#!/usr/bin/env python3 # # Argument Clinic # Copyright 2012-2013 by Larry Hastings. # Licensed to the PSF under a contributor agreement. # import abc import ast import collections import contextlib import copy import cpp import functools import hashlib import inspect import io import itertools import os import pprint import re import shlex import string import sys import tempfile import textwrap import traceback import types from types import * NoneType = type(None) # TODO: # # soon: # # * allow mixing any two of {positional-only, positional-or-keyword, # keyword-only} # * dict constructor uses positional-only and keyword-only # * max and min use positional only with an optional group # and keyword-only # version = '1' _empty = inspect._empty _void = inspect._void NoneType = type(None) class Unspecified: def __repr__(self): return '' unspecified = Unspecified() class Null: def __repr__(self): return '' NULL = Null() class Unknown: def __repr__(self): return '' unknown = Unknown() sig_end_marker = '--' _text_accumulator_nt = collections.namedtuple("_text_accumulator", "text append output") def _text_accumulator(): text = [] def output(): s = ''.join(text) text.clear() return s return _text_accumulator_nt(text, text.append, output) text_accumulator_nt = collections.namedtuple("text_accumulator", "text append") def text_accumulator(): """ Creates a simple text accumulator / joiner. Returns a pair of callables: append, output "append" appends a string to the accumulator. "output" returns the contents of the accumulator joined together (''.join(accumulator)) and empties the accumulator. """ text, append, output = _text_accumulator() return text_accumulator_nt(append, output) def warn_or_fail(fail=False, *args, filename=None, line_number=None): joined = " ".join([str(a) for a in args]) add, output = text_accumulator() if fail: add("Error") else: add("Warning") if clinic: if filename is None: filename = clinic.filename if getattr(clinic, 'block_parser', None) and (line_number is None): line_number = clinic.block_parser.line_number if filename is not None: add(' in file "' + filename + '"') if line_number is not None: add(" on line " + str(line_number)) add(':\n') add(joined) print(output()) if fail: sys.exit(-1) def warn(*args, filename=None, line_number=None): return warn_or_fail(False, *args, filename=filename, line_number=line_number) def fail(*args, filename=None, line_number=None): return warn_or_fail(True, *args, filename=filename, line_number=line_number) def quoted_for_c_string(s): for old, new in ( ('\\', '\\\\'), # must be first! ('"', '\\"'), ("'", "\\'"), ): s = s.replace(old, new) return s def c_repr(s): return '"' + s + '"' is_legal_c_identifier = re.compile('^[A-Za-z_][A-Za-z0-9_]*$').match def is_legal_py_identifier(s): return all(is_legal_c_identifier(field) for field in s.split('.')) # identifiers that are okay in Python but aren't a good idea in C. # so if they're used Argument Clinic will add "_value" to the end # of the name in C. c_keywords = set(""" asm auto break case char const continue default do double else enum extern float for goto if inline int long register return short signed sizeof static struct switch typedef typeof union unsigned void volatile while """.strip().split()) def ensure_legal_c_identifier(s): # for now, just complain if what we're given isn't legal if not is_legal_c_identifier(s): fail("Illegal C identifier: {}".format(s)) # but if we picked a C keyword, pick something else if s in c_keywords: return s + "_value" return s def rstrip_lines(s): text, add, output = _text_accumulator() for line in s.split('\n'): add(line.rstrip()) add('\n') text.pop() return output() def format_escape(s): # double up curly-braces, this string will be used # as part of a format_map() template later s = s.replace('{', '{{') s = s.replace('}', '}}') return s def linear_format(s, **kwargs): """ Perform str.format-like substitution, except: * The strings substituted must be on lines by themselves. (This line is the "source line".) * If the substitution text is empty, the source line is removed in the output. * If the field is not recognized, the original line is passed unmodified through to the output. * If the substitution text is not empty: * Each line of the substituted text is indented by the indent of the source line. * A newline will be added to the end. """ add, output = text_accumulator() for line in s.split('\n'): indent, curly, trailing = line.partition('{') if not curly: add(line) add('\n') continue name, curly, trailing = trailing.partition('}') if not curly or name not in kwargs: add(line) add('\n') continue if trailing: fail("Text found after {" + name + "} block marker! It must be on a line by itself.") if indent.strip(): fail("Non-whitespace characters found before {" + name + "} block marker! It must be on a line by itself.") value = kwargs[name] if not value: continue value = textwrap.indent(rstrip_lines(value), indent) add(value) add('\n') return output()[:-1] def indent_all_lines(s, prefix): """ Returns 's', with 'prefix' prepended to all lines. If the last line is empty, prefix is not prepended to it. (If s is blank, returns s unchanged.) (textwrap.indent only adds to non-blank lines.) """ split = s.split('\n') last = split.pop() final = [] for line in split: final.append(prefix) final.append(line) final.append('\n') if last: final.append(prefix) final.append(last) return ''.join(final) def suffix_all_lines(s, suffix): """ Returns 's', with 'suffix' appended to all lines. If the last line is empty, suffix is not appended to it. (If s is blank, returns s unchanged.) """ split = s.split('\n') last = split.pop() final = [] for line in split: final.append(line) final.append(suffix) final.append('\n') if last: final.append(last) final.append(suffix) return ''.join(final) def version_splitter(s): """Splits a version string into a tuple of integers. The following ASCII characters are allowed, and employ the following conversions: a -> -3 b -> -2 c -> -1 (This permits Python-style version strings such as "1.4b3".) """ version = [] accumulator = [] def flush(): if not accumulator: raise ValueError('Unsupported version string: ' + repr(s)) version.append(int(''.join(accumulator))) accumulator.clear() for c in s: if c.isdigit(): accumulator.append(c) elif c == '.': flush() elif c in 'abc': flush() version.append('abc'.index(c) - 3) else: raise ValueError('Illegal character ' + repr(c) + ' in version string ' + repr(s)) flush() return tuple(version) def version_comparitor(version1, version2): iterator = itertools.zip_longest(version_splitter(version1), version_splitter(version2), fillvalue=0) for i, (a, b) in enumerate(iterator): if a < b: return -1 if a > b: return 1 return 0 class CRenderData: def __init__(self): # The C statements to declare variables. # Should be full lines with \n eol characters. self.declarations = [] # The C statements required to initialize the variables before the parse call. # Should be full lines with \n eol characters. self.initializers = [] # The C statements needed to dynamically modify the values # parsed by the parse call, before calling the impl. self.modifications = [] # The entries for the "keywords" array for PyArg_ParseTuple. # Should be individual strings representing the names. self.keywords = [] # The "format units" for PyArg_ParseTuple. # Should be individual strings that will get self.format_units = [] # The varargs arguments for PyArg_ParseTuple. self.parse_arguments = [] # The parameter declarations for the impl function. self.impl_parameters = [] # The arguments to the impl function at the time it's called. self.impl_arguments = [] # For return converters: the name of the variable that # should receive the value returned by the impl. self.return_value = "return_value" # For return converters: the code to convert the return # value from the parse function. This is also where # you should check the _return_value for errors, and # "goto exit" if there are any. self.return_conversion = [] # The C statements required to clean up after the impl call. self.cleanup = [] class FormatCounterFormatter(string.Formatter): """ This counts how many instances of each formatter "replacement string" appear in the format string. e.g. after evaluating "string {a}, {b}, {c}, {a}" the counts dict would now look like {'a': 2, 'b': 1, 'c': 1} """ def __init__(self): self.counts = collections.Counter() def get_value(self, key, args, kwargs): self.counts[key] += 1 return '' class Language(metaclass=abc.ABCMeta): start_line = "" body_prefix = "" stop_line = "" checksum_line = "" def __init__(self, filename): pass @abc.abstractmethod def render(self, clinic, signatures): pass def parse_line(self, line): pass def validate(self): def assert_only_one(attr, *additional_fields): """ Ensures that the string found at getattr(self, attr) contains exactly one formatter replacement string for each valid field. The list of valid fields is ['dsl_name'] extended by additional_fields. e.g. self.fmt = "{dsl_name} {a} {b}" # this passes self.assert_only_one('fmt', 'a', 'b') # this fails, the format string has a {b} in it self.assert_only_one('fmt', 'a') # this fails, the format string doesn't have a {c} in it self.assert_only_one('fmt', 'a', 'b', 'c') # this fails, the format string has two {a}s in it, # it must contain exactly one self.fmt2 = '{dsl_name} {a} {a}' self.assert_only_one('fmt2', 'a') """ fields = ['dsl_name'] fields.extend(additional_fields) line = getattr(self, attr) fcf = FormatCounterFormatter() fcf.format(line) def local_fail(should_be_there_but_isnt): if should_be_there_but_isnt: fail("{} {} must contain {{{}}} exactly once!".format( self.__class__.__name__, attr, name)) else: fail("{} {} must not contain {{{}}}!".format( self.__class__.__name__, attr, name)) for name, count in fcf.counts.items(): if name in fields: if count > 1: local_fail(True) else: local_fail(False) for name in fields: if fcf.counts.get(name) != 1: local_fail(True) assert_only_one('start_line') assert_only_one('stop_line') field = "arguments" if "{arguments}" in self.checksum_line else "checksum" assert_only_one('checksum_line', field) class PythonLanguage(Language): language = 'Python' start_line = "#/*[{dsl_name} input]" body_prefix = "#" stop_line = "#[{dsl_name} start generated code]*/" checksum_line = "#/*[{dsl_name} end generated code: {arguments}]*/" def permute_left_option_groups(l): """ Given [1, 2, 3], should yield: () (3,) (2, 3) (1, 2, 3) """ yield tuple() accumulator = [] for group in reversed(l): accumulator = list(group) + accumulator yield tuple(accumulator) def permute_right_option_groups(l): """ Given [1, 2, 3], should yield: () (1,) (1, 2) (1, 2, 3) """ yield tuple() accumulator = [] for group in l: accumulator.extend(group) yield tuple(accumulator) def permute_optional_groups(left, required, right): """ Generator function that computes the set of acceptable argument lists for the provided iterables of argument groups. (Actually it generates a tuple of tuples.) Algorithm: prefer left options over right options. If required is empty, left must also be empty. """ required = tuple(required) result = [] if not required: assert not left accumulator = [] counts = set() for r in permute_right_option_groups(right): for l in permute_left_option_groups(left): t = l + required + r if len(t) in counts: continue counts.add(len(t)) accumulator.append(t) accumulator.sort(key=len) return tuple(accumulator) def strip_leading_and_trailing_blank_lines(s): lines = s.rstrip().split('\n') while lines: line = lines[0] if line.strip(): break del lines[0] return '\n'.join(lines) @functools.lru_cache() def normalize_snippet(s, *, indent=0): """ Reformats s: * removes leading and trailing blank lines * ensures that it does not end with a newline * dedents so the first nonwhite character on any line is at column "indent" """ s = strip_leading_and_trailing_blank_lines(s) s = textwrap.dedent(s) if indent: s = textwrap.indent(s, ' ' * indent) return s def wrap_declarations(text, length=78): """ A simple-minded text wrapper for C function declarations. It views a declaration line as looking like this: xxxxxxxx(xxxxxxxxx,xxxxxxxxx) If called with length=30, it would wrap that line into xxxxxxxx(xxxxxxxxx, xxxxxxxxx) (If the declaration has zero or one parameters, this function won't wrap it.) If this doesn't work properly, it's probably better to start from scratch with a more sophisticated algorithm, rather than try and improve/debug this dumb little function. """ lines = [] for line in text.split('\n'): prefix, _, after_l_paren = line.partition('(') if not after_l_paren: lines.append(line) continue parameters, _, after_r_paren = after_l_paren.partition(')') if not _: lines.append(line) continue if ',' not in parameters: lines.append(line) continue parameters = [x.strip() + ", " for x in parameters.split(',')] prefix += "(" if len(prefix) < length: spaces = " " * len(prefix) else: spaces = " " * 4 while parameters: line = prefix first = True while parameters: if (not first and (len(line) + len(parameters[0]) > length)): break line += parameters.pop(0) first = False if not parameters: line = line.rstrip(", ") + ")" + after_r_paren lines.append(line.rstrip()) prefix = spaces return "\n".join(lines) class CLanguage(Language): body_prefix = "#" language = 'C' start_line = "/*[{dsl_name} input]" body_prefix = "" stop_line = "[{dsl_name} start generated code]*/" checksum_line = "/*[{dsl_name} end generated code: {arguments}]*/" def __init__(self, filename): super().__init__(filename) self.cpp = cpp.Monitor(filename) self.cpp.fail = fail def parse_line(self, line): self.cpp.writeline(line) def render(self, clinic, signatures): function = None for o in signatures: if isinstance(o, Function): if function: fail("You may specify at most one function per block.