/* Module that wraps all OpenSSL hash algorithms */ /* * Copyright (C) 2005-2010 Gregory P. Smith (greg@krypto.org) * Licensed to PSF under a Contributor Agreement. * * Derived from a skeleton of shamodule.c containing work performed by: * * Andrew Kuchling (amk@amk.ca) * Greg Stein (gstein@lyra.org) * */ #define PY_SSIZE_T_CLEAN #include "Python.h" #include "structmember.h" #include "hashlib.h" #include "pystrhex.h" /* EVP is the preferred interface to hashing in OpenSSL */ #include #include /* We use the object interface to discover what hashes OpenSSL supports. */ #include #include "openssl/err.h" #include "clinic/_hashopenssl.c.h" /*[clinic input] module _hashlib [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=c2b4ff081bac4be1]*/ #define MUNCH_SIZE INT_MAX #ifndef HASH_OBJ_CONSTRUCTOR #define HASH_OBJ_CONSTRUCTOR 0 #endif #if (OPENSSL_VERSION_NUMBER < 0x10100000L) || defined(LIBRESSL_VERSION_NUMBER) /* OpenSSL < 1.1.0 */ #define EVP_MD_CTX_new EVP_MD_CTX_create #define EVP_MD_CTX_free EVP_MD_CTX_destroy #define HAS_FAST_PKCS5_PBKDF2_HMAC 0 #include #else /* OpenSSL >= 1.1.0 */ #define HAS_FAST_PKCS5_PBKDF2_HMAC 1 #endif typedef struct { PyObject_HEAD PyObject *name; /* name of this hash algorithm */ EVP_MD_CTX *ctx; /* OpenSSL message digest context */ PyThread_type_lock lock; /* OpenSSL context lock */ } EVPobject; static PyTypeObject EVPtype; #define DEFINE_CONSTS_FOR_NEW(Name) \ static PyObject *CONST_ ## Name ## _name_obj = NULL; \ static EVP_MD_CTX *CONST_new_ ## Name ## _ctx_p = NULL; DEFINE_CONSTS_FOR_NEW(md5) DEFINE_CONSTS_FOR_NEW(sha1) DEFINE_CONSTS_FOR_NEW(sha224) DEFINE_CONSTS_FOR_NEW(sha256) DEFINE_CONSTS_FOR_NEW(sha384) DEFINE_CONSTS_FOR_NEW(sha512) /* LCOV_EXCL_START */ static PyObject * _setException(PyObject *exc) { unsigned long errcode; const char *lib, *func, *reason; errcode = ERR_peek_last_error(); if (!errcode) { PyErr_SetString(exc, "unknown reasons"); return NULL; } ERR_clear_error(); lib = ERR_lib_error_string(errcode); func = ERR_func_error_string(errcode); reason = ERR_reason_error_string(errcode); if (lib && func) { PyErr_Format(exc, "[%s: %s] %s", lib, func, reason); } else if (lib) { PyErr_Format(exc, "[%s] %s", lib, reason); } else { PyErr_SetString(exc, reason); } return NULL; } /* LCOV_EXCL_STOP */ static EVPobject * newEVPobject(PyObject *name) { EVPobject *retval = (EVPobject *)PyObject_New(EVPobject, &EVPtype); if (retval == NULL) { return NULL; } retval->ctx = EVP_MD_CTX_new(); if (retval->ctx == NULL) { PyErr_NoMemory(); return NULL; } /* save the name for .name to return */ Py_INCREF(name); retval->name = name; retval->lock = NULL; return retval; } static void EVP_hash(EVPobject *self, const void *vp, Py_ssize_t len) { unsigned int process; const unsigned char *cp = (const unsigned char *)vp; while (0 < len) { if (len > (Py_ssize_t)MUNCH_SIZE) process = MUNCH_SIZE; else process = Py_SAFE_DOWNCAST(len, Py_ssize_t, unsigned int); if (!EVP_DigestUpdate(self->ctx, (const void*)cp, process)) { _setException(PyExc_ValueError); break; } len -= process; cp += process; } } /* Internal methods for a hash object */ static void EVP_dealloc(EVPobject *self) { if (self->lock != NULL) PyThread_free_lock(self->lock); EVP_MD_CTX_free(self->ctx); Py_XDECREF(self->name); PyObject_Del(self); } static int locked_EVP_MD_CTX_copy(EVP_MD_CTX *new_ctx_p, EVPobject *self) { int result; ENTER_HASHLIB(self); result = EVP_MD_CTX_copy(new_ctx_p, self->ctx); LEAVE_HASHLIB(self); return