/* C implementation for the date/time type documented at * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage */ #include "Python.h" #include "modsupport.h" #include "structmember.h" #include #include "datetime.h" /* We require that C int be at least 32 bits, and use int virtually * everywhere. In just a few cases we use a temp long, where a Python * API returns a C long. In such cases, we have to ensure that the * final result fits in a C int (this can be an issue on 64-bit boxes). */ #if SIZEOF_INT < 4 # error "datetime.c requires that C int have at least 32 bits" #endif #define MINYEAR 1 #define MAXYEAR 9999 /* Nine decimal digits is easy to communicate, and leaves enough room * so that two delta days can be added w/o fear of overflowing a signed * 32-bit int, and with plenty of room left over to absorb any possible * carries from adding seconds. */ #define MAX_DELTA_DAYS 999999999 /* Rename the long macros in datetime.h to more reasonable short names. */ #define GET_YEAR PyDateTime_GET_YEAR #define GET_MONTH PyDateTime_GET_MONTH #define GET_DAY PyDateTime_GET_DAY #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND /* Date accessors for date and datetime. */ #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \ ((o)->data[1] = ((v) & 0x00ff))) #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v)) #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v)) /* Date/Time accessors for datetime. */ #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v)) #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v)) #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v)) #define DATE_SET_MICROSECOND(o, v) \ (((o)->data[7] = ((v) & 0xff0000) >> 16), \ ((o)->data[8] = ((v) & 0x00ff00) >> 8), \ ((o)->data[9] = ((v) & 0x0000ff))) /* Time accessors for time. */ #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v)) #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v)) #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v)) #define TIME_SET_MICROSECOND(o, v) \ (((o)->data[3] = ((v) & 0xff0000) >> 16), \ ((o)->data[4] = ((v) & 0x00ff00) >> 8), \ ((o)->data[5] = ((v) & 0x0000ff))) /* Delta accessors for timedelta. */ #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days) #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds) #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds) #define SET_TD_DAYS(o, v) ((o)->days = (v)) #define SET_TD_SECONDS(o, v) ((o)->seconds = (v)) #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v)) /* Forward declarations. */ static PyTypeObject PyDateTime_DateType; static PyTypeObject PyDateTime_DateTimeType; static PyTypeObject PyDateTime_DateTimeTZType; static PyTypeObject PyDateTime_DeltaType; static PyTypeObject PyDateTime_TimeType; static PyTypeObject PyDateTime_TZInfoType; static PyTypeObject PyDateTime_TimeTZType; /* --------------------------------------------------------------------------- * Math utilities. */ /* k = i+j overflows iff k differs in sign from both inputs, * iff k^i has sign bit set and k^j has sign bit set, * iff (k^i)&(k^j) has sign bit set. */ #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \ ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0) /* Compute Python divmod(x, y), returning the quotient and storing the * remainder into *r. The quotient is the floor of x/y, and that's * the real point of this. C will probably truncate instead (C99 * requires truncation; C89 left it implementation-defined). * Simplification: we *require* that y > 0 here. That's appropriate * for all the uses made of it. This simplifies the code and makes * the overflow case impossible (divmod(LONG_MIN, -1) is the only * overflow case). */ static int divmod(int x, int y, int *r) { int quo; assert(y > 0); quo = x / y; *r = x - quo * y; if (*r < 0) { --quo; *r += y; } assert(0 <= *r && *r < y); return quo; } /* --------------------------------------------------------------------------- * General calendrical helper functions */ /* For each month ordinal in 1..12, the number of days in that month, * and the number of days before that month in the same year. These * are correct for non-leap years only. */ static int _days_in_month[] = { 0, /* unused; this vector uses 1-based indexing */ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static int _days_before_month[] = { 0, /* unused; this vector uses 1-based indexing */ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; /* year -> 1 if leap year, else 0. */ static int is_leap(int year) { /* Cast year to unsigned. The result is the same either way, but * C can generate faster code for unsigned mod than for signed * mod (especially for % 4 -- a good compiler should