\nFound a block containing at least two:\n\t" + repr(function) + " and " + repr(o)) function = o return self.render_function(clinic, function) def docstring_for_c_string(self, f): text, add, output = _text_accumulator() # turn docstring into a properly quoted C string for line in f.docstring.split('\n'): add('"') add(quoted_for_c_string(line)) add('\\n"\n') if text[-2] == sig_end_marker: # If we only have a signature, add the blank line that the # __text_signature__ getter expects to be there. add('"\\n"') else: text.pop() add('"') return ''.join(text) def output_templates(self, f): parameters = list(f.parameters.values()) assert parameters assert isinstance(parameters[0].converter, self_converter) del parameters[0] converters = [p.converter for p in parameters] has_option_groups = parameters and (parameters[0].group or parameters[-1].group) default_return_converter = (not f.return_converter or f.return_converter.type == 'PyObject *') positional = parameters and parameters[-1].is_positional_only() all_boring_objects = False # yes, this will be false if there are 0 parameters, it's fine first_optional = len(parameters) for i, p in enumerate(parameters): c = p.converter if type(c) != object_converter: break if c.format_unit != 'O': break if p.default is not unspecified: first_optional = min(first_optional, i) else: all_boring_objects = True new_or_init = f.kind in (METHOD_NEW, METHOD_INIT) meth_o = (len(parameters) == 1 and parameters[0].is_positional_only() and not converters[0].is_optional() and not new_or_init) # we have to set these things before we're done: # # docstring_prototype # docstring_definition # impl_prototype # methoddef_define # parser_prototype # parser_definition # impl_definition # cpp_if # cpp_endif # methoddef_ifndef return_value_declaration = "PyObject *return_value = NULL;" methoddef_define = normalize_snippet(""" #define {methoddef_name} \\ {{"{name}", {methoddef_cast}{c_basename}, {methoddef_flags}, {c_basename}__doc__}}, """) if new_or_init and not f.docstring: docstring_prototype = docstring_definition = '' else: docstring_prototype = normalize_snippet(""" PyDoc_VAR({c_basename}__doc__); """) docstring_definition = normalize_snippet(""" PyDoc_STRVAR({c_basename}__doc__, {docstring}); """) impl_definition = normalize_snippet(""" static {impl_return_type} {c_basename}_impl({impl_parameters}) """) impl_prototype = parser_prototype = parser_definition = None parser_prototype_keyword = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs) """) parser_prototype_varargs = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *args) """) parser_prototype_fastcall = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs) """) parser_prototype_fastcall_keywords = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) """) # parser_body_fields remembers the fields passed in to the # previous call to parser_body. this is used for an awful hack. parser_body_fields = () def parser_body(prototype, *fields): nonlocal parser_body_fields add, output = text_accumulator() add(prototype) parser_body_fields = fields fields = list(fields) fields.insert(0, normalize_snippet(""" {{ {return_value_declaration} {declarations} {initializers} """) + "\n") # just imagine--your code is here in the middle fields.append(normalize_snippet(""" {modifications} {return_value} = {c_basename}_impl({impl_arguments}); {return_conversion} {exit_label} {cleanup} return return_value; }} """)) for field in fields: add('\n') add(field) return output() def insert_keywords(s): return linear_format(s, declarations= 'static const char * const _keywords[] = {{{keywords}, NULL}};\n' 'static _PyArg_Parser _parser = {{"{format_units}:{name}", _keywords, 0}};\n' '{declarations}') if not parameters: # no parameters, METH_NOARGS flags = "METH_NOARGS" parser_prototype = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *Py_UNUSED(ignored)) """) parser_definition = parser_prototype if default_return_converter: parser_definition = parser_prototype + '\n' + normalize_snippet(""" {{ return {c_basename}_impl({impl_arguments}); }} """) else: parser_definition = parser_body(parser_prototype) elif meth_o: flags = "METH_O" if (isinstance(converters[0], object_converter) and converters[0].format_unit == 'O'): meth_o_prototype = normalize_snippet(""" static PyObject * {c_basename}({impl_parameters}) """) if default_return_converter: # maps perfectly to METH_O, doesn't need a return converter. # so we skip making a parse function # and call directly into the impl function. impl_prototype = parser_prototype = parser_definition = '' impl_definition = meth_o_prototype else: # SLIGHT HACK # use impl_parameters for the parser here! parser_prototype = meth_o_prototype parser_definition = parser_body(parser_prototype) else: argname = 'arg' if parameters[0].name == argname: argname += '_' parser_prototype = normalize_snippet(""" static PyObject * {c_basename}({self_type}{self_name}, PyObject *%s) """ % argname) parser_definition = parser_body(parser_prototype, normalize_snippet(""" if (!PyArg_Parse(%s, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """ % argname, indent=4)) elif has_option_groups: # positional parameters with option groups # (we have to generate lots of PyArg_ParseTuple calls # in a big switch statement) flags = "METH_VARARGS" parser_prototype = parser_prototype_varargs parser_definition = parser_body(parser_prototype, ' {option_group_parsing}') elif positional and all_boring_objects: # positional-only, but no option groups, # and nothing but normal objects: # PyArg_UnpackTuple! if not new_or_init: flags = "METH_FASTCALL" parser_prototype = parser_prototype_fastcall parser_definition = parser_body(parser_prototype, normalize_snippet(""" if (!_PyArg_UnpackStack(args, nargs, "{name}", {unpack_min}, {unpack_max}, {parse_arguments})) {{ goto exit; }} """, indent=4)) else: flags = "METH_VARARGS" parser_prototype = parser_prototype_varargs parser_definition = parser_body(parser_prototype, normalize_snippet(""" if (!PyArg_UnpackTuple(args, "{name}", {unpack_min}, {unpack_max}, {parse_arguments})) {{ goto exit; }} """, indent=4)) elif positional: if not new_or_init: # positional-only, but no option groups # we only need one call to _PyArg_ParseStack flags = "METH_FASTCALL" parser_prototype = parser_prototype_fastcall parser_definition = parser_body(parser_prototype, normalize_snippet(""" if (!_PyArg_ParseStack(args, nargs, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """, indent=4)) else: # positional-only, but no option groups # we only need one call to PyArg_ParseTuple flags = "METH_VARARGS" parser_prototype = parser_prototype_varargs parser_definition = parser_body(parser_prototype, normalize_snippet(""" if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} """, indent=4)) elif not new_or_init: flags = "METH_FASTCALL|METH_KEYWORDS" parser_prototype = parser_prototype_fastcall_keywords body = normalize_snippet(""" if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser, {parse_arguments})) {{ goto exit; }} """, indent=4) parser_definition = parser_body(parser_prototype, body) parser_definition = insert_keywords(parser_definition) else: # positional-or-keyword arguments flags = "METH_VARARGS|METH_KEYWORDS" parser_prototype = parser_prototype_keyword body = normalize_snippet(""" if (!_PyArg_ParseTupleAndKeywordsFast(args, kwargs, &_parser, {parse_arguments})) {{ goto exit; }} """, indent=4) parser_definition = parser_body(parser_prototype, body) parser_definition = insert_keywords(parser_definition) if new_or_init: methoddef_define = '' if f.kind == METHOD_NEW: parser_prototype = parser_prototype_keyword else: return_value_declaration = "int return_value = -1;" parser_prototype = normalize_snippet(""" static int {c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs) """) fields = list(parser_body_fields) parses_positional = 'METH_NOARGS' not in flags parses_keywords = 'METH_KEYWORDS' in flags if parses_keywords: assert parses_positional if not parses_keywords: fields.insert(0, normalize_snippet(""" if ({self_type_check}!_PyArg_NoKeywords("{name}", kwargs)) {{ goto exit; }} """, indent=4)) if not parses_positional: fields.insert(0, normalize_snippet(""" if ({self_type_check}!_PyArg_NoPositional("{name}", args)) {{ goto exit; }} """, indent=4)) parser_definition = parser_body(parser_prototype, *fields) if parses_keywords: parser_definition = insert_keywords(parser_definition) if flags in ('METH_NOARGS', 'METH_O', 'METH_VARARGS'): methoddef_cast = "(PyCFunction)" else: methoddef_cast = "(PyCFunction)(void(*)(void))" if f.methoddef_flags: flags += '|' + f.methoddef_flags methoddef_define = methoddef_define.replace('{methoddef_flags}', flags) methoddef_define = methoddef_define.replace('{methoddef_cast}', methoddef_cast) methoddef_ifndef = '' conditional = self.cpp.condition() if not conditional: cpp_if = cpp_endif = '' else: cpp_if = "#if " + conditional cpp_endif = "#endif /* " + conditional + " */" if methoddef_define and f.full_name not in clinic.ifndef_symbols: clinic.ifndef_symbols.add(f.full_name) methoddef_ifndef = normalize_snippet(""" #ifndef {methoddef_name} #define {methoddef_name} #endif /* !defined({methoddef_name}) */ """) # add ';' to the end of parser_prototype and impl_prototype # (they mustn't be None, but they could be an empty string.) assert parser_prototype is not None if parser_prototype: assert not parser_prototype.endswith(';') parser_prototype += ';' if impl_prototype is None: impl_prototype = impl_definition if impl_prototype: impl_prototype += ";" parser_definition = parser_definition.replace("{return_value_declaration}", return_value_declaration) d = { "docstring_prototype" : docstring_prototype, "docstring_definition" : docstring_definition, "impl_prototype" : impl_prototype, "methoddef_define" : methoddef_define, "parser_prototype" : parser_prototype, "parser_definition" : parser_definition, "impl_definition" : impl_definition, "cpp_if" : cpp_if, "cpp_endif" : cpp_endif, "methoddef_ifndef" : methoddef_ifndef, } # make sure we didn't forget to assign something, # and wrap each non-empty value in \n's d2 = {} for name, value in d.items(): assert value is not None, "got a None value for template " + repr(name) if value: value = '\n' + value + '\n' d2[name] = value return d2 @staticmethod def group_to_variable_name(group): adjective = "left_" if group < 0 else "right_" return "group_" + adjective + str(abs(group)) def render_option_group_parsing(self, f, template_dict): # positional only, grouped, optional arguments! # can be optional on the left or right. # here's an example: # # [ [ [ A1 A2 ] B1 B2 B3 ] C1 C2 ] D1 D2 D3 [ E1 E2 E3 [ F1 F2 F3 ] ] # # Here group D are required, and all other groups are optional. # (Group D's "group" is actually None.) # We can figure out which sets of arguments we have based on # how many arguments are in the tuple. # # Note that you need to count up on both sides. For example, # you could have groups C+D, or C+D+E, or C+D+E+F. # # What if the number of arguments leads us to an ambiguous result? # Clinic prefers groups on the left. So in the above example, # five arguments would map to B+C, not C+D. add, output = text_accumulator() parameters = list(f.parameters.values()) if isinstance(parameters[0].converter, self_converter): del parameters[0] groups = [] group = None left = [] right = [] required = [] last = unspecified for p in parameters: group_id = p.group if group_id != last: last = group_id group = [] if group_id < 0: left.append(group) elif group_id == 0: group = required else: right.append(group) group.append(p) count_min = sys.maxsize count_max = -1 add("switch (PyTuple_GET_SIZE(args)) {\n") for subset in permute_optional_groups(left, required, right): count = len(subset) count_min = min(count_min, count) count_max = max(count_max, count) if count == 0: add(""" case 0: break; """) continue group_ids = {p.group for p in subset} # eliminate duplicates d = {} d['count'] = count d['name'] = f.name d['format_units'] = "".join(p.converter.format_unit for p in subset) parse_arguments = [] for p in subset: p.converter.parse_argument(parse_arguments) d['parse_arguments'] = ", ".join(parse_arguments) group_ids.discard(0) lines = [self.group_to_variable_name(g) + " = 1;" for g in group_ids] lines = "\n".join(lines) s = """ case {count}: if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) {{ goto exit; }} {group_booleans} break; """[1:] s = linear_format(s, group_booleans=lines) s = s.format_map(d) add(s) add(" default:\n") s = ' PyErr_SetString(PyExc_TypeError, "{} requires {} to {} arguments");\n' add(s.format(f.full_name, count_min, count_max)) add(' goto exit;\n') add("}") template_dict['option_group_parsing'] = format_escape(output()) def render_function(self, clinic, f): if not f: return "" add, output = text_accumulator() data = CRenderData() assert f.parameters, "We should always have a 'self' at this point!" parameters = f.render_parameters converters = [p.converter for p in parameters] templates = self.output_templates(f) f_self = parameters[0] selfless = parameters[1:] assert isinstance(f_self.converter, self_converter), "No self parameter in " + repr(f.full_name) + "!" last_group = 0 first_optional = len(selfless) positional = selfless and selfless[-1].is_positional_only() new_or_init = f.kind in (METHOD_NEW, METHOD_INIT) default_return_converter = (not f.return_converter or f.return_converter.type == 'PyObject *') has_option_groups = False # offset i by -1 because first_optional needs to ignore self for i, p in enumerate(parameters, -1): c = p.converter if (i != -1) and (p.default is not unspecified): first_optional = min(first_optional, i) # insert group variable group = p.group if last_group != group: last_group = group if group: group_name = self.group_to_variable_name(group) data.impl_arguments.append(group_name) data.declarations.append("int " + group_name + " = 0;") data.impl_parameters.append("int " + group_name) has_option_groups = True c.render(p, data) if has_option_groups and (not positional): fail("You cannot use optional groups ('[' and ']')\nunless all parameters are positional-only ('/').") # HACK # when we're METH_O, but have a custom return converter, # we use "impl_parameters" for the parsing function # because that works better. but that means we must # suppress actually declaring the impl's parameters # as variables in the parsing function. but since it's # METH_O, we have exactly one anyway, so we know exactly # where it is. if ("METH_O" in templates['methoddef_define'] and '{impl_parameters}' in templates['parser_prototype']): data.declarations.pop(0) template_dict = {} full_name = f.full_name template_dict['full_name'] = full_name if new_or_init: name = f.cls.name else: name = f.name template_dict['name'] = name if f.c_basename: c_basename = f.c_basename else: fields = full_name.split(".") if fields[-1] == '__new__': fields.pop() c_basename = "_".join(fields) template_dict['c_basename'] = c_basename methoddef_name = "{}_METHODDEF".format(c_basename.upper()) template_dict['methoddef_name'] = methoddef_name template_dict['docstring'] = self.docstring_for_c_string(f) template_dict['self_name'] = template_dict['self_type'] = template_dict['self_type_check'] = '' f_self.converter.set_template_dict(template_dict) f.return_converter.render(f, data) template_dict['impl_return_type'] = f.return_converter.type template_dict['declarations'] = format_escape("\n".join(data.declarations)) template_dict['initializers'] = "\n\n".join(data.initializers) template_dict['modifications'] = '\n\n'.join(data.modifications) template_dict['keywords'] = '"' + '", "'.join(data.keywords) + '"' template_dict['format_units'] = ''.join(data.format_units) template_dict['parse_arguments'] = ', '.join(data.parse_arguments) template_dict['impl_parameters'] = ", ".join(data.impl_parameters) template_dict['impl_arguments'] = ", ".join(data.impl_arguments) template_dict['return_conversion'] = format_escape("".join(data.return_conversion).rstrip()) template_dict['cleanup'] = format_escape("".join(data.cleanup)) template_dict['return_value'] = data.return_value # used by unpack tuple code generator ignore_self = -1 if isinstance(converters[0], self_converter) else 0 unpack_min = first_optional unpack_max = len(selfless) template_dict['unpack_min'] = str(unpack_min) template_dict['unpack_max'] = str(unpack_max) if has_option_groups: self.render_option_group_parsing(f, template_dict) # buffers, not destination for name, destination in clinic.destination_buffers.items(): template = templates[name] if has_option_groups: template = linear_format(template, option_group_parsing=template_dict['option_group_parsing']) template = linear_format(template, declarations=template_dict['declarations'], return_conversion=template_dict['return_conversion'], initializers=template_dict['initializers'], modifications=template_dict['modifications'], cleanup=template_dict['cleanup'], ) # Only generate the "exit:" label # if we have any gotos need_exit_label = "goto exit;" in template template = linear_format(template, exit_label="exit:" if need_exit_label else '' ) s = template.format_map(template_dict) # mild hack: # reflow long impl declarations if name in {"impl_prototype", "impl_definition"}: s = wrap_declarations(s) if clinic.line_prefix: s = indent_all_lines(s, clinic.line_prefix) if clinic.line_suffix: s = suffix_all_lines(s, clinic.line_suffix) destination.append(s) return clinic.get_destination('block').dump() @contextlib.contextmanager def OverrideStdioWith(stdout): saved_stdout = sys.stdout sys.stdout = stdout try: yield finally: assert sys.stdout is stdout sys.stdout = saved_stdout def create_regex(before, after, word=True, whole_line=True): """Create an re object for matching marker lines.""" group_re = r"\w+" if word else ".