result; } /* External methods for a hash object */ PyDoc_STRVAR(EVP_copy__doc__, "Return a copy of the hash object."); static PyObject * EVP_copy(EVPobject *self, PyObject *unused) { EVPobject *newobj; if ( (newobj = newEVPobject(self->name))==NULL) return NULL; if (!locked_EVP_MD_CTX_copy(newobj->ctx, self)) { return _setException(PyExc_ValueError); } return (PyObject *)newobj; } PyDoc_STRVAR(EVP_digest__doc__, "Return the digest value as a string of binary data."); static PyObject * EVP_digest(EVPobject *self, PyObject *unused) { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; PyObject *retval; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } retval = PyBytes_FromStringAndSize((const char *)digest, digest_size); EVP_MD_CTX_free(temp_ctx); return retval; } PyDoc_STRVAR(EVP_hexdigest__doc__, "Return the digest value as a string of hexadecimal digits."); static PyObject * EVP_hexdigest(EVPobject *self, PyObject *unused) { unsigned char digest[EVP_MAX_MD_SIZE]; EVP_MD_CTX *temp_ctx; unsigned int digest_size; temp_ctx = EVP_MD_CTX_new(); if (temp_ctx == NULL) { PyErr_NoMemory(); return NULL; } /* Get the raw (binary) digest value */ if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) { return _setException(PyExc_ValueError); } digest_size = EVP_MD_CTX_size(temp_ctx); if (!EVP_DigestFinal(temp_ctx, digest, NULL)) { _setException(PyExc_ValueError); return NULL; } EVP_MD_CTX_free(temp_ctx); return _Py_strhex((const char *)digest, digest_size); } PyDoc_STRVAR(EVP_update__doc__, "Update this hash object's state with the provided string."); static PyObject * EVP_update(EVPobject *self, PyObject *args) { PyObject *obj; Py_buffer view; if (!PyArg_ParseTuple(args, "O:update", &obj)) return NULL; GET_BUFFER_VIEW_OR_ERROUT(obj, &view); if (self->lock == NULL && view.len >= HASHLIB_GIL_MINSIZE) { self->lock = PyThread_allocate_lock(); /* fail? lock = NULL and we fail over to non-threaded code. */ } if (self->lock != NULL) { Py_BEGIN_ALLOW_THREADS PyThread_acquire_lock(self->lock, 1); EVP_hash(self, view.buf, view.len); PyThread_release_lock(self->lock); Py_END_ALLOW_THREADS } else { EVP_hash(self, view.buf, view.len); } PyBuffer_Release(&view); Py_RETURN_NONE; } static PyMethodDef EVP_methods[] = { {"update", (PyCFunction)EVP_update, METH_VARARGS, EVP_update__doc__}, {"digest", (PyCFunction)EVP_digest, METH_NOARGS, EVP_digest__doc__}, {"hexdigest", (PyCFunction)EVP_hexdigest, METH_NOARGS, EVP_hexdigest__doc__}, {"copy", (PyCFunction)EVP_copy, METH_NOARGS, EVP_copy__doc__}, {NULL, NULL} /* sentinel */ }; static PyObject * EVP_get_block_size(EVPobject *self, void *closure) { long block_size; block_size = EVP_MD_CTX_block_size(self->ctx); return PyLong_FromLong(block_size); } static PyObject * EVP_get_digest_size(EVPobject *self, void *closure) { long size; size = EVP_MD_CTX_size(self->ctx); return PyLong_FromLong(size); } static PyMemberDef EVP_members[] = { {"name", T_OBJECT, offsetof(EVPobject, name), READONLY, PyDoc_STR("algorithm name.")