just grab * the last 2 bits when the LHS is unsigned). */ const unsigned int ayear = (unsigned int)year; return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0); } /* year, month -> number of days in that month in that year */ static int days_in_month(int year, int month) { assert(month >= 1); assert(month <= 12); if (month == 2 && is_leap(year)) return 29; else return _days_in_month[month]; } /* year, month -> number of days in year preceeding first day of month */ static int days_before_month(int year, int month) { int days; assert(month >= 1); assert(month <= 12); days = _days_before_month[month]; if (month > 2 && is_leap(year)) ++days; return days; } /* year -> number of days before January 1st of year. Remember that we * start with year 1, so days_before_year(1) == 0. */ static int days_before_year(int year) { int y = year - 1; /* This is incorrect if year <= 0; we really want the floor * here. But so long as MINYEAR is 1, the smallest year this * can see is 0 (this can happen in some normalization endcases), * so we'll just special-case that. */ assert (year >= 0); if (y >= 0) return y*365 + y/4 - y/100 + y/400; else { assert(y == -1); return -366; } } /* Number of days in 4, 100, and 400 year cycles. That these have * the correct values is asserted in the module init function. */ #define DI4Y 1461 /* days_before_year(5); days in 4 years */ #define DI100Y 36524 /* days_before_year(101); days in 100 years */ #define DI400Y 146097 /* days_before_year(401); days in 400 years */ /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */ static void ord_to_ymd(int ordinal, int *year, int *month, int *day) { int n, n1, n4, n100, n400, leapyear, preceding; /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of * leap years repeats exactly every 400 years. The basic strategy is * to find the closest 400-year boundary at or before ordinal, then * work with the offset from that boundary to ordinal. Life is much * clearer if we subtract 1 from ordinal first -- then the values * of ordinal at 400-year boundaries are exactly those divisible * by DI400Y: * * D M Y n n-1 * -- --- ---- ---------- ---------------- * 31 Dec -400 -DI400Y -DI400Y -1 * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary * ... * 30 Dec 000 -1 -2 * 31 Dec 000 0 -1 * 1 Jan 001 1 0 400-year boundary * 2 Jan 001 2 1 * 3 Jan 001 3 2 * ... * 31 Dec 400 DI400Y DI400Y -1 * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary */ assert(ordinal >= 1); --ordinal; n400 = ordinal / DI400Y; n = ordinal % DI400Y; *year = n400 * 400 + 1; /* Now n is the (non-negative) offset, in days, from January 1 of * year, to the desired date. Now compute how many 100-year cycles * precede n. * Note that it's possible for n100 to equal 4! In that case 4 full * 100-year cycles precede the desired day, which implies the * desired day is December 31 at the end of a 400-year cycle. */ n100 = n / DI100Y; n = n % DI100Y; /* Now compute how many 4-year cycles precede it. */ n4 = n / DI4Y; n = n % DI4Y; /* And now how many single years. Again n1 can be 4, and again * meaning that the desired day is December 31 at the end of the * 4-year cycle. */ n1 = n / 365; n = n % 365; *year += n100 * 100 + n4 * 4 + n1; if (n1 == 4 || n100 == 4) { assert(n == 0); *year -= 1; *month = 12; *day = 31; return; } /* Now the year is correct, and n is the offset from January 1. We * find the month via an estimate that's either exact or one too * large. */ leapyear = n1 == 3 && (n4 != 24 || n100 == 3); assert(leapyear == is_leap(*year)); *month = (n + 50) >> 5; preceding = (_days_before_month[*month] + (*month > 2 && leapyear)); if (preceding > n) { /* estimate is too large */ *month -= 1; preceding -= days_in_month(*year, *month); } n -= preceding; assert(0 <= n); assert(n < days_in_month(*year, *month)); *day = n + 1; } /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */ static int ymd_to_ord(int year, int month, int day) { return days_before_year(year) + days_before_month(year, month) + day; } /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */ static int weekday(int year, int month, int day) { return (ymd_to_ord(year, month, day) + 6) % 7; } /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the * first calendar week containing a Thursday. */ static int iso_week1_monday(int year) { int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */ /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */ int first_weekday = (first_day + 6) % 7; /* ordinal of closest Monday at or before 1/1 */ int week1_monday = first_day - first_weekday; if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */ week1_monday += 7; return