+" pattern = r'{}({}){}' if whole_line: pattern = '^' + pattern + '$' pattern = pattern.format(re.escape(before), group_re, re.escape(after)) return re.compile(pattern) class Block: r""" Represents a single block of text embedded in another file. If dsl_name is None, the block represents verbatim text, raw original text from the file, in which case "input" will be the only non-false member. If dsl_name is not None, the block represents a Clinic block. input is always str, with embedded \n characters. input represents the original text from the file; if it's a Clinic block, it is the original text with the body_prefix and redundant leading whitespace removed. dsl_name is either str or None. If str, it's the text found on the start line of the block between the square brackets. signatures is either list or None. If it's a list, it may only contain clinic.Module, clinic.Class, and clinic.Function objects. At the moment it should contain at most one of each. output is either str or None. If str, it's the output from this block, with embedded '\n' characters. indent is either str or None. It's the leading whitespace that was found on every line of input. (If body_prefix is not empty, this is the indent *after* removing the body_prefix.) preindent is either str or None. It's the whitespace that was found in front of every line of input *before* the "body_prefix" (see the Language object). If body_prefix is empty, preindent must always be empty too. To illustrate indent and preindent: Assume that '_' represents whitespace. If the block processed was in a Python file, and looked like this: ____#/*[python] ____#__for a in range(20): ____#____print(a) ____#[python]*/ "preindent" would be "____" and "indent" would be "__". """ def __init__(self, input, dsl_name=None, signatures=None, output=None, indent='', preindent=''): assert isinstance(input, str) self.input = input self.dsl_name = dsl_name self.signatures = signatures or [] self.output = output self.indent = indent self.preindent = preindent def __repr__(self): dsl_name = self.dsl_name or "text" def summarize(s): s = repr(s) if len(s) > 30: return s[:26] + "..." + s[0] return s return "".join(( "")) class BlockParser: """ Block-oriented parser for Argument Clinic. Iterator, yields Block objects. """ def __init__(self, input, language, *, verify=True): """ "input" should be a str object with embedded \n characters. "language" should be a Language object. """ language.validate() self.input = collections.deque(reversed(input.splitlines(keepends=True))) self.block_start_line_number = self.line_number = 0 self.language = language before, _, after = language.start_line.partition('{dsl_name}') assert _ == '{dsl_name}' self.find_start_re = create_regex(before, after, whole_line=False) self.start_re = create_regex(before, after) self.verify = verify self.last_checksum_re = None self.last_dsl_name = None self.dsl_name = None self.first_block = True def __iter__(self): return self def __next__(self): while True: if not self.input: raise StopIteration if self.dsl_name: return_value = self.parse_clinic_block(self.dsl_name) self.dsl_name = None self.first_block = False return return_value block = self.parse_verbatim_block() if self.first_block and not block.input: continue self.first_block = False return block def is_start_line(self, line): match = self.start_re.match(line.lstrip()) return match.group(1) if match else None def _line(self, lookahead=False): self.line_number += 1 line = self.input.pop() if not lookahead: self.language.parse_line(line) return line def parse_verbatim_block(self): add, output = text_accumulator() self.block_start_line_number = self.line_number while self.input: line = self._line() dsl_name = self.is_start_line(line) if dsl_name: self.dsl_name = dsl_name break add(line) return Block(output()) def parse_clinic_block(self, dsl_name): input_add, input_output = text_accumulator() self.block_start_line_number = self.line_number + 1 stop_line = self.language.stop_line.format(dsl_name=dsl_name) body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) def is_stop_line(line): # make sure to recognize stop line even if it # doesn't end with EOL (it could be the very end of the file) if not line.startswith(stop_line): return False remainder = line[len(stop_line):] return (not remainder) or remainder.isspace() # consume body of program while self.input: line = self._line() if is_stop_line(line) or self.is_start_line(line): break if body_prefix: line = line.lstrip() assert line.startswith(body_prefix) line = line[len(body_prefix):] input_add(line) # consume output and checksum line, if present. if self.last_dsl_name == dsl_name: checksum_re = self.last_checksum_re else: before, _, after = self.language.checksum_line.format(dsl_name=dsl_name, arguments='{arguments}').partition('{arguments}') assert _ == '{arguments}' checksum_re = create_regex(before, after, word=False) self.last_dsl_name = dsl_name self.last_checksum_re = checksum_re # scan forward for checksum line output_add, output_output = text_accumulator() arguments = None while self.input: line = self._line(lookahead=True) match = checksum_re.match(line.lstrip()) arguments = match.group(1) if match else None if arguments: break output_add(line) if self.is_start_line(line): break output = output_output() if arguments: d = {} for field in shlex.split(arguments): name, equals, value = field.partition('=') if not equals: fail("Mangled Argument Clinic marker line: {!r}".format(line)) d[name.strip()] = value.strip() if self.verify: if 'input' in d: checksum = d['output'] input_checksum = d['input'] else: checksum = d['checksum'] input_checksum = None computed = compute_checksum(output, len(checksum)) if checksum != computed: fail("Checksum mismatch!\nExpected: {}\nComputed: {}\n" "Suggested fix: remove all generated code including " "the end marker,\n" "or use the '-f' option." .format(checksum, computed)) else: # put back output output_lines = output.splitlines(keepends=True) self.line_number -= len(output_lines) self.input.extend(reversed(output_lines)) output = None return Block(input_output(), dsl_name, output=output) class BlockPrinter: def __init__(self, language, f=None): self.language = language self.f = f or io.StringIO() def print_block(self, block): input = block.input output = block.output dsl_name = block.dsl_name write = self.f.write assert not ((dsl_name == None) ^ (output == None)), "you must specify dsl_name and output together, dsl_name " + repr(dsl_name) if not dsl_name: write(input) return write(self.language.start_line.format(dsl_name=dsl_name)) write("\n") body_prefix = self.language.body_prefix.format(dsl_name=dsl_name) if not body_prefix: write(input) else: for line in input.split('\n'): write(body_prefix) write(line) write("\n") write(self.language.stop_line.format(dsl_name=dsl_name)) write("\n") input = ''.join(block.input) output = ''.join(block.output) if output: if not output.endswith('\n'): output += '\n' write(output) arguments="output={} input={}".format(compute_checksum(output, 16), compute_checksum(input, 16)) write(self.language.checksum_line.format(dsl_name=dsl_name, arguments=arguments)) write("\n") def write(self, text): self.f.write(text) class BufferSeries: """ Behaves like a "defaultlist". When you ask for an index that doesn't exist yet, the object grows the list until that item exists. So o[n] will always work. Supports negative indices for actual items. e.g. o[-1] is an element immediately preceding o[0]. """ def __init__(self): self._start = 0 self._array = [] self._constructor = _text_accumulator def __getitem__(self, i): i -= self._start if i < 0: self._start += i prefix = [self._constructor() for x in range(-i)] self._array = prefix + self._array i = 0 while i >= len(self._array): self._array.append(self._constructor()) return self._array[i] def clear(self): for ta in self._array: ta._text.clear() def dump(self): texts = [ta.output() for ta in self._array] return "".join(texts) class Destination: def __init__(self, name, type, clinic, *args): self.name = name self.type = type self.clinic = clinic valid_types = ('buffer', 'file', 'suppress') if type not in valid_types: fail("Invalid destination type " + repr(type) + " for " + name + " , must be " + ', '.join(valid_types)) extra_arguments = 1 if type == "file" else 0 if len(args) < extra_arguments: fail("Not enough arguments for destination " + name + " new " + type) if len(args) > extra_arguments: fail("Too many arguments for destination " + name + " new " + type) if type =='file': d = {} filename = clinic.filename d['path'] = filename dirname, basename = os.path.split(filename) if not dirname: dirname = '.' d['dirname'] = dirname d['basename'] = basename d['basename_root'], d['basename_extension'] = os.path.splitext(filename) self.filename = args[0].format_map(d) self.buffers = BufferSeries() def __repr__(self): if self.type == 'file': file_repr = " " + repr(self.filename) else: file_repr = '' return "".join(("")) def clear(self): if self.type != 'buffer': fail("Can't clear destination" + self.name + " , it's not of type buffer") self.buffers.clear() def dump(self): return self.buffers.dump() # maps strings to Language objects. # "languages" maps the name of the language ("C", "Python"). # "extensions" maps the file extension ("c", "py"). languages = { 'C': CLanguage, 'Python': PythonLanguage } extensions = { name: CLanguage for name in "c cc cpp cxx h hh hpp hxx".split() } extensions['py'] = PythonLanguage # maps strings to callables. # these callables must be of the form: # def foo(name, default, *, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CConverter object. # The callable should not call builtins.print. converters = {} # maps strings to callables. # these callables follow the same rules as those for "converters" above. # note however that they will never be called with keyword-only parameters. legacy_converters = {} # maps strings to callables. # these callables must be of the form: # def foo(*, ...) # The callable may have any number of keyword-only parameters. # The callable must return a CConverter object. # The callable should not call builtins.print. return_converters = {} clinic = None class Clinic: presets_text = """ preset block everything block methoddef_ifndef buffer 1 docstring_prototype suppress parser_prototype suppress cpp_if suppress cpp_endif suppress preset original everything block methoddef_ifndef buffer 1 docstring_prototype suppress parser_prototype suppress cpp_if suppress cpp_endif suppress preset file everything file methoddef_ifndef file 1 docstring_prototype suppress parser_prototype suppress impl_definition block preset buffer everything buffer methoddef_ifndef buffer 1 impl_definition block docstring_prototype suppress impl_prototype suppress parser_prototype suppress preset partial-buffer everything buffer methoddef_ifndef buffer 1 docstring_prototype block impl_prototype suppress methoddef_define block parser_prototype block impl_definition block """ def __init__(self, language, printer=None, *, force=False, verify=True, filename=None): # maps strings to Parser objects. # (instantiated from the "parsers" global.) self.parsers = {} self.language = language if printer: fail("Custom printers are broken right now") self.printer = printer or BlockPrinter(language) self.verify = verify self.force = force self.filename = filename self.modules = collections.OrderedDict() self.classes = collections.OrderedDict() self.functions = [] self.line_prefix = self.line_suffix = '' self.destinations = {} self.add_destination("block", "buffer") self.add_destination("suppress", "suppress") self.add_destination("buffer", "buffer") if filename: self.add_destination("file", "file", "{dirname}/clinic/{basename}.h") d = self.get_destination_buffer self.destination_buffers = collections.OrderedDict(( ('cpp_if', d('file')), ('docstring_prototype', d('suppress')), ('docstring_definition', d('file')), ('methoddef_define', d('file')), ('impl_prototype', d('file')), ('parser_prototype', d('suppress')), ('parser_definition', d('file')), ('cpp_endif', d('file')), ('methoddef_ifndef', d('file', 1)), ('impl_definition', d('block')), )) self.destination_buffers_stack = [] self.ifndef_symbols = set() self.presets = {} preset = None for line in self.presets_text.strip().split('\n'): line = line.strip() if not line: continue name, value, *options = line.split() if name == 'preset': self.presets[value] = preset = collections.OrderedDict() continue if len(options): index = int(options[0]) else: index = 0 buffer = self.get_destination_buffer(value, index) if name == 'everything': for name in self.destination_buffers: preset[name] = buffer continue assert name in self.destination_buffers preset[name] = buffer global clinic clinic = self def add_destination(self, name, type, *args): if name in self.destinations: fail("Destination already exists: " + repr(name)) self.destinations[name] = Destination(name, type, self, *args) def