}, {NULL} /* Sentinel */ }; static PyGetSetDef EVP_getseters[] = { {"digest_size", (getter)EVP_get_digest_size, NULL, NULL, NULL}, {"block_size", (getter)EVP_get_block_size, NULL, NULL, NULL}, {NULL} /* Sentinel */ }; static PyObject * EVP_repr(EVPobject *self) { return PyUnicode_FromFormat("<%U HASH object @ %p>", self->name, self); } #if HASH_OBJ_CONSTRUCTOR static int EVP_tp_init(EVPobject *self, PyObject *args, PyObject *kwds) { static char *kwlist[] = {"name", "string", NULL}; PyObject *name_obj = NULL; PyObject *data_obj = NULL; Py_buffer view; char *nameStr; const EVP_MD *digest; if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:HASH", kwlist, &name_obj, &data_obj)) { return -1; } if (data_obj) GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); if (!PyArg_Parse(name_obj, "s", &nameStr)) { PyErr_SetString(PyExc_TypeError, "name must be a string"); if (data_obj) PyBuffer_Release(&view); return -1; } digest = EVP_get_digestbyname(nameStr); if (!digest) { PyErr_SetString(PyExc_ValueError, "unknown hash function"); if (data_obj) PyBuffer_Release(&view); return -1; } if (!EVP_DigestInit(self->ctx, digest)) { _setException(PyExc_ValueError); if (data_obj) PyBuffer_Release(&view); return -1; } self->name = name_obj; Py_INCREF(self->name); if (data_obj) { if (view.len >= HASHLIB_GIL_MINSIZE) { Py_BEGIN_ALLOW_THREADS EVP_hash(self, view.buf, view.len); Py_END_ALLOW_THREADS } else { EVP_hash(self, view.buf, view.len); } PyBuffer_Release(&view); } return 0; } #endif PyDoc_STRVAR(hashtype_doc, "A hash represents the object used to calculate a checksum of a\n\ string of information.\n\ \n\ Methods:\n\ \n\ update() -- updates the current digest with an additional string\n\ digest() -- return the current digest value\n\ hexdigest() -- return the current digest as a string of hexadecimal digits\n\ copy() -- return a copy of the current hash object\n\ \n\ Attributes:\n\ \n\ name -- the hash algorithm being used by this object\n\ digest_size -- number of bytes in this hashes output\n"); static PyTypeObject EVPtype = { PyVarObject_HEAD_INIT(NULL, 0) "_hashlib.HASH", /*tp_name*/ sizeof(EVPobject), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ (destructor)EVP_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_reserved*/ (reprfunc)EVP_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ hashtype_doc, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ EVP_methods, /* tp_methods */ EVP_members, /* tp_members */ EVP_getseters, /* tp_getset */ #if 1 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ #endif #if HASH_OBJ_CONSTRUCTOR (initproc)EVP_tp_init, /* tp_init */ #endif }; static PyObject * EVPnew(PyObject *name_obj, const EVP_MD *digest, const EVP_MD_CTX *initial_ctx, const unsigned char *cp, Py_ssize_t len) { EVPobject *self; if (!digest && !initial_ctx) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); return NULL; } if ((self = newEVPobject(name_obj)) == NULL) return NULL; if (initial_ctx) { EVP_MD_CTX_copy(self->ctx, initial_ctx); } else { if (!EVP_DigestInit(self->ctx, digest)) { _setException(PyExc_ValueError); Py_DECREF(self); return NULL; } } if (cp && len) { if (len >= HASHLIB_GIL_MINSIZE) { Py_BEGIN_ALLOW_THREADS EVP_hash(self, cp, len); Py_END_ALLOW_THREADS } else { EVP_hash(self, cp, len); } } return (PyObject *)self; } /* The module-level function: new() */ PyDoc_STRVAR(EVP_new__doc__, "Return a new hash object using the named algorithm.\n\ An optional string argument may be provided and will be\n\ automatically hashed.\n\ \n\ The MD5 and SHA1 algorithms are always supported.