVP_HEXDIGEST_METHODDEF EVP_COPY_METHODDEF {NULL, NULL} /* sentinel */ }; static PyObject * EVP_get_block_size(EVPobject *self, void *closure) { long block_size; block_size = EVP_MD_CTX_block_size(self->ctx); return PyLong_FromLong(block_size); } static PyObject * EVP_get_digest_size(EVPobject *self, void *closure) { long size; size = EVP_MD_CTX_size(self->ctx); return PyLong_FromLong(size); } static PyObject * EVP_get_name(EVPobject *self, void *closure) { const char *name = EVP_MD_name(EVP_MD_CTX_md(self->ctx)); PyObject *name_obj, *name_lower; name_obj = PyUnicode_FromString(name); if (!name_obj) { return NULL; } name_lower = PyObject_CallMethod(name_obj, "lower", NULL); Py_DECREF(name_obj); return name_lower; } static PyGetSetDef EVP_getseters[] = { {"digest_size", (getter)EVP_get_digest_size, NULL, NULL, NULL}, {"block_size", (getter)EVP_get_block_size, NULL, NULL, NULL}, {"name", (getter)EVP_get_name, NULL, NULL, PyDoc_STR("algorithm name.")}, {NULL} /* Sentinel */ }; static PyObject * EVP_repr(EVPobject *self) { PyObject *name_obj, *repr; name_obj = EVP_get_name(self, NULL); if (!name_obj) { return NULL; } repr = PyUnicode_FromFormat("<%U HASH object @ %p>", name_obj, self); Py_DECREF(name_obj); return repr; } PyDoc_STRVAR(hashtype_doc, "HASH(name, string=b\'\')\n" "--\n" "\n" "A hash is an object used to calculate a checksum of a string of information.\n" "\n" "Methods:\n" "\n" "update() -- updates the current digest with an additional string\n" "digest() -- return the current digest value\n" "hexdigest() -- return the current digest as a string of hexadecimal digits\n" "copy() -- return a copy of the current hash object\n" "\n" "Attributes:\n" "\n" "name -- the hash algorithm being used by this object\n" "digest_size -- number of bytes in this hashes output"); static PyTypeObject EVPtype = { PyVarObject_HEAD_INIT(NULL, 0) "_hashlib.HASH", /*tp_name*/ sizeof(EVPobject), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ (destructor)EVP_dealloc, /*tp_dealloc*/ 0, /*tp_vectorcall_offset*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_as_async*/ (reprfunc)EVP_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ hashtype_doc, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ EVP_methods, /* tp_methods */ NULL, /* tp_members */ EVP_getseters, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ }; static PyObject * EVPnew(const EVP_MD *digest, const unsigned char *cp, Py_ssize_t len) { int result = 0; EVPobject *self; if (!digest) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); return NULL; } if ((self = newEVPobject()) == NULL) return NULL; if (!EVP_DigestInit(self->ctx, digest)) { _setException(PyExc_ValueError); Py_DECREF(self); return NULL; } if (cp && len) { if (len >= HASHLIB_GIL_MINSIZE) { Py_BEGIN_ALLOW_THREADS result = EVP_hash(self, cp, len); Py_END_ALLOW_THREADS } else { result = EVP_hash(self, cp, len); } if (result == -1) { Py_DECREF(self); return NULL; } } return (PyObject *)self; } /* The module-level function: new() */ /*[clinic input] _hashlib.new as EVP_new name as name_obj: object string as data_obj: object(py_default="b''") = NULL Return a new hash object using the named algorithm. An optional string argument may be provided and will be automatically hashed. The MD5 and SHA1 algorithms are always supported. [clinic start generated code]*/ static PyObject * EVP_new_impl(PyObject *module, PyObject *name_obj, PyObject *data_obj) /*[clinic end generated code: output=9e7cf664e04b0226 input=1c46e40e0fec91f3]*/ { Py_buffer view = { 0 }; PyObject *ret_obj; char *name; const EVP_MD *digest; if (!PyArg_Parse(name_obj, "s", &name)) { PyErr_SetString(PyExc_TypeError, "name must be a string"); return NULL; } if (data_obj) GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); digest = EVP_get_digestbyname(name); ret_obj = EVPnew(digest, (unsigned char*)view.buf, view.len); if (data_obj) PyBuffer_Release(&view); return ret_obj; } static PyObject* EVP_fast_new(PyObject *module, PyObject *data_obj, const EVP_MD *digest) { Py_buffer view = { 0 }; PyObject *ret_obj; if (data_obj) GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); ret_obj = EVPnew(digest, (unsigned char*)view.buf, view.len); if (data_obj) PyBuffer_Release(&view); return ret_obj; } /*[clinic input] _hashlib.openssl_md5 string as data_obj: object(py_default="b''") = NULL Returns a md5 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_md5_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=6caae75b73e22c3f input=52010d3869e1b1a7]*/ { return EVP_fast_new(module, data_obj, EVP_md5()); } /*[clinic input] _hashlib.openssl_sha1 string as data_obj: object(py_default="b''") = NULL Returns a sha1 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_sha1_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=07606d8f75153e61 input=16807d30e4aa8ae9]*/ { return EVP_fast_new(module, data_obj, EVP_sha1()); } /*[clinic input] _hashlib.openssl_sha224 string as data_obj: object(py_default="b''") = NULL Returns a sha224 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_sha224_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=55e848761bcef0c9 input=5dbc2f1d84eb459b]*/ { return EVP_fast_new(module, data_obj, EVP_sha224()); } /*[clinic input] _hashlib.openssl_sha256 string as data_obj: object(py_default="b''") = NULL Returns a sha256 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_sha256_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=05851d7cce34ac65 input=a68a5d21cda5a80f]*/ { return EVP_fast_new(module, data_obj, EVP_sha256()); } /*[clinic input] _hashlib.openssl_sha384 string as data_obj: object(py_default="b''") = NULL Returns a sha384 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_sha384_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=5101a4704a932c2f input=6bdfa006622b64ea]*/ { return EVP_fast_new(module, data_obj, EVP_sha384()); } /*[clinic input] _hashlib.openssl_sha512 string as data_obj: object(py_default="b''") = NULL Returns a sha512 hash object; optionally initialized with a string [clinic start generated code]*/ static PyObject * _hashlib_openssl_sha512_impl(PyObject *module, PyObject *data_obj) /*[clinic end generated code: output=20c8e63ee560a5cb input=ece50182ad4b76a6]*/ { return EVP_fast_new(module, data_obj, EVP_sha512()); } /*[clinic input] _hashlib.pbkdf2_hmac as pbkdf2_hmac hash_name: str password: Py_buffer salt: Py_buffer iterations: long dklen as dklen_obj: object = None Password based key derivation function 2 (PKCS #5 v2.0) with HMAC as pseudorandom function. [clinic start generated code]*/ static PyObject * pbkdf2_hmac_impl(PyObject *module, const char *hash_name, Py_buffer *password, Py_buffer *salt, long iterations, PyObject *dklen_obj) /*[clinic end generated code: output=144b76005416599b input=ed3ab0d2d28b5d5c]*/ { PyObject *key_obj = NULL; char *key; long dklen; int retval; const EVP_MD *digest; digest = EVP_get_digestbyname(hash_name); if (digest == NULL) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); goto end; } if (password->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "password is too long."); goto end; } if (salt->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "salt is too long."); goto end; } if (iterations < 1) { PyErr_SetString(PyExc_ValueError, "iteration value must be greater than 0."); goto end; } if (iterations > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "iteration value is too great."); goto end; } if (dklen_obj == Py_None) { dklen = EVP_MD_size(digest); } else { dklen = PyLong_AsLong(dklen_obj); if ((dklen == -1) && PyErr_Occurred()) { goto