get_destination(self, name): d = self.destinations.get(name) if not d: fail("Destination does not exist: " + repr(name)) return d def get_destination_buffer(self, name, item=0): d = self.get_destination(name) return d.buffers[item] def parse(self, input): printer = self.printer self.block_parser = BlockParser(input, self.language, verify=self.verify) for block in self.block_parser: dsl_name = block.dsl_name if dsl_name: if dsl_name not in self.parsers: assert dsl_name in parsers, "No parser to handle {!r} block.".format(dsl_name) self.parsers[dsl_name] = parsers[dsl_name](self) parser = self.parsers[dsl_name] try: parser.parse(block) except Exception: fail('Exception raised during parsing:\n' + traceback.format_exc().rstrip()) printer.print_block(block) second_pass_replacements = {} # these are destinations not buffers for name, destination in self.destinations.items(): if destination.type == 'suppress': continue output = destination.dump() if output: block = Block("", dsl_name="clinic", output=output) if destination.type == 'buffer': block.input = "dump " + name + "\n" warn("Destination buffer " + repr(name) + " not empty at end of file, emptying.") printer.write("\n") printer.print_block(block) continue if destination.type == 'file': try: dirname = os.path.dirname(destination.filename) try: os.makedirs(dirname) except FileExistsError: if not os.path.isdir(dirname): fail("Can't write to destination {}, " "can't make directory {}!".format( destination.filename, dirname)) if self.verify: with open(destination.filename, "rt") as f: parser_2 = BlockParser(f.read(), language=self.language) blocks = list(parser_2) if (len(blocks) != 1) or (blocks[0].input != 'preserve\n'): fail("Modified destination file " + repr(destination.filename) + ", not overwriting!") except FileNotFoundError: pass block.input = 'preserve\n' printer_2 = BlockPrinter(self.language) printer_2.print_block(block) with open(destination.filename, "wt") as f: f.write(printer_2.f.getvalue()) continue text = printer.f.getvalue() if second_pass_replacements: printer_2 = BlockPrinter(self.language) parser_2 = BlockParser(text, self.language) changed = False for block in parser_2: if block.dsl_name: for id, replacement in second_pass_replacements.items(): if id in block.output: changed = True block.output = block.output.replace(id, replacement) printer_2.print_block(block) if changed: text = printer_2.f.getvalue() return text def _module_and_class(self, fields): """ fields should be an iterable of field names. returns a tuple of (module, class). the module object could actually be self (a clinic object). this function is only ever used to find the parent of where a new class/module should go. """ in_classes = False parent = module = self cls = None so_far = [] for field in fields: so_far.append(field) if not in_classes: child = parent.modules.get(field) if child: parent = module = child continue in_classes = True if not hasattr(parent, 'classes'): return module, cls child = parent.classes.get(field) if not child: fail('Parent class or module ' + '.'.join(so_far) + " does not exist.") cls = parent = child return module, cls def parse_file(filename, *, force=False, verify=True, output=None, encoding='utf-8'): extension = os.path.splitext(filename)[1][1:] if not extension: fail("Can't extract file type for file " + repr(filename)) try: language = extensions[extension](filename) except KeyError: fail("Can't identify file type for file " + repr(filename)) with open(filename, 'r', encoding=encoding) as f: raw = f.read() # exit quickly if there are no clinic markers in the file find_start_re = BlockParser("", language).find_start_re if not find_start_re.search(raw): return clinic = Clinic(language, force=force, verify=verify, filename=filename) cooked = clinic.parse(raw) if (cooked == raw) and not force: return directory = os.path.dirname(filename) or '.' with tempfile.TemporaryDirectory(prefix="clinic", dir=directory) as tmpdir: bytes = cooked.encode(encoding) tmpfilename = os.path.join(tmpdir, os.path.basename(filename)) with open(tmpfilename, "wb") as f: f.write(bytes) os.replace(tmpfilename, output or filename) def compute_checksum(input, length=None): input = input or '' s = hashlib.sha1(input.encode('utf-8')).hexdigest() if length: s = s[:length] return s class PythonParser: def __init__(self, clinic): pass def parse(self, block): s = io.StringIO() with OverrideStdioWith(s): exec(block.input) block.output = s.getvalue() class Module: def __init__(self, name, module=None): self.name = name self.module = self.parent = module self.modules = collections.OrderedDict() self.classes = collections.OrderedDict() self.functions = [] def __repr__(self): return "" class Class: def __init__(self, name, module=None, cls=None, typedef=None, type_object=None): self.name = name self.module = module self.cls = cls self.typedef = typedef self.type_object = type_object self.parent = cls or module self.classes = collections.OrderedDict() self.functions = [] def __repr__(self): return "" unsupported_special_methods = set(""" __abs__ __add__ __and__ __bytes__ __call__ __complex__ __delitem__ __divmod__ __eq__ __float__ __floordiv__ __ge__ __getattr__ __getattribute__ __getitem__ __gt__ __hash__ __iadd__ __iand__ __ifloordiv__ __ilshift__ __imatmul__ __imod__ __imul__ __index__ __int__ __invert__ __ior__ __ipow__ __irshift__ __isub__ __iter__ __itruediv__ __ixor__ __le__ __len__ __lshift__ __lt__ __matmul__ __mod__ __mul__ __neg__ __new__ __next__ __or__ __pos__ __pow__ __radd__ __rand__ __rdivmod__ __repr__ __rfloordiv__ __rlshift__ __rmatmul__ __rmod__ __rmul__ __ror__ __rpow__ __rrshift__ __rshift__ __rsub__ __rtruediv__ __rxor__ __setattr__ __setitem__ __str__ __sub__ __truediv__ __xor__ """.strip().split()) INVALID, CALLABLE, STATIC_METHOD, CLASS_METHOD, METHOD_INIT, METHOD_NEW = """ INVALID, CALLABLE, STATIC_METHOD, CLASS_METHOD, METHOD_INIT, METHOD_NEW """.replace(",", "").strip().split() class Function: """ Mutable duck type for inspect.Function. docstring - a str containing * embedded line breaks * text outdented to the left margin * no trailing whitespace. It will always be true that (not docstring) or ((not docstring[0].isspace()) and (docstring.rstrip() == docstring)) """ def __init__(self, parameters=None, *, name, module, cls=None, c_basename=None, full_name=None, return_converter, return_annotation=_empty, docstring=None, kind=CALLABLE, coexist=False, docstring_only=False): self.parameters = parameters or collections.OrderedDict() self.return_annotation = return_annotation self.name = name self.full_name = full_name self.module = module self.cls = cls self.parent = cls or module self.c_basename = c_basename self.return_converter = return_converter self.docstring = docstring or '' self.kind = kind self.coexist = coexist self.self_converter = None # docstring_only means "don't generate a machine-readable # signature, just a normal docstring". it's True for # functions with optional groups because we can't represent # those accurately with inspect.Signature in 3.4. self.docstring_only = docstring_only self.rendered_parameters = None __render_parameters__ = None @property def render_parameters(self): if not self.__render_parameters__: self.__render_parameters__ = l = [] for p in self.parameters.values(): p = p.copy() p.converter.pre_render() l.append(p) return self.__render_parameters__ @property def methoddef_flags(self): if self.kind in (METHOD_INIT, METHOD_NEW): return None flags = [] if self.kind == CLASS_METHOD: flags.append('METH_CLASS') elif self.kind == STATIC_METHOD: flags.append('METH_STATIC') else: assert self.kind == CALLABLE, "unknown kind: " + repr(self.kind) if self.coexist: flags.append('METH_COEXIST') return '|'.join(flags) def __repr__(self): return '' def copy(self, **overrides): kwargs = { 'name': self.name, 'module': self.module, 'parameters': self.parameters, 'cls': self.cls, 'c_basename': self.c_basename, 'full_name': self.full_name, 'return_converter': self.return_converter, 'return_annotation': self.return_annotation, 'docstring': self.docstring, 'kind': self.kind, 'coexist': self.coexist, 'docstring_only': self.docstring_only, } kwargs.update(overrides) f = Function(**kwargs) parameters = collections.OrderedDict() for name, value in f.parameters.items(): value = value.copy(function=f) parameters[name] = value f.parameters = parameters return f class Parameter: """ Mutable duck type of inspect.Parameter. """ def __init__(self, name, kind, *, default=_empty, function, converter, annotation=_empty, docstring=None, group=0): self.name = name self.kind = kind self.default = default self.function = function self.converter = converter self.annotation = annotation self.docstring = docstring or '' self.group = group def __repr__(self): return '' def is_keyword_only(self): return self.kind == inspect.Parameter.KEYWORD_ONLY def is_positional_only(self): return self.kind == inspect.Parameter.POSITIONAL_ONLY def copy(self, **overrides): kwargs = { 'name': self.name, 'kind': self.kind, 'default':self.default, 'function': self.function, 'converter': self.converter, 'annotation': self.annotation, 'docstring': self.docstring, 'group': self.group, } kwargs.update(overrides) if 'converter' not in overrides: converter = copy.copy(self.converter) converter.function = kwargs['function'] kwargs['converter'] = converter return Parameter(**kwargs) class LandMine: # try to access any def __init__(self, message): self.__message__ = message def __repr__(self): return '" def __getattribute__(self, name): if name in ('__repr__', '__message__'): return super().__getattribute__(name) # raise RuntimeError(repr(name)) fail("Stepped on a land mine, trying to access attribute " + repr(name) + ":\n" + self.__message__) def add_c_converter(f, name=None): if not name: name = f.__name__ if not name.endswith('_converter'): return f name = name[:-len('_converter')] converters[name] = f return f def add_default_legacy_c_converter(cls): # automatically add converter for default format unit # (but without stomping on the existing one if it's already # set, in case you subclass) if ((cls.format_unit not in ('O&', '')) and (cls.format_unit not in legacy_converters)): legacy_converters[cls.format_unit] = cls return cls def add_legacy_c_converter(format_unit, **kwargs): """ Adds a legacy converter. """ def closure(f): if not kwargs: added_f = f else: added_f = functools.partial(f, **kwargs) if format_unit: legacy_converters[format_unit] = added_f return f return closure class CConverterAutoRegister(type): def __init__(cls, name, bases, classdict): add_c_converter(cls) add_default_legacy_c_converter(cls) class CConverter(metaclass=CConverterAutoRegister): """ For the init function, self, name, function, and default must be keyword-or-positional parameters. All other parameters must be keyword-only. """ # The C name to use for this variable. name = None # The Python name to use for this variable. py_name = None # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type = None # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. # Or the magic value "unknown" if this value is a cannot be evaluated # at Argument-Clinic-preprocessing time (but is presumed to be valid # at runtime). default = unspecified # If not None, default must be isinstance() of this type. # (You can also specify a tuple of types.) default_type = None # "default" converted into a C value, as a string. # Or None if there is no default. c_default = None # "default" converted into a Python value, as a string. # Or None if there is no default. py_default = None # The default value used to initialize the C variable when # there is no default, but not specifying a default may # result in an "uninitialized variable" warning. This can # easily happen when using option groups--although # properly-written code won't actually use the variable, # the variable does get passed in to the _impl. (Ah, if # only dataflow analysis could inline the static function!) # # This value is specified as a string. # Every non-abstract subclass should supply a valid value. c_ignored_default = 'NULL' # The C converter *function* to be used, if any. # (If this is not None, format_unit must be 'O&'.) converter = None # Should Argument Clinic add a '&' before the name of # the variable when passing it into the _impl function? impl_by_reference = False # Should Argument Clinic add a '&' before the name of # the variable when passing it into PyArg_ParseTuple (AndKeywords)? parse_by_reference = True ############################################################# ############################################################# ## You shouldn't need to read anything below this point to ## ## write your own converter functions. ## ############################################################# ############################################################# # The "format unit" to specify for this variable when # parsing arguments using PyArg_ParseTuple (AndKeywords). # Custom converters should always use the default value of 'O&'. format_unit = 'O&' # What encoding do we want for this variable? Only used # by format units starting with 'e'. encoding = None # Should this object be required to be a subclass of a specific type? # If not None, should be a string representing a pointer to a # PyTypeObject (e.g. "&PyUnicode_Type"). # Only used by the 'O!' format unit (and the "object" converter). subclass_of = None # Do we want an adjacent '_length' variable for this variable? # Only used by format units ending with '#'. length = False # Should we show this parameter in the generated # __text_signature__? This is *almost* always True. # (It's only False for __new__, __init__, and METH_STATIC functions.) show_in_signature = True # Overrides the name used in a text signature. # The name used for a "self" parameter must be one of # self, type, or module; however users can set their own. # This lets the self_converter overrule the user-settable # name, *just* for the text signature. # Only set by self_converter. signature_name = None # keep in sync with self_converter.__init__! def __init__(self, name, py_name, function, default=unspecified, *, c_default=None, py_default=None, annotation=unspecified, **kwargs): self.name = name self.py_name = py_name if default is not unspecified: if self.default_type and not isinstance(default, (self.default_type, Unknown)): if isinstance(self.default_type, type): types_str = self.default_type.__name__ else: types_str = ', '.join((cls.__name__ for cls in self.default_type)) fail("{}: default value {!r} for field {} is not of type {}".format( self.__class__.