week1_monday; } /* --------------------------------------------------------------------------- * Range checkers. */ /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0. * If not, raise OverflowError and return -1. */ static int check_delta_day_range(int days) { if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS) return 0; PyErr_Format(PyExc_OverflowError, "days=%d; must have magnitude <= %d", days, MAX_DELTA_DAYS); return -1; } /* Check that date arguments are in range. Return 0 if they are. If they * aren't, raise ValueError and return -1. */ static int check_date_args(int year, int month, int day) { if (year < MINYEAR || year > MAXYEAR) { PyErr_SetString(PyExc_ValueError, "year is out of range"); return -1; } if (month < 1 || month > 12) { PyErr_SetString(PyExc_ValueError, "month must be in 1..12"); return -1; } if (day < 1 || day > days_in_month(year, month)) { PyErr_SetString(PyExc_ValueError, "day is out of range for month"); return -1; } return 0; } /* Check that time arguments are in range. Return 0 if they are. If they * aren't, raise ValueError and return -1. */ static int check_time_args(int h, int m, int s, int us) { if (h < 0 || h > 23) { PyErr_SetString(PyExc_ValueError, "hour must be in 0..23"); return -1; } if (m < 0 || m > 59) { PyErr_SetString(PyExc_ValueError, "minute must be in 0..59"); return -1; } if (s < 0 || s > 59) { PyErr_SetString(PyExc_ValueError, "second must be in 0..59"); return -1; } if (us < 0 || us > 999999) { PyErr_SetString(PyExc_ValueError, "microsecond must be in 0..999999"); return -1; } return 0; } /* --------------------------------------------------------------------------- * Normalization utilities. */ /* One step of a mixed-radix conversion. A "hi" unit is equivalent to * factor "lo" units. factor must be > 0. If *lo is less than 0, or * at least factor, enough of *lo is converted into "hi" units so that * 0 <= *lo < factor. The input values must be such that int overflow * is impossible. */ static void normalize_pair(int *hi, int *lo, int factor) { assert(factor > 0); assert(lo != hi); if (*lo < 0 || *lo >= factor) { const int num_hi = divmod(*lo, factor, lo); const int new_hi = *hi + num_hi; assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi)); *hi = new_hi; } assert(0 <= *lo && *lo < factor); } /* Fiddle days (d), seconds (s), and microseconds (us) so that * 0 <= *s < 24*3600 * 0 <= *us < 1000000 * The input values must be such that the internals don't overflow. * The way this routine is used, we don't get close. */ static void normalize_d_s_us(int *d, int *s, int *us) { if (*us < 0 || *us >= 1000000) { normalize_pair(s, us, 1000000); /* |s| can't be bigger than about * |original s| + |original us|/1000000 now. */ } if (*s < 0 || *s >= 24*3600) { normalize_pair(d, s, 24*3600); /* |d| can't be bigger than about * |original d| + * (|original s| + |original us|/1000000) / (24*3600) now. */ } assert(0 <= *s && *s < 24*3600); assert(0 <= *us && *us < 1000000); } /* Fiddle years (y), months (m), and days (d) so that * 1 <= *m <= 12 * 1 <= *d <= days_in_month(*y, *m) * The input values must be such that the internals don't overflow. * The way this routine is used, we don't get close. */ static void normalize_y_m_d(int *y, int *m, int *d) { int dim; /* # of days in month */ /* This gets muddy: the proper range for day can't be determined * without knowing the correct month and year, but if day is, e.g., * plus or minus a million, the current month and year values make * no sense (and may also be out of bounds themselves). * Saying 12 months == 1 year should be non-controversial. */ if (*m < 1 || *m > 12) { --*m; normalize_pair(y, m, 12); ++*m; /* |y| can't be bigger than about * |original y| + |original m|/12 now. */ } assert(1 <= *m && *m <= 12); /* Now only day can be out of bounds (year may also be out of bounds * for a datetime object, but we don't care about that here). * If day is out of bounds, what to do is arguable, but at least the * method here is principled and explainable. */ dim = days_in_month(*y, *m); if (*d < 1 || *d > dim) { /* Move day-1 days from the first of the month. First try to * get off cheap if we're only one day out of range * (adjustments for timezone alone can't be worse than that). */ if (*d == 0) { --*m; if (*m > 0) *d = days_in_month(*y, *m); else { --*y; *m = 12; *d = 31; } } else if (*d == dim + 1) { /* move forward a day */ ++*m; *d = 1; if (*m > 12) { *m = 1; ++*y; } } else { int ordinal = ymd_to_ord(*y, *m, 1) + *d - 1; ord_to_ymd(ordinal, y, m, d); } } assert(*m > 0); assert(*d > 0); } /* Fiddle out-of-bounds months and days so that the result makes some kind * of sense. The parameters are both inputs and outputs. Returns < 0 on * failure, where failure means the adjusted year is out of bounds. */ static int normalize_date(int *year, int *month, int *day) { int result; normalize_y_m_d(year, month, day); if (MINYEAR <= *year && *year <= MAXYEAR) result = 0; else { PyErr_SetString(PyExc_OverflowError, "date value out of range"); result = -1; } return result; } /* Force all the datetime fields into range. The parameters are both * inputs and outputs. Returns < 0 on error. */ static int normalize_datetime(int *year, int *month, int *day, int *hour, int *minute, int *second, int *microsecond) { normalize_pair(second, microsecond, 1000000); normalize_pair(minute, second, 60); normalize_pair(hour, minute, 60); normalize_pair(day, hour, 24); return normalize_date(year, month, day); } /* --------------------------------------------------------------------------- * tzinfo helpers. */ /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not * raise TypeError and return -1. */ static int check_tzinfo_subclass(PyObject *p) { if (p == Py_None || PyTZInfo_Check(p)) return 0; PyErr_Format(PyExc_TypeError, "tzinfo argument must be None or of a tzinfo subclass, " "not type '%s'", p->ob_type->tp_name); return -1; } /* Return tzinfo.methname(tzinfoarg), without any checking of results. * If tzinfo is None, returns None. */ static PyObject * call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg) { PyObject *result; assert(tzinfo && methname && tzinfoarg); assert(check_tzinfo_subclass(tzinfo) >= 0); if (tzinfo == Py_None) { result = Py_None; Py_INCREF(result); } else result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg); return result; } /* If self has a tzinfo member, return a BORROWED reference to it. Else * return NULL, which is NOT AN ERROR. There are no error returns here, * and the caller must not decref the result. */ static PyObject * get_tzinfo_member(PyObject *self) { PyObject *tzinfo = NULL; if (PyDateTimeTZ_Check(self)) tzinfo = ((PyDateTime_DateTimeTZ *)self)->tzinfo; else if (PyTimeTZ_Check(self)) tzinfo = ((PyDateTime_TimeTZ *)self)->tzinfo; return tzinfo; } /* self is a datetimetz. Replace its tzinfo member. */ void replace_tzinfo(PyObject *self, PyObject *newtzinfo) { assert(self != NULL); assert(PyDateTimeTZ_Check(self)); assert(check_tzinfo_subclass(newtzinfo) >= 0); Py_INCREF(newtzinfo); Py_DECREF(((PyDateTime_DateTimeTZ *)self)->tzinfo); ((PyDateTime_DateTimeTZ *)self)->tzinfo = newtzinfo; } /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the * result. tzinfo must be an instance of the tzinfo class. If the method * returns None, this returns 0 and sets *none to 1. If the method doesn't * return a Python int or long or timedelta, TypeError is raised and this * returns -1. If it returns an int or long, but is outside the valid * range for a UTC minute offset, or it returns a timedelta and the value is * out of range or isn't a whole number of minutes, ValueError is raised and * this returns -1. * Else *none is set to 0 and the integer method result is returned. */ static int call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg, int *none) { PyObject *u; long result = -1; /* Py{Int,Long}_AsLong return long */ assert(tzinfo != NULL); assert(PyTZInfo_Check(tzinfo)); assert(tzinfoarg != NULL); *none = 0; u = call_tzinfo_method(tzinfo, name, tzinfoarg); if (u == NULL) return -1; else if (u == Py_None) { result = 0; *none = 1; } else if (PyInt_Check(u)) result = PyInt_AS_LONG(u); else if (PyLong_Check(u)) result = PyLong_AsLong(u); else if (PyDelta_Check(u)) { const int days = GET_TD_DAYS(u); if (days < -1 || days > 0) result = 24*60; /* trigger ValueError below */ else { /* next line can't overflow because we know days * is -1 or 0 now */ int ss = days * 24 * 3600 + GET_TD_SECONDS(u); result = divmod(ss, 60, &ss); if (ss || GET_TD_MICROSECONDS(u)) { PyErr_Format(PyExc_ValueError, "tzinfo.%s() must return a " "whole number of minutes", name); result = -1; } } } else { PyErr_Format(PyExc_TypeError, "tzinfo.%s() must return None, integer or " "timedelta, not '%s'", name, u->ob_type->tp_name); } Py_DECREF(u); if (result < -1439 || result > 1439) { PyErr_Format(PyExc_ValueError, "tzinfo.%s() returned %ld; must be in " "-1439 .. 