\n"); static PyObject * EVP_new(PyObject *self, PyObject *args, PyObject *kwdict) { static char *kwlist[] = {"name", "string", NULL}; PyObject *name_obj = NULL; PyObject *data_obj = NULL; Py_buffer view = { 0 }; PyObject *ret_obj; char *name; const EVP_MD *digest; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "O|O:new", kwlist, &name_obj, &data_obj)) { return NULL; } if (!PyArg_Parse(name_obj, "s", &name)) { PyErr_SetString(PyExc_TypeError, "name must be a string"); return NULL; } if (data_obj) GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); digest = EVP_get_digestbyname(name); ret_obj = EVPnew(name_obj, digest, NULL, (unsigned char*)view.buf, view.len); if (data_obj) PyBuffer_Release(&view); return ret_obj; } #if (OPENSSL_VERSION_NUMBER >= 0x10000000 && !defined(OPENSSL_NO_HMAC) \ && !defined(OPENSSL_NO_SHA)) #define PY_PBKDF2_HMAC 1 #if !HAS_FAST_PKCS5_PBKDF2_HMAC /* Improved implementation of PKCS5_PBKDF2_HMAC() * * PKCS5_PBKDF2_HMAC_fast() hashes the password exactly one time instead of * `iter` times. Today (2013) the iteration count is typically 100,000 or * more. The improved algorithm is not subject to a Denial-of-Service * vulnerability with overly large passwords. * * Also OpenSSL < 1.0 don't provide PKCS5_PBKDF2_HMAC(), only * PKCS5_PBKDF2_SHA1. */ static int PKCS5_PBKDF2_HMAC_fast(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, const EVP_MD *digest, int keylen, unsigned char *out) { unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; int cplen, j, k, tkeylen, mdlen; unsigned long i = 1; HMAC_CTX hctx_tpl, hctx; mdlen = EVP_MD_size(digest); if (mdlen < 0) return 0; HMAC_CTX_init(&hctx_tpl); HMAC_CTX_init(&hctx); p = out; tkeylen = keylen; if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } while (tkeylen) { if (tkeylen > mdlen) cplen = mdlen; else cplen = tkeylen; /* We are unlikely to ever use more than 256 blocks (5120 bits!) * but just in case... */ itmp[0] = (unsigned char)((i >> 24) & 0xff); itmp[1] = (unsigned char)((i >> 16) & 0xff); itmp[2] = (unsigned char)((i >> 8) & 0xff); itmp[3] = (unsigned char)(i & 0xff); if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } if (!HMAC_Update(&hctx, salt, saltlen) || !HMAC_Update(&hctx, itmp, 4) || !HMAC_Final(&hctx, digtmp, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); HMAC_CTX_cleanup(&hctx); return 0; } HMAC_CTX_cleanup(&hctx); memcpy(p, digtmp, cplen); for (j = 1; j < iter; j++) { if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { HMAC_CTX_cleanup(&hctx_tpl); return 0; } if (!HMAC_Update(&hctx, digtmp, mdlen) || !HMAC_Final(&hctx, digtmp, NULL)) { HMAC_CTX_cleanup(&hctx_tpl); HMAC_CTX_cleanup(&hctx); return 0; } HMAC_CTX_cleanup(&hctx); for (k = 0; k < cplen; k++) { p[k] ^= digtmp[k]; } } tkeylen-= cplen; i++; p+= cplen; } HMAC_CTX_cleanup(&hctx_tpl); return 1; } #endif PyDoc_STRVAR(pbkdf2_hmac__doc__, "pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None) -> key\n\ \n\ Password based key derivation function 2 (PKCS #5 v2.0) with HMAC as\n\ pseudorandom function."); static PyObject * pbkdf2_hmac(PyObject *self, PyObject *args, PyObject *kwdict) { static char *kwlist[] = {"hash_name", "password", "salt", "iterations", "dklen", NULL}; PyObject *key_obj = NULL, *dklen_obj = Py_None; char *name, *key; Py_buffer password, salt; long iterations, dklen; int retval; const EVP_MD *digest; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "sy*y*l|O:pbkdf2_hmac", kwlist, &name, &password, &salt, &iterations, &dklen_obj)) { return NULL; } digest = EVP_get_digestbyname(name); if (digest == NULL) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); goto end; } if (password.len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "password is too long."); goto end; } if (salt.len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "salt is too long."); goto end; } if (iterations < 