__name__, default, name, types_str)) self.default = default if c_default: self.c_default = c_default if py_default: self.py_default = py_default if annotation != unspecified: fail("The 'annotation' parameter is not currently permitted.") # this is deliberate, to prevent you from caching information # about the function in the init. # (that breaks if we get cloned.) # so after this change we will noisily fail. self.function = LandMine("Don't access members of self.function inside converter_init!") self.converter_init(**kwargs) self.function = function def converter_init(self): pass def is_optional(self): return (self.default is not unspecified) def _render_self(self, parameter, data): self.parameter = parameter original_name = self.name name = ensure_legal_c_identifier(original_name) # impl_arguments s = ("&" if self.impl_by_reference else "") + name data.impl_arguments.append(s) if self.length: data.impl_arguments.append(self.length_name()) # impl_parameters data.impl_parameters.append(self.simple_declaration(by_reference=self.impl_by_reference)) if self.length: data.impl_parameters.append("Py_ssize_clean_t " + self.length_name()) def _render_non_self(self, parameter, data): self.parameter = parameter original_name = self.name name = ensure_legal_c_identifier(original_name) # declarations d = self.declaration() data.declarations.append(d) # initializers initializers = self.initialize() if initializers: data.initializers.append('/* initializers for ' + name + ' */\n' + initializers.rstrip()) # modifications modifications = self.modify() if modifications: data.modifications.append('/* modifications for ' + name + ' */\n' + modifications.rstrip()) # keywords if parameter.is_positional_only(): data.keywords.append('') else: data.keywords.append(parameter.name) # format_units if self.is_optional() and '|' not in data.format_units: data.format_units.append('|') if parameter.is_keyword_only() and '$' not in data.format_units: data.format_units.append('$') data.format_units.append(self.format_unit) # parse_arguments self.parse_argument(data.parse_arguments) # cleanup cleanup = self.cleanup() if cleanup: data.cleanup.append('/* Cleanup for ' + name + ' */\n' + cleanup.rstrip() + "\n") def render(self, parameter, data): """ parameter is a clinic.Parameter instance. data is a CRenderData instance. """ self._render_self(parameter, data) self._render_non_self(parameter, data) def length_name(self): """Computes the name of the associated "length" variable.""" if not self.length: return None return ensure_legal_c_identifier(self.name) + "_length" # Why is this one broken out separately? # For "positional-only" function parsing, # which generates a bunch of PyArg_ParseTuple calls. def parse_argument(self, list): assert not (self.converter and self.encoding) if self.format_unit == 'O&': assert self.converter list.append(self.converter) if self.encoding: list.append(c_repr(self.encoding)) elif self.subclass_of: list.append(self.subclass_of) legal_name = ensure_legal_c_identifier(self.name) s = ("&" if self.parse_by_reference else "") + legal_name list.append(s) if self.length: list.append("&" + self.length_name()) # # All the functions after here are intended as extension points. # def simple_declaration(self, by_reference=False): """ Computes the basic declaration of the variable. Used in computing the prototype declaration and the variable declaration. """ prototype = [self.type] if by_reference or not self.type.endswith('*'): prototype.append(" ") if by_reference: prototype.append('*') prototype.append(ensure_legal_c_identifier(self.name)) return "".join(prototype) def declaration(self): """ The C statement to declare this variable. """ declaration = [self.simple_declaration()] default = self.c_default if not default and self.parameter.group: default = self.c_ignored_default if default: declaration.append(" = ") declaration.append(default) declaration.append(";") if self.length: declaration.append('\nPy_ssize_clean_t ') declaration.append(self.length_name()) declaration.append(';') return "".join(declaration) def initialize(self): """ The C statements required to set up this variable before parsing. Returns a string containing this code indented at column 0. If no initialization is necessary, returns an empty string. """ return "" def modify(self): """ The C statements required to modify this variable after parsing. Returns a string containing this code indented at column 0. If no initialization is necessary, returns an empty string. """ return "" def cleanup(self): """ The C statements required to clean up after this variable. Returns a string containing this code indented at column 0. If no cleanup is necessary, returns an empty string. """ return "" def pre_render(self): """ A second initialization function, like converter_init, called just before rendering. You are permitted to examine self.function here. """ pass class bool_converter(CConverter): type = 'int' default_type = bool format_unit = 'p' c_ignored_default = '0' def converter_init(self, *, accept={object}): if accept == {int}: self.format_unit = 'i' elif accept != {object}: fail("bool_converter: illegal 'accept' argument " + repr(accept)) if self.default is not unspecified: self.default = bool(self.default) self.c_default = str(int(self.default)) class char_converter(CConverter): type = 'char' default_type = (bytes, bytearray) format_unit = 'c' c_ignored_default = "'\0'" def converter_init(self): if isinstance(self.default, self.default_type): if len(self.default) != 1: fail("char_converter: illegal default value " + repr(self.default)) self.c_default = repr(bytes(self.default))[1:] if self.c_default == '"\'"': self.c_default = r"'\''" @add_legacy_c_converter('B', bitwise=True) class unsigned_char_converter(CConverter): type = 'unsigned char' default_type = int format_unit = 'b' c_ignored_default = "'\0'" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'B' class byte_converter(unsigned_char_converter): pass class short_converter(CConverter): type = 'short' default_type = int format_unit = 'h' c_ignored_default = "0" class unsigned_short_converter(CConverter): type = 'unsigned short' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'H' else: self.converter = '_PyLong_UnsignedShort_Converter' @add_legacy_c_converter('C', accept={str}) class int_converter(CConverter): type = 'int' default_type = int format_unit = 'i' c_ignored_default = "0" def converter_init(self, *, accept={int}, type=None): if accept == {str}: self.format_unit = 'C' elif accept != {int}: fail("int_converter: illegal 'accept' argument " + repr(accept)) if type != None: self.type = type class unsigned_int_converter(CConverter): type = 'unsigned int' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'I' else: self.converter = '_PyLong_UnsignedInt_Converter' class long_converter(CConverter): type = 'long' default_type = int format_unit = 'l' c_ignored_default = "0" class unsigned_long_converter(CConverter): type = 'unsigned long' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'k' else: self.converter = '_PyLong_UnsignedLong_Converter' class long_long_converter(CConverter): type = 'long long' default_type = int format_unit = 'L' c_ignored_default = "0" class unsigned_long_long_converter(CConverter): type = 'unsigned long long' default_type = int c_ignored_default = "0" def converter_init(self, *, bitwise=False): if bitwise: self.format_unit = 'K' else: self.converter = '_PyLong_UnsignedLongLong_Converter' class Py_ssize_t_converter(CConverter): type = 'Py_ssize_t' c_ignored_default = "0" def converter_init(self, *, accept={int}): if accept == {int}: self.format_unit = 'n' self.default_type = int elif accept == {int, NoneType}: self.converter = '_Py_convert_optional_to_ssize_t' else: fail("Py_ssize_t_converter: illegal 'accept' argument " + repr(accept)) class slice_index_converter(CConverter): type = 'Py_ssize_t' def converter_init(self, *, accept={int, NoneType}): if accept == {int}: self.converter = '_PyEval_SliceIndexNotNone' elif accept == {int, NoneType}: self.converter = '_PyEval_SliceIndex' else: fail("slice_index_converter: illegal 'accept' argument " + repr(accept)) class size_t_converter(CConverter): type = 'size_t' converter = '_PyLong_Size_t_Converter' c_ignored_default = "0" class float_converter(CConverter): type = 'float' default_type = float format_unit = 'f' c_ignored_default = "0.0" class double_converter(CConverter): type = 'double' default_type = float format_unit = 'd' c_ignored_default = "0.0" class Py_complex_converter(CConverter): type = 'Py_complex' default_type = complex format_unit = 'D' c_ignored_default = "{0.0, 0.0}" class object_converter(CConverter): type = 'PyObject *' format_unit = 'O' def converter_init(self, *, converter=None, type=None, subclass_of=None): if converter: if subclass_of: fail("object: Cannot pass in both 'converter' and 'subclass_of'") self.format_unit = 'O&' self.converter = converter elif subclass_of: self.format_unit = 'O!' self.subclass_of = subclass_of if type is not None: self.type = type # # We define three conventions for buffer types in the 'accept' argument: # # buffer : any object supporting the buffer interface # rwbuffer: any object supporting the buffer interface, but must be writeable # robuffer: any object supporting the buffer interface, but must not be writeable # class buffer: pass class rwbuffer: pass class robuffer: pass def str_converter_key(types, encoding, zeroes): return (frozenset(types), bool(encoding), bool(zeroes)) str_converter_argument_map = {} class str_converter(CConverter): type = 'const char *' default_type = (str, Null, NoneType) format_unit = 's' def converter_init(self, *, accept={str}, encoding=None, zeroes=False): key = str_converter_key(accept, encoding, zeroes) format_unit = str_converter_argument_map.get(key) if not format_unit: fail("str_converter: illegal combination of arguments", key) self.format_unit = format_unit self.length = bool(zeroes) if encoding: if self.default not in (Null, None, unspecified): fail("str_converter: Argument Clinic doesn't support default values for encoded strings") self.encoding = encoding self.type = 'char *' # sorry, clinic can't support preallocated buffers # for es# and et# self.c_default = "NULL" def cleanup(self): if self.encoding: name = ensure_legal_c_identifier(self.name) return "".join(["if (", name, ") {\n PyMem_FREE(", name, ");\n}\n"]) # # This is the fourth or fifth rewrite of registering all the # string converter format units. Previous approaches hid # bugs--generally mismatches between the semantics of the format # unit and the arguments necessary to represent those semantics # properly. Hopefully with this approach we'll get it 100% right. # # The r() function (short for "register") both registers the # mapping from arguments to format unit *and* registers the # legacy C converter for that format unit. # def r(format_unit, *, accept, encoding=False, zeroes=False): if not encoding and format_unit != 's': # add the legacy c converters here too. # # note: add_legacy_c_converter can't work for # es, es#, et, or et# # because of their extra encoding argument # # also don't add the converter for 's' because # the metaclass for CConverter adds it for us. kwargs = {} if accept != {str}: kwargs['accept'] = accept if zeroes: kwargs['zeroes'] = True added_f = functools.partial(str_converter, **kwargs) legacy_converters[format_unit] = added_f d = str_converter_argument_map key = str_converter_key(accept, encoding, zeroes) if key in d: sys.exit("Duplicate keys specified for str_converter_argument_map!") d[key] = format_unit r('es', encoding=True, accept={str}) r('es#', encoding=True, zeroes=True, accept={str}) r('et', encoding=True, accept={bytes, bytearray, str}) r('et#', encoding=True, zeroes=True, accept={bytes, bytearray, str}) r('s', accept={str}) r('s#', zeroes=True, accept={robuffer, str}) r('y', accept={robuffer}) r('y#', zeroes=True, accept={robuffer}) r('z', accept={str, NoneType}) r('z#', zeroes=True, accept={robuffer, str, NoneType}) del r class PyBytesObject_converter(CConverter): type = 'PyBytesObject *' format_unit = 'S' # accept = {bytes} class PyByteArrayObject_converter(CConverter): type = 'PyByteArrayObject *' format_unit = 'Y' # accept = {bytearray} class unicode_converter(CConverter): type = 'PyObject *' default_type = (str, Null, NoneType) format_unit = 'U' @add_legacy_c_converter('u#', zeroes=True) @add_legacy_c_converter('Z', accept={str, NoneType}) @add_legacy_c_converter('Z#', accept={str, NoneType}, zeroes=True) class Py_UNICODE_converter(CConverter): type = 'const Py_UNICODE *' default_type = (str, Null, NoneType) format_unit = 'u' def converter_init(self, *, accept={str}, zeroes=False): format_unit = 'Z' if accept=={str, NoneType} else 'u' if zeroes: format_unit += '#' self.length = True self.format_unit = format_unit @add_legacy_c_converter('s*', accept={str, buffer}) @add_legacy_c_converter('z*', accept={str, buffer, NoneType}) @add_legacy_c_converter('w*', accept={rwbuffer}) class Py_buffer_converter(CConverter): type = 'Py_buffer' format_unit = 'y*' impl_by_reference = True c_ignored_default = "{NULL, NULL}" def converter_init(self, *, accept={buffer}): if self.default not in (unspecified, None): fail("The only legal default value for Py_buffer is None.") self.c_default = self.c_ignored_default if accept == {str, buffer, NoneType}: format_unit = 'z*' elif accept == {str, buffer}: format_unit = 's*' elif accept == {buffer}: format_unit = 'y*' elif accept == {rwbuffer}: format_unit = 'w*' else: fail("Py_buffer_converter: illegal combination of arguments") self.format_unit = format_unit def cleanup(self): name = ensure_legal_c_identifier(self.name) return "".join(["if (", name, ".obj) {\n PyBuffer_Release(&", name, ");\n}\n"]) def correct_name_for_self(f): if f.kind in (CALLABLE, METHOD_INIT): if f.cls: return "PyObject *", "self" return "PyObject *", "module" if f.kind == STATIC_METHOD: return "void *", "null" if f.kind in (CLASS_METHOD, METHOD_NEW): return "PyTypeObject *", "type" raise RuntimeError("Unhandled type of function f: " + repr(f.kind)) def required_type_for_self_for_parser(f): type, _ = correct_name_for_self(f) if f.kind in (METHOD_INIT, METHOD_NEW, STATIC_METHOD, CLASS_METHOD): return type return None class self_converter(CConverter): """ A special-case converter: this is the default converter used for "self". """ type = None format_unit = '' def converter_init(self, *, type=None): self.specified_type = type def pre_render(self): f = self.function default_type, default_name = correct_name_for_self(f) self.signature_name = default_name self.type = self.specified_type or self.type or default_type kind = self.function.kind new_or_init = kind in (METHOD_NEW, METHOD_INIT) if (kind == STATIC_METHOD) or new_or_init: self.show_in_signature = False # tp_new (METHOD_NEW) functions are of type newfunc: # typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *); # PyTypeObject is a typedef for struct _typeobject. # # tp_init (METHOD_INIT) functions are of type initproc: # typedef int (*initproc)(PyObject *, PyObject *, PyObject *); # # All other functions