1439", name, result); result = -1; } return (int)result; } /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the * result. tzinfo must be an instance of the tzinfo class. If utcoffset() * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset() & doesn't return a Python int or long, TypeError is raised and this * returns -1. If utcoffset() returns an int outside the legitimate range * for a UTC offset, ValueError is raised and this returns -1. Else * *none is set to 0 and the offset is returned. */ static int call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none) { return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none); } static PyObject *new_delta(int d, int sec, int usec, int normalize); /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None. */ static PyObject * offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) { PyObject *result; assert(tzinfo && name && tzinfoarg); if (tzinfo == Py_None) { result = Py_None; Py_INCREF(result); } else { int none; int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg, &none); if (offset < 0 && PyErr_Occurred()) return NULL; if (none) { result = Py_None; Py_INCREF(result); } else result = new_delta(0, offset * 60, 0, 1); } return result; } /* Call tzinfo.dst(tzinfoarg), and extract an integer from the * result. tzinfo must be an instance of the tzinfo class. If dst() * returns None, call_dst returns 0 and sets *none to 1. If dst() & doesn't return a Python int or long, TypeError is raised and this * returns -1. If dst() returns an int outside the legitimate range * for a UTC offset, ValueError is raised and this returns -1. Else * *none is set to 0 and the offset is returned. */ static int call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none) { return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none); } /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be * an instance of the tzinfo class or None. If tzinfo isn't None, and * tzname() doesn't return None or a string, TypeError is raised and this * returns NULL. */ static PyObject * call_tzname(PyObject *tzinfo, PyObject *tzinfoarg) { PyObject *result; assert(tzinfo != NULL); assert(check_tzinfo_subclass(tzinfo) >= 0); assert(tzinfoarg != NULL); if (tzinfo == Py_None) { result = Py_None; Py_INCREF(result); } else result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg); if (result != NULL && result != Py_None && ! PyString_Check(result)) { PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must " "return None or a string, not '%s'", result->ob_type->tp_name); Py_DECREF(result); result = NULL; } return result; } typedef enum { /* an exception has been set; the caller should pass it on */ OFFSET_ERROR, /* type isn't date, datetime, datetimetz subclass, time, or * timetz subclass */ OFFSET_UNKNOWN, /* date, * datetime, * datetimetz with None tzinfo, * datetimetz where utcoffset() returns None * time, * timetz with None tzinfo, * timetz where utcoffset() returns None */ OFFSET_NAIVE, /* timetz where utcoffset() doesn't return None, * datetimetz where utcoffset() doesn't return None */ OFFSET_AWARE, } naivety; /* Classify an object as to whether it's naive or offset-aware. See * the "naivety" typedef for details. If the type is aware, *offset is set * to minutes east of UTC (as returned by the tzinfo.utcoffset() method). * If the type is offset-naive (or unknown, or error), *offset is set to 0. * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method. */ static naivety classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset) { int none; PyObject *tzinfo; assert(tzinfoarg != NULL); *offset = 0; tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */ if (tzinfo == Py_None) return OFFSET_NAIVE; if (tzinfo == NULL) { /* note that a datetime passes the PyDate_Check test */ return (PyTime_Check(op) || PyDate_Check(op)) ? OFFSET_NAIVE : OFFSET_UNKNOWN; } *offset = call_utcoffset(tzinfo, tzinfoarg, &none); if (*offset == -1 && PyErr_Occurred()) return OFFSET_ERROR; return none ? OFFSET_NAIVE : OFFSET_AWARE; } /* Classify two objects as to whether they're naive or offset-aware. * This isn't quite the same as calling classify_utcoffset() twice: for * binary operations (comparison and subtraction), we generally want to * ignore the tzinfo members if they're identical. This is by design, * so that results match "naive" expectations when mixing objects from a * single timezone. So in that case, this sets both offsets to 0 and * both naiveties to OFFSET_NAIVE. * The function returns 0 if everything's OK, and -1 on error. */ static int classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1, PyObject *tzinfoarg1, PyObject *o2, int *offset2, naivety *n2, PyObject *tzinfoarg2) { if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) { *offset1 = *offset2 = 0; *n1 = *n2 = OFFSET_NAIVE; } else { *n1 = classify_utcoffset(o1, tzinfoarg1, offset1); if (*n1 == OFFSET_ERROR) return -1; *n2 = classify_utcoffset(o2, tzinfoarg2, offset2); if (*n2 == OFFSET_ERROR) return -1; } return 0; } /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None, * stuff * ", tzinfo=" + repr(tzinfo) * before