1) { PyErr_SetString(PyExc_ValueError, "iteration value must be greater than 0."); goto end; } if (iterations > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "iteration value is too great."); goto end; } if (dklen_obj == Py_None) { dklen = EVP_MD_size(digest); } else { dklen = PyLong_AsLong(dklen_obj); if ((dklen == -1) && PyErr_Occurred()) { goto end; } } if (dklen < 1) { PyErr_SetString(PyExc_ValueError, "key length must be greater than 0."); goto end; } if (dklen > INT_MAX) { /* INT_MAX is always smaller than dkLen max (2^32 - 1) * hLen */ PyErr_SetString(PyExc_OverflowError, "key length is too great."); goto end; } key_obj = PyBytes_FromStringAndSize(NULL, dklen); if (key_obj == NULL) { goto end; } key = PyBytes_AS_STRING(key_obj); Py_BEGIN_ALLOW_THREADS #if HAS_FAST_PKCS5_PBKDF2_HMAC retval = PKCS5_PBKDF2_HMAC((char*)password.buf, (int)password.len, (unsigned char *)salt.buf, (int)salt.len, iterations, digest, dklen, (unsigned char *)key); #else retval = PKCS5_PBKDF2_HMAC_fast((char*)password.buf, (int)password.len, (unsigned char *)salt.buf, (int)salt.len, iterations, digest, dklen, (unsigned char *)key); #endif Py_END_ALLOW_THREADS if (!retval) { Py_CLEAR(key_obj); _setException(PyExc_ValueError); goto end; } end: PyBuffer_Release(&password); PyBuffer_Release(&salt); return key_obj; } #endif #if OPENSSL_VERSION_NUMBER > 0x10100000L && !defined(OPENSSL_NO_SCRYPT) && !defined(LIBRESSL_VERSION_NUMBER) #define PY_SCRYPT 1 /*[clinic input] _hashlib.scrypt password: Py_buffer * salt: Py_buffer = None n as n_obj: object(subclass_of='&PyLong_Type') = None r as r_obj: object(subclass_of='&PyLong_Type') = None p as p_obj: object(subclass_of='&PyLong_Type') = None maxmem: long = 0 dklen: long = 64 scrypt password-based key derivation function. [clinic start generated code]*/ static PyObject * _hashlib_scrypt_impl(PyObject *module, Py_buffer *password, Py_buffer *salt, PyObject *n_obj, PyObject *r_obj, PyObject *p_obj, long maxmem, long dklen) /*[clinic end generated code: output=14849e2aa2b7b46c input=48a7d63bf3f75c42]*/ { PyObject *key_obj = NULL; char *key; int retval; unsigned long n, r, p; if (password->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "password is too long."); return NULL; } if (salt->buf == NULL) { PyErr_SetString(PyExc_TypeError, "salt is required"); return NULL; } if (salt->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "salt is too long."); return NULL; } n = PyLong_AsUnsignedLong(n_obj); if (n == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "n is required and must be an unsigned int"); return NULL; } if (n < 2 || n & (n - 1)) { PyErr_SetString(PyExc_ValueError, "n must be a power of 2."); return NULL; } r = PyLong_AsUnsignedLong(r_obj); if (r == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "r is required and must be an unsigned int"); return NULL; } p = PyLong_AsUnsignedLong(p_obj); if (p == (unsigned long) -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "p is required and must be an unsigned int"); return NULL; } if (maxmem < 0 || maxmem > INT_MAX) { /* OpenSSL 1.1.0 restricts maxmem to 32 MiB. It may change in the future. The maxmem constant is private to OpenSSL. */ PyErr_Format(PyExc_ValueError, "maxmem must be positive and smaller than %d", INT_MAX); return NULL; } if (dklen < 1 || dklen > INT_MAX) { PyErr_Format(PyExc_ValueError, "dklen must be greater than 0 and smaller than %d", INT_MAX); return NULL; } /* let OpenSSL validate the rest */ retval = EVP_PBE_scrypt(NULL, 0, NULL, 0, n, r, p, maxmem, NULL, 0); if (!retval) { /* sorry, can't do much better */ PyErr_SetString(PyExc_ValueError, "Invalid paramemter combination for n, r, p, maxmem."); return NULL; } key_obj = PyBytes_FromStringAndSize(NULL, dklen); if (key_obj == NULL) { return NULL; } key = PyBytes_AS_STRING(key_obj); Py_BEGIN_ALLOW_THREADS retval = EVP_PBE_scrypt( (const char*)password->buf, (size_t)password->len, (const unsigned char *)salt->buf, (size_t)salt->len, n, r, p, maxmem, (unsigned char *)key, (size_t)dklen ); Py_END_ALLOW_THREADS if (!retval) { Py_CLEAR(key_obj); _setException(PyExc_ValueError); return NULL; } return key_obj; } #endif /* Fast HMAC for hmac.digest() */ /*[clinic input] _hashlib.hmac_digest key: Py_buffer msg: Py_buffer digest: str Single-shot HMAC [clinic start generated code]*/ static PyObject * _hashlib_hmac_digest_impl(PyObject *module, Py_buffer *key, Py_buffer *msg, const char *digest) /*[clinic end generated code: output=75630e684cdd8762 input=10e964917921e2f2]*/ { unsigned char md[EVP_MAX_MD_SIZE] = {0}; unsigned int md_len = 0; unsigned char *result; const EVP_MD *evp; evp = EVP_get_digestbyname(digest); if (evp == NULL) { PyErr_SetString(PyExc_ValueError, "unsupported hash type"); return NULL; } if (key->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "key is too long."); return NULL; } if (msg->len > INT_MAX) { PyErr_SetString(PyExc_OverflowError, "msg is too long."); return NULL; } Py_BEGIN_ALLOW_THREADS result = HMAC( evp, (const void*)key->buf, (int)key->len, (const unsigned char*)msg->buf, (int)msg->len, md, &md_len ); Py_END_ALLOW_THREADS if (result == NULL) { _setException(PyExc_ValueError); return NULL; } return PyBytes_FromStringAndSize((const char*)md, md_len); } /* State for our callback function so that it can accumulate a result. */ typedef struct _internal_name_mapper_state { PyObject *set; int error; } _InternalNameMapperState; /* A callback function to pass to OpenSSL's OBJ_NAME_do_all(...) */ static void _openssl_hash_name_mapper(const OBJ_NAME *openssl_obj_name, void *arg) { _InternalNameMapperState *state = (_InternalNameMapperState *)arg; PyObject *py_name; assert(state != NULL); if (openssl_obj_name == NULL) return; /* Ignore aliased names, they pollute the list and OpenSSL appears to * have its own definition of alias as the resulting list still * contains duplicate and alternate names for several algorithms. */ if (openssl_obj_name->alias) return; py_name = PyUnicode_FromString(openssl_obj_name->name); if (py_name == NULL) { state->error = 1; } else { if (PySet_Add(state->set, py_name) != 0) { state->error = 1; } Py_DECREF(py_name); } } /* Ask OpenSSL for a list of supported ciphers, filling in a Python set. */ static PyObject* generate_hash_name_list(void) { _InternalNameMapperState state; state.set = PyFrozenSet_New(NULL); if (state.set == NULL) return NULL; state.error = 0; OBJ_NAME_do_all(OBJ_NAME_TYPE_MD_METH, &_openssl_hash_name_mapper, &state); if (state.error) { Py_DECREF(state.set); return NULL; } return state.set; } /* * This macro generates constructor function definitions for specific * hash algorithms. These constructors are much faster than calling * the generic one passing it a python string and are noticeably * faster than calling a python new() wrapper. That is important for * code that wants to make hashes of a bunch of small strings. * The first call will lazy-initialize, which reports an exception * if initialization fails. */ #define GEN_CONSTRUCTOR(NAME) \ static PyObject * \ EVP_new_ ## NAME (PyObject *self, PyObject *const *args, Py_ssize_t nargs) \ { \ PyObject *data_obj = NULL; \ Py_buffer view = { 0 }; \ PyObject *ret_obj; \ \ if (!