generated by Argument Clinic are stored in # PyMethodDef structures, in the ml_meth slot, which is of type PyCFunction: # typedef PyObject *(*PyCFunction)(PyObject *, PyObject *); # However! We habitually cast these functions to PyCFunction, # since functions that accept keyword arguments don't fit this signature # but are stored there anyway. So strict type equality isn't important # for these functions. # # So: # # * The name of the first parameter to the impl and the parsing function will always # be self.name. # # * The type of the first parameter to the impl will always be of self.type. # # * If the function is neither tp_new (METHOD_NEW) nor tp_init (METHOD_INIT): # * The type of the first parameter to the parsing function is also self.type. # This means that if you step into the parsing function, your "self" parameter # is of the correct type, which may make debugging more pleasant. # # * Else if the function is tp_new (METHOD_NEW): # * The type of the first parameter to the parsing function is "PyTypeObject *", # so the type signature of the function call is an exact match. # * If self.type != "PyTypeObject *", we cast the first parameter to self.type # in the impl call. # # * Else if the function is tp_init (METHOD_INIT): # * The type of the first parameter to the parsing function is "PyObject *", # so the type signature of the function call is an exact match. # * If self.type != "PyObject *", we cast the first parameter to self.type # in the impl call. @property def parser_type(self): return required_type_for_self_for_parser(self.function) or self.type def render(self, parameter, data): """ parameter is a clinic.Parameter instance. data is a CRenderData instance. """ if self.function.kind == STATIC_METHOD: return self._render_self(parameter, data) if self.type != self.parser_type: # insert cast to impl_argument[0], aka self. # we know we're in the first slot in all the CRenderData lists, # because we render parameters in order, and self is always first. assert len(data.impl_arguments) == 1 assert data.impl_arguments[0] == self.name data.impl_arguments[0] = '(' + self.type + ")" + data.impl_arguments[0] def set_template_dict(self, template_dict): template_dict['self_name'] = self.name template_dict['self_type'] = self.parser_type kind = self.function.kind cls = self.function.cls if ((kind in (METHOD_NEW, METHOD_INIT)) and cls and cls.typedef): if kind == METHOD_NEW: passed_in_type = self.name else: passed_in_type = 'Py_TYPE({})'.format(self.name) line = '({passed_in_type} == {type_object}) &&\n ' d = { 'type_object': self.function.cls.type_object, 'passed_in_type': passed_in_type } template_dict['self_type_check'] = line.format_map(d) def add_c_return_converter(f, name=None): if not name: name = f.__name__ if not name.endswith('_return_converter'): return f name = name[:-len('_return_converter')] return_converters[name] = f return f class CReturnConverterAutoRegister(type): def __init__(cls, name, bases, classdict): add_c_return_converter(cls) class CReturnConverter(metaclass=CReturnConverterAutoRegister): # The C type to use for this variable. # 'type' should be a Python string specifying the type, e.g. "int". # If this is a pointer type, the type string should end with ' *'. type = 'PyObject *' # The Python default value for this parameter, as a Python value. # Or the magic value "unspecified" if there is no default. default = None def __init__(self, *, py_default=None, **kwargs): self.py_default = py_default try: self.return_converter_init(**kwargs) except TypeError as e: s = ', '.join(name + '=' + repr(value) for name, value in kwargs.items()) sys.exit(self.__class__.__name__ + '(' + s + ')\n' + str(e)) def return_converter_init(self): pass def declare(self, data, name="_return_value"): line = [] add = line.append add(self.type) if not self.type.endswith('*'): add(' ') add(name + ';') data.declarations.append(''.join(line)) data.return_value = name def err_occurred_if(self, expr, data): data.return_conversion.append('if (({}) && PyErr_Occurred()) {{\n goto exit;\n}}\n'.format(expr)) def err_occurred_if_null_pointer(self, variable, data): data.return_conversion.append('if ({} == NULL) {{\n goto exit;\n}}\n'.format(variable)) def render(self, function, data): """ function is a clinic.Function instance. data is a CRenderData instance. """ pass add_c_return_converter(CReturnConverter, 'object') class NoneType_return_converter(CReturnConverter): def render(self, function, data): self.declare(data) data.return_conversion.append(''' if (_return_value != Py_None) { goto exit; } return_value = Py_None; Py_INCREF(Py_None); '''.strip()) class bool_return_converter(CReturnConverter): type = 'int' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == -1", data) data.return_conversion.append('return_value = PyBool_FromLong((long)_return_value);\n') class long_return_converter(CReturnConverter): type = 'long' conversion_fn = 'PyLong_FromLong' cast = '' unsigned_cast = '' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == {}-1".format(self.unsigned_cast), data) data.return_conversion.append( ''.join(('return_value = ', self.conversion_fn, '(', self.cast, '_return_value);\n'))) class int_return_converter(long_return_converter): type = 'int' cast = '(long)' class init_return_converter(long_return_converter): """ Special return converter for __init__ functions. """ type = 'int' cast = '(long)' def render(self, function, data): pass class unsigned_long_return_converter(long_return_converter): type = 'unsigned long' conversion_fn = 'PyLong_FromUnsignedLong' unsigned_cast = '(unsigned long)' class unsigned_int_return_converter(unsigned_long_return_converter): type = 'unsigned int' cast = '(unsigned long)' unsigned_cast = '(unsigned int)' class Py_ssize_t_return_converter(long_return_converter): type = 'Py_ssize_t' conversion_fn = 'PyLong_FromSsize_t' class size_t_return_converter(long_return_converter): type = 'size_t' conversion_fn = 'PyLong_FromSize_t' unsigned_cast = '(size_t)' class double_return_converter(CReturnConverter): type = 'double' cast = '' def render(self, function, data): self.declare(data) self.err_occurred_if("_return_value == -1.0", data) data.return_conversion.append( 'return_value = PyFloat_FromDouble(' + self.cast + '_return_value);\n') class float_return_converter(double_return_converter): type = 'float' cast = '(double)' def eval_ast_expr(node, globals, *, filename='-'): """ Takes an ast.Expr node. Compiles and evaluates it. Returns the result of the expression. globals represents the globals dict the expression should see. (There's no equivalent for "locals" here.) """ if isinstance(node, ast.Expr): node = node.value node = ast.Expression(node) co = compile(node, filename, 'eval') fn = types.FunctionType(co, globals) return fn() class IndentStack: def __init__(self): self.indents = [] self.margin = None def _ensure(self): if not self.indents: fail('IndentStack expected indents, but none are defined.') def measure(self, line): """ Returns the length of the line's margin. """ if '\t' in line: fail('Tab characters are illegal in the Argument Clinic DSL.') stripped = line.lstrip() if not len(stripped): # we can't tell anything from an empty line # so just pretend it's indented like our current indent self._ensure() return self.indents[-1] return len(line) - len(stripped) def infer(self, line): """ Infer what is now the current margin based on this line. Returns: 1 if we have indented (or this is the first margin) 0 if the margin has not changed -N if we have dedented N times """ indent = self.measure(line) margin = ' ' * indent if not self.indents: self.indents.append(indent) self.margin = margin return 1 current = self.indents[-1] if indent == current: return 0 if indent > current: self.indents.append(indent) self.margin = margin return 1 # indent < current if indent not in self.indents: fail("Illegal outdent.") outdent_count = 0 while indent != current: self.indents.pop() current = self.indents[-1] outdent_count -= 1 self.margin = margin return outdent_count @property def depth(self): """ Returns how many margins are currently defined. """ return len(self.indents) def indent(self, line): """ Indents a line by the currently defined margin. """ return self.margin + line def dedent(self, line): """ Dedents a line by the currently defined margin. (The inverse of 'indent'.) """ margin = self.margin indent = self.indents[-1] if not line.startswith(margin): fail('Cannot dedent, line does not start with the previous margin:') return line[indent:] class DSLParser: def __init__(self, clinic): self.clinic = clinic self.directives = {} for name in dir(self): # functions that start with directive_ are added to directives _, s, key = name.partition("directive_") if s: self.directives[key] = getattr(self, name) # functions that start with at_ are too, with an @ in front _, s, key = name.partition("at_") if s: self.directives['@' + key] = getattr(self, name) self.reset() def reset(self): self.function = None self.state = self.state_dsl_start self.parameter_indent = None self.keyword_only = False self.positional_only = False self.group = 0 self.parameter_state = self.ps_start self.seen_positional_with_default = False self.indent = IndentStack() self.kind = CALLABLE self.coexist = False self.parameter_continuation = '' self.preserve_output = False def directive_version(self, required): global version if version_comparitor(version, required) < 0: fail("Insufficient Clinic version!\n Version: " + version + "\n Required: " + required) def directive_module(self, name): fields = name.split('.') new = fields.pop() module, cls = self.clinic._module_and_class(fields) if cls: fail("Can't nest a module inside a class!") if name in module.classes: fail("Already defined module " + repr(name) + "!") m = Module(name, module) module.modules[name] = m self.block.signatures.append(m) def directive_class(self, name, typedef, type_object): fields = name.split('.') in_classes = False parent = self name = fields.pop() so_far = [] module, cls = self.clinic._module_and_class(fields) parent = cls or module if name in parent.classes: fail("Already defined class " + repr(name) + "!") c = Class(name, module, cls, typedef, type_object) parent.classes[name] = c self.block.signatures.append(c) def directive_set(self, name, value): if name not in ("line_prefix", "line_suffix"): fail("unknown variable", repr(name)) value = value.format_map({ 'block comment start': '/*', 'block comment end': '*/', }) self.clinic.__dict__[name] = value def directive_destination(self, name, command, *args): if command == 'new': self.clinic.add_destination(name, *args) return if command == 'clear': self.clinic.get_destination(name).clear() fail("unknown destination command", repr(command)) def directive_output(self, command_or_name, destination=''): fd = self.clinic.destination_buffers if command_or_name == "preset": preset = self.clinic.presets.get(destination) if not preset: fail("Unknown preset " + repr(destination) + "!") fd.update(preset) return if command_or_name == "push": self.clinic.destination_buffers_stack.append(fd.copy()) return if command_or_name == "pop": if not self.clinic.destination_buffers_stack: fail("Can't 'output pop', stack is empty!") previous_fd = self.clinic.destination_buffers_stack.pop() fd.update(previous_fd) return # secret command for debugging! if command_or_name == "print": self.block.output.append(pprint.pformat(fd)) self.block.output.append('\n') return d = self.clinic.get_destination(destination) if command_or_name == "everything": for name in list(fd): fd[name] = d return if command_or_name not in fd: fail("Invalid command / destination name " + repr(command_or_name) + ", must be one of:\n preset push pop print everything " + " ".join(fd)) fd[command_or_name] = d def directive_dump(self, name): self.block.output.append(self.clinic.get_destination(name).dump()) def directive_print(self, *args): self.block.output.append(' '.join(args)) self.block.output.append('\n') def directive_preserve(self): if self.preserve_output: fail("Can't have preserve twice in one block!") self.preserve_output = True def at_classmethod(self): if self.kind is not CALLABLE: fail("Can't set @classmethod, function is not a normal callable") self.kind = CLASS_METHOD def at_staticmethod(self): if self.kind is not CALLABLE: fail("Can't set @staticmethod, function is not a normal callable") self.kind = STATIC_METHOD def at_coexist(self): if self.coexist: fail("Called @coexist twice!") self.coexist = True def parse(self, block): self.reset() self.block = block self.saved_output = self.block.output block.output = [] block_start = self.clinic.block_parser.line_number lines = block.input.split('\n') for line_number, line in enumerate(lines, self.clinic.block_parser.block_start_line_number): if '\t' in line: fail('Tab characters are illegal in the Clinic DSL.\n\t' + repr(line), line_number=block_start) self.state(line) self.next(self.state_terminal) self.state(None) block.output.extend(self.clinic.language.render(clinic, block.signatures)) if self.preserve_output: if block.output: fail("'preserve' only works for blocks that don't produce any output!") block.output = self.saved_output @staticmethod def ignore_line(line): # ignore comment-only lines if line.lstrip().startswith('#'): return True # Ignore empty lines too # (but not in docstring sections!) if not line.strip(): return True return False @staticmethod def calculate_indent(line): return len(line) - len(line.strip()) def next(self, state, line=None): # real_print(self.state.__name__, "->", state.__name__, ", line=", line) self.state = state if line is not None: self.state(line) def state_dsl_start(self, line): # self.block = self.ClinicOutputBlock(self) if self.ignore_line(line): return # is it a directive? fields = shlex.split(line) directive_name = fields[0] directive = self.directives.get(directive_name, None) if directive: try: directive(*fields[1:]) except TypeError as e: fail(str(e)) return self.next(self.state_modulename_name, line) def state_modulename_name(self, line): # looking for declaration, which establishes the leftmost column # line should be # modulename.fnname [as c_basename] [-> return annotation] # square brackets denote optional syntax. # # alternatively: # modulename.fnname [as c_basename] = modulename.existing_fn_name # clones the parameters and return converter from that # function. you can't modify them. you must enter a # new docstring. # # (but we might find a directive first!) # # this line is permitted to start with whitespace. # we'll call this number of spaces F (for "function"). if not line.strip(): return self.indent.infer(line) # are we cloning? before, equals, existing = line.rpartition('=') if equals: full_name, _, c_basename = before.partition(' as ') full_name = full_name.strip() c_basename = c_basename.strip() existing = existing.strip() if (is_legal_py_identifier(full_name) and (not c_basename or is_legal_c_identifier(c_basename)) and is_legal_py_identifier(existing)): # we're cloning! fields = [x.strip() for x in existing.