end; } } if (dklen < 1) { PyErr_SetString(PyExc_ValueError, "key length must be greater than 0."); goto end; } if (dklen > INT_MAX) { /* INT_MAX is always smaller than dkLen max (2^32 - 1) * hLen */ PyErr_SetString(PyExc_OverflowError, "key length is too great."); goto end; } key_obj = PyBytes_FromStringAndSize(NULL, dklen); if (key_obj == NULL) { goto end; } key = PyBytes_AS_STRING(key_obj); Py_BEGIN_ALLOW_THREADS retval = PKCS5_PBKDF2_HMAC((char*)password->buf, (int)password->len, (unsigned char *)salt->buf, (int)salt->len, iterations, digest, dklen, (unsigned char *)key); Py_END_ALLOW_THREADS if (!retval) { Py_CLEAR(key_obj); _setException(PyExc_ValueError); goto end; } end: return key_obj; } #if OPENSSL_VERSION_NUMBER > 0x10100000L && !defined(OPENSSL_NO_SCRYPT) && !defined(LIBRESSL_VERSION_NUMBER) #define PY_SCRYPT 1 /* XXX: Parameters salt, n, r and p should be required keyword-only parameters. They are optional in the Argument Clinic declaration only due to a limitation of PyArg_ParseTupleAndKeywords. */ /*[clinic input] _hashlib.scrypt password: Py_buffer * salt: Py_buffer = None n as n_obj: object(subclass_of='&PyLong_Type') = None r as r_obj: object(subclass_of='&PyLong_Type') = None p as p_obj: object(subclass_of='&PyLong_Type') = None maxmem: long = 0 dklen: long = 64 scrypt password-based key derivation function. [clinic start generated code]*/ static PyObject * _hashlib_scrypt_impl(PyObject *module, Py_buffer *password, Py_buffer *salt, PyObject *n_obj, PyObject *r_obj, PyObject *p_obj, long maxmem, long dklen) /*[clinic end generated code: output=14849e2aa2b7b46c input=48a7d63bf3f75c42]*/ { PyObject *key_obj = NULL; char *key; int retval; unsigned long n, r, p; if (password->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "password is too long."); return NULL; } if (salt->buf == NULL) { PyErr_SetString(PyExc_TypeError, "salt is required"); return NULL; } if (salt->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "salt is too long."); return NULL; } n = PyLong_AsUnsignedLong(n_obj); if (n == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "n is required and must be an unsigned int"); return NULL; } if (n < 2 || n & (n - 1)) { PyErr_SetString(PyExc_ValueError, "n must be a power of 2."); return NULL; } r = PyLong_AsUnsignedLong(r_obj); if (r == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "r is required and must be an unsigned int"); return NULL; } p = PyLong_AsUnsignedLong(p_obj); if (p == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "p is required and must be an unsigned int"); return NULL; } if (maxmem < 0 || maxmem > INT_MAX) { /* OpenSSL 1.1.0 restricts maxmem to 32 MiB. It may change in the future. The maxmem constant is private to OpenSSL. */ PyErr_Format(PyExc_ValueError, "maxmem must be positive and smaller than %d", INT_MAX); return NULL; } if (dklen < 1 || dklen > INT_MAX) { PyErr_Format(PyExc_ValueError, "dklen must be greater than 0 and smaller than %d", INT_MAX); return NULL; } /* let OpenSSL validate the rest */ retval = EVP_PBE_scrypt(NULL, 0, NULL, 0, n, r, p, maxmem, NULL, 0); if (!retval) { /* sorry, can't do much better */ PyErr_SetString(PyExc_ValueError, "Invalid parameter combination for n, r, p, maxmem."); return NULL; } key_obj = PyBytes_FromStringAndSize(NULL, dklen); if (key_obj == NULL) { return NULL; } key = PyBytes_AS_STRING(key_obj); Py_BEGIN_ALLOW_THREADS retval = EVP_PBE_scrypt( (const char*)password->buf, (size_t)password->len, (const unsigned char *)salt->buf, (size_t)salt->len, n, r, p, maxmem, (unsigned char *)key, (size_t)dklen ); Py_END_ALLOW_THREADS if (!retval) { Py_CLEAR(key_obj); _setException(PyExc_ValueError); return NULL; } return key_obj; } #endif /* Fast HMAC for hmac.digest() */ /*[clinic input] _hashlib.hmac_digest