_PyArg_ParseStack(args, nargs, "|O:" #NAME , &data_obj)) { \ return NULL; \ } \ \ if (CONST_new_ ## NAME ## _ctx_p == NULL) { \ EVP_MD_CTX *ctx_p = EVP_MD_CTX_new(); \ if (!EVP_get_digestbyname(#NAME) || \ !EVP_DigestInit(ctx_p, EVP_get_digestbyname(#NAME))) { \ _setException(PyExc_ValueError); \ EVP_MD_CTX_free(ctx_p); \ return NULL; \ } \ CONST_new_ ## NAME ## _ctx_p = ctx_p; \ } \ \ if (data_obj) \ GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); \ \ ret_obj = EVPnew( \ CONST_ ## NAME ## _name_obj, \ NULL, \ CONST_new_ ## NAME ## _ctx_p, \ (unsigned char*)view.buf, \ view.len); \ \ if (data_obj) \ PyBuffer_Release(&view); \ return ret_obj; \ } /* a PyMethodDef structure for the constructor */ #define CONSTRUCTOR_METH_DEF(NAME) \ {"openssl_" #NAME, (PyCFunction)EVP_new_ ## NAME, METH_FASTCALL, \ PyDoc_STR("Returns a " #NAME \ " hash object; optionally initialized with a string") \ } /* used in the init function to setup a constructor: initialize OpenSSL constructor constants if they haven't been initialized already. */ #define INIT_CONSTRUCTOR_CONSTANTS(NAME) do { \ if (CONST_ ## NAME ## _name_obj == NULL) { \ CONST_ ## NAME ## _name_obj = PyUnicode_FromString(#NAME); \ } \ } while (0); GEN_CONSTRUCTOR(md5) GEN_CONSTRUCTOR(sha1) GEN_CONSTRUCTOR(sha224) GEN_CONSTRUCTOR(sha256) GEN_CONSTRUCTOR(sha384) GEN_CONSTRUCTOR(sha512) /* List of functions exported by this module */ static struct PyMethodDef EVP_functions[] = { {"new", (PyCFunction)EVP_new, METH_VARARGS|METH_KEYWORDS, EVP_new__doc__}, #ifdef PY_PBKDF2_HMAC {"pbkdf2_hmac", (PyCFunction)pbkdf2_hmac, METH_VARARGS|METH_KEYWORDS, pbkdf2_hmac__doc__}, #endif _HASHLIB_SCRYPT_METHODDEF _HASHLIB_HMAC_DIGEST_METHODDEF CONSTRUCTOR_METH_DEF(md5), CONSTRUCTOR_METH_DEF(sha1), CONSTRUCTOR_METH_DEF(sha224), CONSTRUCTOR_METH_DEF(sha256), CONSTRUCTOR_METH_DEF(sha384), CONSTRUCTOR_METH_DEF(sha512), {NULL, NULL} /* Sentinel */ }; /* Initialize this module. */ static struct PyModuleDef _hashlibmodule = { PyModuleDef_HEAD_INIT, "_hashlib", NULL, -1, EVP_functions, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit__hashlib(void) { PyObject *m, *openssl_md_meth_names; #ifndef OPENSSL_VERSION_1_1 /* Load all digest algorithms and initialize cpuid */ OPENSSL_add_all_algorithms_noconf(); ERR_load_crypto_strings(); #endif /* TODO build EVP_functions openssl_* entries dynamically based * on what hashes are supported rather than listing many * but having some be unsupported. Only init appropriate * constants. */ Py_TYPE(&EVPtype) = &PyType_Type; if (PyType_Ready(&EVPtype) < 0) return NULL; m = PyModule_Create(&_hashlibmodule); if (m == NULL) return NULL; openssl_md_meth_names = generate_hash_name_list(); if (openssl_md_meth_names == NULL) { Py_DECREF(m); return NULL; } if (PyModule_AddObject(m, "openssl_md_meth_names", openssl_md_meth_names)) { Py_DECREF(m); return NULL; } Py_INCREF((PyObject *)&EVPtype); PyModule_AddObject(m, "HASH", (PyObject *)&EVPtype); /* these constants are used by the convenience constructors */ INIT_CONSTRUCTOR_CONSTANTS(md5); INIT_CONSTRUCTOR_CONSTANTS(sha1); INIT_CONSTRUCTOR_CONSTANTS(sha224); INIT_CONSTRUCTOR_CONSTANTS(sha256); INIT_CONSTRUCTOR_CONSTANTS(sha384); INIT_CONSTRUCTOR_CONSTANTS(sha512); return m; }