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) for existing_function in (cls or module).functions: if existing_function.name == function_name: break else: existing_function = None if not existing_function: print("class", cls, "module", module, "existing", existing) print("cls. functions", cls.functions) fail("Couldn't find existing function " + repr(existing) + "!") fields = [x.strip() for x in full_name.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) if not (existing_function.kind == self.kind and existing_function.coexist == self.coexist): fail("'kind' of function and cloned function don't match! (@classmethod/@staticmethod/@coexist)") self.function = existing_function.copy(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename, docstring='') self.block.signatures.append(self.function) (cls or module).functions.append(self.function) self.next(self.state_function_docstring) return line, _, returns = line.partition('->') full_name, _, c_basename = line.partition(' as ') full_name = full_name.strip() c_basename = c_basename.strip() or None if not is_legal_py_identifier(full_name): fail("Illegal function name: {}".format(full_name)) if c_basename and not is_legal_c_identifier(c_basename): fail("Illegal C basename: {}".format(c_basename)) return_converter = None if returns: ast_input = "def x() -> {}: pass".format(returns) module = None try: module = ast.parse(ast_input) except SyntaxError: pass if not module: fail("Badly-formed annotation for " + full_name + ": " + returns) try: name, legacy, kwargs = self.parse_converter(module.body[0].returns) if legacy: fail("Legacy converter {!r} not allowed as a return converter" .format(name)) if name not in return_converters: fail("No available return converter called " + repr(name)) return_converter = return_converters[name](**kwargs) except ValueError: fail("Badly-formed annotation for " + full_name + ": " + returns) fields = [x.strip() for x in full_name.split('.')] function_name = fields.pop() module, cls = self.clinic._module_and_class(fields) fields = full_name.split('.') if fields[-1] == '__new__': if (self.kind != CLASS_METHOD) or (not cls): fail("__new__ must be a class method!") self.kind = METHOD_NEW elif fields[-1] == '__init__': if (self.kind != CALLABLE) or (not cls): fail("__init__ must be a normal method, not a class or static method!") self.kind = METHOD_INIT if not return_converter: return_converter = init_return_converter() elif fields[-1] in unsupported_special_methods: fail(fields[-1] + " is a special method and cannot be converted to Argument Clinic! (Yet.)") if not return_converter: return_converter = CReturnConverter() if not module: fail("Undefined module used in declaration of " + repr(full_name.strip()) + ".") self.function = Function(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename, return_converter=return_converter, kind=self.kind, coexist=self.coexist) self.block.signatures.append(self.function) # insert a self converter automatically type, name = correct_name_for_self(self.function) kwargs = {} if cls and type == "PyObject *": kwargs['type'] = cls.typedef sc = self.function.self_converter = self_converter(name, name, self.function, **kwargs) p_self = Parameter(sc.name, inspect.Parameter.POSITIONAL_ONLY, function=self.function, converter=sc) self.function.parameters[sc.name] = p_self (cls or module).functions.append(self.function) self.next(self.state_parameters_start) # Now entering the parameters section. The rules, formally stated: # # * All lines must be indented with spaces only. # * The first line must be a parameter declaration. # * The first line must be indented. # * This first line establishes the indent for parameters. # * We'll call this number of spaces P (for "parameter"). # * Thenceforth: # * Lines indented with P spaces specify a parameter. # * Lines indented with > P spaces are docstrings for the previous # parameter. # * We'll call this number of spaces D (for "docstring"). # * All subsequent lines indented with >= D spaces are stored as # part of the per-parameter docstring. # * All lines will have the first D spaces of the indent stripped # before they are stored. # * It's illegal to have a line starting with a number of spaces X # such that P < X < D. # * A line with < P spaces is the first line of the function # docstring, which ends processing for parameters and per-parameter # docstrings. # * The first line of the function docstring must be at the same # indent as the function declaration. # * It's illegal to have any line in the parameters section starting # with X spaces such that F < X < P. (As before, F is the indent # of the function declaration.) # # Also, currently Argument Clinic places the following restrictions on groups: # * Each group must contain at least one parameter. # * Each group may contain at most one group, which must be the furthest # thing in the group from the required parameters. (The nested group # must be the first in the group when it's before the required # parameters, and the last thing in the group when after the required # parameters.) # * There may be at most one (top-level) group to the left or right of # the required parameters. # * You must specify a slash, and it must be after all parameters. # (In other words: either all parameters are positional-only, # or none are.) # # Said another way: # * Each group must contain at least one parameter. # * All left square brackets before the required parameters must be # consecutive. (You can't have a left square bracket followed # by a parameter, then another left square bracket. You can't # have a left square bracket, a parameter, a right square bracket, # and then a left square bracket.) # * All right square brackets after the required parameters must be # consecutive. # # These rules are enforced with a single state variable: # "parameter_state". (Previously the code was a miasma of ifs and # separate boolean state variables.) The states are: # # [ [ a, b, ] c, ] d, e, f=3, [ g, h, [ i ] ] <- line # 01 2 3 4 5 6 <- state transitions # # 0: ps_start. before we've seen anything. legal transitions are to 1 or 3. # 1: ps_left_square_before. left square brackets before required parameters. # 2: ps_group_before. in a group, before required parameters. # 3: ps_required. required parameters, positional-or-keyword or positional-only # (we don't know yet). (renumber left groups!) # 4: ps_optional. positional-or-keyword or positional-only parameters that # now must have default values. # 5: ps_group_after. in a group, after required parameters. # 6: ps_right_square_after. right square brackets after required parameters. ps_start, ps_left_square_before, ps_group_before, ps_required, \ ps_optional, ps_group_after, ps_right_square_after = range(7) def state_parameters_start(self, line): if self.ignore_line(line): return # if this line is not indented, we have no parameters if not self.indent.infer(line): return self.next(self.state_function_docstring, line) self.parameter_continuation = '' return self.next(self.state_parameter, line) def to_required(self): """ Transition to the "required" parameter state. """ if self.parameter_state != self.ps_required: self.parameter_state = self.ps_required for p in self.function.parameters.values(): p.group = -p.group def state_parameter(self, line): if self.parameter_continuation: line = self.parameter_continuation + ' ' + line.lstrip() self.parameter_continuation = '' if self.ignore_line(line): return assert self.indent.depth == 2 indent = self.indent.infer(line) if indent == -1: # we outdented, must be to definition column return self.next(self.state_function_docstring, line) if indent == 1: # we indented, must be to new parameter docstring column return self.next(self.state_parameter_docstring_start, line) line = line.rstrip() if line.endswith('\\'): self.parameter_continuation = line[:-1] return line = line.lstrip() if line in ('*', '/', '[', ']'): self.parse_special_symbol(line) return if self.parameter_state in (self.ps_start, self.ps_required): self.to_required() elif self.parameter_state == self.ps_left_square_before: self.parameter_state = self.ps_group_before elif self.parameter_state == self.ps_group_before: if not self.group: self.to_required() elif self.parameter_state in (self.ps_group_after, self.ps_optional): pass else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".a)") # handle "as" for parameters too c_name = None name, have_as_token, trailing = line.partition(' as ') if have_as_token: name = name.strip() if ' ' not in name: fields = trailing.strip().split(' ') if not fields: fail("Invalid 'as' clause!") c_name = fields[0] if c_name.endswith(':'): name += ':' c_name = c_name[:-1] fields[0] = name line = ' '.join(fields) base, equals, default = line.rpartition('=') if not equals: base = default default = None module = None try: ast_input = "def x({}): pass".format(base) module = ast.parse(ast_input) except SyntaxError: try: # the last = was probably inside a function call, like # c: int(accept={str}) # so assume there was no actual default value. default = None ast_input = "def x({}): pass".format(line) module = ast.parse(ast_input) except SyntaxError: pass if not module: fail("Function " + self.function.name + " has an invalid parameter declaration:\n\t" + line) function_args = module.body[0].args if len(function_args.args) > 1: fail("Function " + self.function.name + " has an invalid parameter declaration (comma?):\n\t" + line) if function_args.defaults or function_args.kw_defaults: fail("Function " + self.function.name + " has an invalid parameter declaration (default value?):\n\t" + line) if function_args.vararg or function_args.kwarg: fail("Function " + self.function.name + " has an invalid parameter declaration (*args? **kwargs?):\n\t" + line) parameter = function_args.args[0] parameter_name = parameter.arg name, legacy, kwargs = self.parse_converter(parameter.annotation) if not default: if self.parameter_state == self.ps_optional: fail("Can't have a parameter without a default (" + repr(parameter_name) + ")\nafter a parameter with a default!") value = unspecified if 'py_default' in kwargs: fail("You can't specify py_default without specifying a default value!") else: if self.parameter_state == self.ps_required: self.parameter_state = self.ps_optional default = default.strip() bad = False ast_input = "x = {}".format(default) bad = False try: module = ast.parse(ast_input) if 'c_default' not in kwargs: # we can only represent very simple data values in C. # detect whether default is okay, via a blacklist # of disallowed ast nodes. class DetectBadNodes(ast.NodeVisitor): bad = False def bad_node(self, node): self.bad = True # inline function call visit_Call = bad_node # inline if statement ("x = 3 if y else z") visit_IfExp = bad_node # comprehensions and generator expressions visit_ListComp = visit_SetComp = bad_node visit_DictComp = visit_GeneratorExp = bad_node # literals for advanced types visit_Dict = visit_Set = bad_node visit_List = visit_Tuple = bad_node # "starred": "a = [1, 2, 3]; *a" visit_Starred = bad_node blacklist = DetectBadNodes() blacklist.visit(module) bad = blacklist.bad else: # if they specify a c_default, we can be more lenient about the default value. # but at least make an attempt at ensuring it's a valid expression. try: value = eval(default) if value == unspecified: fail("'unspecified' is not a legal default value!") except NameError: pass # probably a named constant except Exception as e: fail("Malformed expression given as default value\n" "{!r} caused {!r}".format(default, e)) if bad: fail("Unsupported expression as default value: " + repr(default)) expr = module.body[0].value # mild hack: explicitly support NULL as a default value if isinstance(expr, ast.Name) and expr.id == 'NULL': value = NULL py_default = 'None' c_default = "NULL" elif (isinstance(expr, ast.BinOp) or (isinstance(expr, ast.UnaryOp) and not (isinstance(expr.operand, ast.Num) or (hasattr(ast, 'Constant') and isinstance(expr.operand, ast.Constant) and type(expr.operand.value) in (int, float, complex))) )): c_default = kwargs.get("c_default") if not (isinstance(c_default, str) and c_default): fail("When you specify an expression (" + repr(default) + ") as your default value,\nyou MUST specify a valid c_default." + ast.dump(expr)) py_default = default value = unknown elif isinstance(expr, ast.Attribute): a = [] n = expr while isinstance(n, ast.Attribute): a.append(n.attr) n = n.value if not isinstance(n, ast.Name): fail("Unsupported default value " + repr(default) + " (looked like a Python constant)") a.append(n.id) py_default = ".".join(reversed(a)) c_default = kwargs.get("c_default") if not (isinstance(c_default, str) and c_default): fail("When you specify a named constant (" + repr(py_default) + ") as your default value,\nyou MUST specify a valid c_default.") try: value = eval(py_default) except NameError: value = unknown else: value = ast.literal_eval(expr) py_default = repr(value) if isinstance(value, (bool, None.__class__)): c_default = "Py_" + py_default elif isinstance(value, str): c_default = c_repr(value) else: c_default = py_default except SyntaxError as e: fail("Syntax error: " + repr(e.text)) except (ValueError, AttributeError): value = unknown c_default = kwargs.get("c_default") py_default = default if not (isinstance(c_default, str) and c_default): fail("When you specify a named constant (" + repr(py_default) + ") as your default value,\nyou MUST specify a valid c_default.") kwargs.setdefault('c_default', c_default) kwargs.setdefault('py_default', py_default) dict = legacy_converters if legacy else converters legacy_str = "legacy " if legacy else "" if name not in dict: fail('{} is not a valid {}converter'.format(name, legacy_str)) # if you use a c_name for the parameter, we just give that name to the converter # but the parameter object gets the python name converter = dict[name](c_name or parameter_name, parameter_name, self.function, value, **kwargs) kind = inspect.Parameter.KEYWORD_ONLY if self.keyword_only else inspect.Parameter.POSITIONAL_OR_KEYWORD if isinstance(converter, self_converter): if len(self.function.parameters) == 1: if (self.parameter_state != self.ps_required): fail("A 'self' parameter cannot be marked optional.") if value is not unspecified: fail("A 'self' parameter cannot have a default value.") if self.group: fail("A 'self' parameter cannot be in an optional group.") kind = inspect.Parameter.POSITIONAL_ONLY self.parameter_state = self.ps_start self.function.parameters.clear() else: fail("A 'self' parameter, if specified, must be the very first thing in the parameter block.") p = Parameter(parameter_name, kind, function=self.function, converter=converter, default=value, group=self.group) if parameter_name in self.function.parameters: fail("You can't have two parameters named " + repr(parameter_name) + "!") self.function.parameters[parameter_name] = p def parse_converter(self, annotation): if (hasattr(ast, 'Constant') and isinstance(annotation, ast.Constant) and type(annotation.value) is str): return annotation.value, True, {} if isinstance(annotation, ast.Str): return annotation.s, True, {} if isinstance(annotation, ast.Name): return annotation.id, False, {} if not isinstance(annotation, ast.Call): fail("Annotations must be either a name, a function call, or a string.") name = annotation.func.id symbols = globals() kwargs = {node.arg: eval_ast_expr(node.value, symbols) for node in annotation.keywords} return name, False, kwargs def parse_special_symbol(self, symbol): if symbol == '*': if self.keyword_only: fail("Function " + self.function.name + " uses '*' more than once.") self.keyword_only = True elif symbol == '[': if self.parameter_state in (self.ps_start, self.ps_left_square_before): self.parameter_state = self.ps_left_square_before elif self.parameter_state in (self.ps_required, self.ps_group_after): self.parameter_state = self.ps_group_after else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".b)") self.group += 1 self.function.docstring_only = True elif symbol == ']': if not self.group: fail("Function " + self.function.name + " has a ] without a matching [.") if not any(p.group == self.group for p in self.function.parameters.values()): fail("Function " + self.function.name + " has an empty group.