key: Py_buffer msg: Py_buffer digest: str Single-shot HMAC. [clinic start generated code]*/ static PyObject * _hashlib_hmac_digest_impl(PyObject *module, Py_buffer *key, Py_buffer *msg, const char *digest) /*[clinic end generated code: output=75630e684cdd8762 input=562d2f4249511bd3]*/ { unsigned char md[EVP_MAX_MD_SIZE] = {0}; unsigned int md_len = 0; unsigned char *result; const EVP_MD *evp; evp = EVP_get_digestbyname(digest); if (evp == NULL) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); return NULL; } if (key->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "key is too long."); return NULL; } if (msg->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "msg is too long."); return NULL; } Py_BEGIN_ALLOW_THREADS result = HMAC( evp, (const void*)key->buf, (int)key->len, (const unsigned char*)msg->buf, (int)msg->len, md, &md_len ); Py_END_ALLOW_THREADS if (result == NULL) { _setException(PyExc_ValueError); return NULL; } return PyBytes_FromStringAndSize((const char*)md, md_len); } /* State for our callback function so that it can accumulate a result. */ typedef struct _internal_name_mapper_state { PyObject *set; int error; } _InternalNameMapperState; /* A callback function to pass to OpenSSL's OBJ_NAME_do_all(...) */ static void _openssl_hash_name_mapper(const OBJ_NAME *openssl_obj_name, void *arg) { _InternalNameMapperState *state = (_InternalNameMapperState *)arg; PyObject *py_name; assert(state != NULL); if (openssl_obj_name == NULL) return; /* Ignore aliased names, they pollute the list and OpenSSL appears to * have its own definition of alias as the resulting list still * contains duplicate and alternate names for several algorithms. */ if (openssl_obj_name->alias) return; py_name = PyUnicode_FromString(openssl_obj_name->name); if (py_name == NULL) { state->error = 1; } else { if (PySet_Add(state->set, py_name) != 0) { state->error = 1; } Py_DECREF(py_name); } } /* Ask OpenSSL for a list of supported ciphers, filling in a Python set. */ static PyObject* generate_hash_name_list(void) { _InternalNameMapperState state; state.set = PyFrozenSet_New(NULL); if (state.set == NULL) return NULL; state.error = 0; OBJ_NAME_do_all(OBJ_NAME_TYPE_MD_METH, &_openssl_hash_name_mapper, &state); if (state.error) { Py_DECREF(state.set); return NULL; } return state.set; } /* List of functions exported by this module */ static struct PyMethodDef EVP_functions[] = { EVP_NEW_METHODDEF PBKDF2_HMAC_METHODDEF _HASHLIB_SCRYPT_METHODDEF _HASHLIB_HMAC_DIGEST_METHODDEF _HASHLIB_OPENSSL_MD5_METHODDEF _HASHLIB_OPENSSL_SHA1_METHODDEF _HASHLIB_OPENSSL_SHA224_METHODDEF _HASHLIB_OPENSSL_SHA256_METHODDEF _HASHLIB_OPENSSL_SHA384_METHODDEF _HASHLIB_OPENSSL_SHA512_METHODDEF {NULL, NULL} /* Sentinel */ }; /* Initialize this module. */ static struct PyModuleDef _hashlibmodule = { PyModuleDef_HEAD_INIT, "_hashlib", NULL, -1, EVP_functions, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit__hashlib(void) { PyObject *m, *openssl_md_meth_names; #ifndef OPENSSL_VERSION_1_1 /* Load all digest algorithms and initialize cpuid */ OPENSSL_add_all_algorithms_noconf(); ERR_load_crypto_strings(); #endif /* TODO build EVP_functions openssl_* entries dynamically based * on what hashes are supported rather than listing many * but having some be unsupported. Only init appropriate * constants. */ Py_TYPE(&EVPtype) = &PyType_Type; if (PyType_Ready(&EVPtype) < 0) return NULL; m = PyModule_Create(&_hashlibmodule); if (m == NULL) return NULL; openssl_md_meth_names = generate_hash_name_list(); if (openssl_md_meth_names == NULL) { Py_DECREF(m); return NULL; } if (PyModule_AddObject(m, "openssl_md_meth_names", openssl_md_meth_names)) { Py_DECREF(m); return NULL; } Py_INCREF((PyObject *)&EVPtype); PyModule_AddObject(m, "HASH", (PyObject *)&EVPtype); return m; }