\nAll groups must contain at least one parameter.") self.group -= 1 if self.parameter_state in (self.ps_left_square_before, self.ps_group_before): self.parameter_state = self.ps_group_before elif self.parameter_state in (self.ps_group_after, self.ps_right_square_after): self.parameter_state = self.ps_right_square_after else: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".c)") elif symbol == '/': if self.positional_only: fail("Function " + self.function.name + " uses '/' more than once.") self.positional_only = True # ps_required and ps_optional are allowed here, that allows positional-only without option groups # to work (and have default values!) if (self.parameter_state not in (self.ps_required, self.ps_optional, self.ps_right_square_after, self.ps_group_before)) or self.group: fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".d)") if self.keyword_only: fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.") # fixup preceding parameters for p in self.function.parameters.values(): if (p.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD and not isinstance(p.converter, self_converter)): fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.") p.kind = inspect.Parameter.POSITIONAL_ONLY def state_parameter_docstring_start(self, line): self.parameter_docstring_indent = len(self.indent.margin) assert self.indent.depth == 3 return self.next(self.state_parameter_docstring, line) # every line of the docstring must start with at least F spaces, # where F > P. # these F spaces will be stripped. def state_parameter_docstring(self, line): stripped = line.strip() if stripped.startswith('#'): return indent = self.indent.measure(line) if indent < self.parameter_docstring_indent: self.indent.infer(line) assert self.indent.depth < 3 if self.indent.depth == 2: # back to a parameter return self.next(self.state_parameter, line) assert self.indent.depth == 1 return self.next(self.state_function_docstring, line) assert self.function.parameters last_parameter = next(reversed(list(self.function.parameters.values()))) new_docstring = last_parameter.docstring if new_docstring: new_docstring += '\n' if stripped: new_docstring += self.indent.dedent(line) last_parameter.docstring = new_docstring # the final stanza of the DSL is the docstring. def state_function_docstring(self, line): if self.group: fail("Function " + self.function.name + " has a ] without a matching [.") stripped = line.strip() if stripped.startswith('#'): return new_docstring = self.function.docstring if new_docstring: new_docstring += "\n" if stripped: line = self.indent.dedent(line).rstrip() else: line = '' new_docstring += line self.function.docstring = new_docstring def format_docstring(self): f = self.function new_or_init = f.kind in (METHOD_NEW, METHOD_INIT) if new_or_init and not f.docstring: # don't render a docstring at all, no signature, nothing. return f.docstring text, add, output = _text_accumulator() parameters = f.render_parameters ## ## docstring first line ## if new_or_init: # classes get *just* the name of the class # not __new__, not __init__, and not module.classname assert f.cls add(f.cls.name) else: add(f.name) add('(') # populate "right_bracket_count" field for every parameter assert parameters, "We should always have a self parameter. " + repr(f) assert isinstance(parameters[0].converter, self_converter) # self is always positional-only. assert parameters[0].is_positional_only() parameters[0].right_bracket_count = 0 positional_only = True for p in parameters[1:]: if not p.is_positional_only(): positional_only = False else: assert positional_only if positional_only: p.right_bracket_count = abs(p.group) else: # don't put any right brackets around non-positional-only parameters, ever. p.right_bracket_count = 0 right_bracket_count = 0 def fix_right_bracket_count(desired): nonlocal right_bracket_count s = '' while right_bracket_count < desired: s += '[' right_bracket_count += 1 while right_bracket_count > desired: s += ']' right_bracket_count -= 1 return s need_slash = False added_slash = False need_a_trailing_slash = False # we only need a trailing slash: # * if this is not a "docstring_only" signature # * and if the last *shown* parameter is # positional only if not f.docstring_only: for p in reversed(parameters): if not p.converter.show_in_signature: continue if p.is_positional_only(): need_a_trailing_slash = True break added_star = False first_parameter = True last_p = parameters[-1] line_length = len(''.join(text)) indent = " " * line_length def add_parameter(text): nonlocal line_length nonlocal first_parameter if first_parameter: s = text first_parameter = False else: s = ' ' + text if line_length + len(s) >= 72: add('\n') add(indent) line_length = len(indent) s = text line_length += len(s) add(s) for p in parameters: if not p.converter.show_in_signature: continue assert p.name is_self = isinstance(p.converter, self_converter) if is_self and f.docstring_only: # this isn't a real machine-parsable signature, # so let's not print the "self" parameter continue if p.is_positional_only(): need_slash = not f.docstring_only elif need_slash and not (added_slash or p.is_positional_only()): added_slash = True add_parameter('/,') if p.is_keyword_only() and not added_star: added_star = True add_parameter('*,') p_add, p_output = text_accumulator() p_add(fix_right_bracket_count(p.right_bracket_count)) if isinstance(p.converter, self_converter): # annotate first parameter as being a "self". # # if inspect.Signature gets this function, # and it's already bound, the self parameter # will be stripped off. # # if it's not bound, it should be marked # as positional-only. # # note: we don't print "self" for __init__, # because this isn't actually the signature # for __init__. (it can't be, __init__ doesn't # have a docstring.) if this is an __init__ # (or __new__), then this signature is for # calling the class to construct a new instance. p_add('$') name = p.converter.signature_name or p.name p_add(name) if p.converter.is_optional(): p_add('=') value = p.converter.py_default if not value: value = repr(p.converter.default) p_add(value) if (p != last_p) or need_a_trailing_slash: p_add(',') add_parameter(p_output()) add(fix_right_bracket_count(0)) if need_a_trailing_slash: add_parameter('/') add(')') # PEP 8 says: # # The Python standard library will not use function annotations # as that would result in a premature commitment to a particular # annotation style. Instead, the annotations are left for users # to discover and experiment with useful annotation styles. # # therefore this is commented out: # # if f.return_converter.py_default: # add(' -> ') # add(f.return_converter.py_default) if not f.docstring_only: add("\n" + sig_end_marker + "\n") docstring_first_line = output() # now fix up the places where the brackets look wrong docstring_first_line = docstring_first_line.replace(', ]', ',] ') # okay. now we're officially building the "parameters" section. # create substitution text for {parameters} spacer_line = False for p in parameters: if not p.docstring.strip(): continue if spacer_line: add('\n') else: spacer_line = True add(" ") add(p.name) add('\n') add(textwrap.indent(rstrip_lines(p.docstring.rstrip()), " ")) parameters = output() if parameters: parameters += '\n' ## ## docstring body ## docstring = f.docstring.rstrip() lines = [line.rstrip() for line in docstring.split('\n')] # Enforce the summary line! # The first line of a docstring should be a summary of the function. # It should fit on one line (80 columns? 79 maybe?) and be a paragraph # by itself. # # Argument Clinic enforces the following rule: # * either the docstring is empty, # * or it must have a summary line. # # Guido said Clinic should enforce this: # http://mail.python.org/pipermail/python-dev/2013-June/127110.html if len(lines) >= 2: if lines[1]: fail("Docstring for " + f.full_name + " does not have a summary line!\n" + "Every non-blank function docstring must start with\n" + "a single line summary followed by an empty line.") elif len(lines) == 1: # the docstring is only one line right now--the summary line. # add an empty line after the summary line so we have space # between it and the {parameters} we're about to add. lines.append('') parameters_marker_count = len(docstring.split('{parameters}')) - 1 if parameters_marker_count > 1: fail('You may not specify {parameters} more than once in a docstring!') if not parameters_marker_count: # insert after summary line lines.insert(2, '{parameters}') # insert at front of docstring lines.insert(0, docstring_first_line) docstring = "\n".join(lines) add(docstring) docstring = output() docstring = linear_format(docstring, parameters=parameters) docstring = docstring.rstrip() return docstring def state_terminal(self, line): """ Called when processing the block is done. """ assert not line if not self.function: return if self.keyword_only: values = self.function.parameters.values() if not values: no_parameter_after_star = True else: last_parameter = next(reversed(list(values))) no_parameter_after_star = last_parameter.kind != inspect.Parameter.KEYWORD_ONLY if no_parameter_after_star: fail("Function " + self.function.name + " specifies '*' without any parameters afterwards.") # remove trailing whitespace from all parameter docstrings for name, value in self.function.parameters.items(): if not value: continue value.docstring = value.docstring.rstrip() self.function.docstring = self.format_docstring() # maps strings to callables. # the callable should return an object # that implements the clinic parser # interface (__init__ and parse). # # example parsers: # "clinic", handles the Clinic DSL # "python", handles running Python code # parsers = {'clinic' : DSLParser, 'python': PythonParser} clinic = None def main(argv): import sys if sys.version_info.major < 3 or sys.version_info.minor < 3: sys.exit("Error: clinic.py requires Python 3.3 or greater.") import argparse cmdline = argparse.ArgumentParser() cmdline.add_argument("-f", "--force", action='store_true') cmdline.add_argument("-o", "--output", type=str) cmdline.add_argument("-v", "--verbose", action='store_true') cmdline.add_argument("--converters", action='store_true') cmdline.add_argument("--make", action='store_true', help="Walk --srcdir to run over all relevant files.") cmdline.add_argument("--srcdir", type=str, default=os.curdir, help="The directory tree to walk in --make mode.") cmdline.add_argument("filename", type=str, nargs="*") ns = cmdline.parse_args(argv) if ns.converters: if ns.filename: print("Usage error: can't specify --converters and a filename at the same time.") print() cmdline.print_usage() sys.exit(-1) converters = [] return_converters = [] ignored = set(""" add_c_converter add_c_return_converter add_default_legacy_c_converter add_legacy_c_converter """.strip().split()) module = globals() for name in module: for suffix, ids in ( ("_return_converter", return_converters), ("_converter", converters), ): if name in ignored: continue if name.endswith(suffix): ids.append((name, name[:-len(suffix)])) break print() print("Legacy converters:") legacy = sorted(legacy_converters) print(' ' + ' '.join(c for c in legacy if c[0].isupper())) print(' ' + ' '.join(c for c in legacy if c[0].islower())) print() for title, attribute, ids in ( ("Converters", 'converter_init', converters), ("Return converters", 'return_converter_init', return_converters), ): print(title + ":") longest = -1 for name, short_name in ids: longest = max(longest, len(short_name)) for name, short_name in sorted(ids, key=lambda x: x[1].lower()): cls = module[name] callable = getattr(cls, attribute, None) if not callable: continue signature = inspect.signature(callable) parameters = [] for parameter_name, parameter in signature.parameters.items(): if parameter.kind == inspect.Parameter.KEYWORD_ONLY: if parameter.default != inspect.Parameter.empty: s = '{}={!r}'.format(parameter_name, parameter.default) else: s = parameter_name parameters.append(s) print(' {}({})'.format(short_name, ', '.join(parameters))) print() print("All converters also accept (c_default=None, py_default=None, annotation=None).") print("All return converters also accept (py_default=None).") sys.exit(0) if ns.make: if ns.output or ns.filename: print("Usage error: can't use -o or filenames with --make.") print() cmdline.print_usage() sys.exit(-1) if not ns.srcdir: print("Usage error: --srcdir must not be empty with --make.") print() cmdline.print_usage() sys.exit(-1) for root, dirs, files in os.walk(ns.srcdir): for rcs_dir in ('.svn', '.git', '.hg', 'build', 'externals'): if rcs_dir in dirs: dirs.remove(rcs_dir) for filename in files: if not (filename.endswith('.c') or filename.endswith('.h')): continue path = os.path.join(root, filename) if ns.verbose: print(path) parse_file(path, force=ns.force, verify=not ns.force) return if not ns.filename: cmdline.print_usage() sys.exit(-1) if ns.output and len(ns.filename) > 1: print("Usage error: can't use -o with multiple filenames.") print() cmdline.print_usage() sys.exit(-1) for filename in ns.filename: if ns.verbose: print(filename) parse_file(filename, output=ns.output, force=ns.force, verify=not ns.force) if __name__ == "__main__": sys.exit(main(sys.argv[1:]))