the closing ")". */ static PyObject * append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo) { PyObject *temp; assert(PyString_Check(repr)); assert(tzinfo); if (tzinfo == Py_None) return repr; /* Get rid of the trailing ')'. */ assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')'); temp = PyString_FromStringAndSize(PyString_AsString(repr), PyString_Size(repr) - 1); Py_DECREF(repr); if (temp == NULL) return NULL; repr = temp; /* Append ", tzinfo=". */ PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo=")); /* Append repr(tzinfo). */ PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo)); /* Add a closing paren. */ PyString_ConcatAndDel(&repr, PyString_FromString(")")); return repr; } /* --------------------------------------------------------------------------- * String format helpers. */ static PyObject * format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds) { static char *DayNames[] = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" }; static char *MonthNames[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; char buffer[128]; int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date)); PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d", DayNames[wday], MonthNames[GET_MONTH(date) - 1], GET_DAY(date), hours, minutes, seconds, GET_YEAR(date)); return PyString_FromString(buffer); } /* Add an hours & minutes UTC offset string to buf. buf has no more than * buflen bytes remaining. The UTC offset is gotten by calling * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into * *buf, and that's all. Else the returned value is checked for sanity (an * integer in range), and if that's OK it's converted to an hours & minutes * string of the form * sign HH sep MM * Returns 0 if everything is OK. If the return value from utcoffset() is * bogus, an appropriate exception is set and -1 is returned. */ static int format_utcoffset(char *buf, size_t buflen, const char *sep, PyObject *tzinfo, PyObject *tzinfoarg) { int offset; int hours; int minutes; char sign; int none; offset = call_utcoffset(tzinfo, tzinfoarg, &none); if (offset == -1 && PyErr_Occurred()) return -1; if (none) { *buf = '\0'; return 0; } sign = '+'; if (offset < 0) { sign = '-'; offset = - offset; } hours = divmod(offset, 60, &minutes); PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes); return 0; } /* I sure don't want to reproduce the strftime code from the time module, * so this imports the module and calls it. All the hair is due to * giving special meanings to the %z and %Z format codes via a preprocessing * step on the format string. * tzinfoarg is the argument to pass to the object's tzinfo method, if * needed. */ static PyObject * wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple, PyObject *tzinfoarg) { PyObject *result = NULL; /* guilty until proved innocent */ PyObject *zreplacement = NULL; /* py string, replacement for %z */ PyObject *Zreplacement = NULL; /* py string, replacement for %Z */ char *pin; /* pointer to next char in input format */ char ch; /* next char in input format */ PyObject *newfmt = NULL; /* py string, the output format */ char *pnew; /* pointer to available byte in output format */ char totalnew; /* number bytes total in output format buffer, exclusive of trailing \0 */ char usednew; /* number bytes used so far in output format buffer */ char *ptoappend; /* pointer to string to append to output buffer */ int ntoappend; /* # of bytes to append to output buffer */ assert(object && format && timetuple); assert(PyString_Check(format)); /* Give up if the year is before 1900. * Python strftime() plays games with the year, and different * games depending on whether envar PYTHON2K is set. This makes * years before 1900 a nightmare, even if the platform strftime * supports them (and not all do). * We could get a lot farther here by avoiding Python's strftime * wrapper and calling the C strftime() directly, but that isn't * an option in the Python implementation of this module. */ { long year; PyObject *pyyear = PySequence_GetItem(timetuple, 0); if (pyyear == NULL) return NULL; assert(PyInt_Check(pyyear)); year = PyInt_AsLong(pyyear); Py_DECREF(pyyear); if (year < 1900) { PyErr_Format(PyExc_ValueError, "year=%ld is before " "1900; the datetime strftime() " "methods require year >= 1900", year); return NULL; } } /* Scan the input format, looking for %z and %Z escapes, building * a new format. Since computing the replacements for those codes * is expensive, don't unless they're actually used. */ totalnew = PyString_Size(format); /* realistic if no %z/%Z */ newfmt = PyString_FromStringAndSize(NULL, totalnew); if (newfmt == NULL) goto Done; pnew = PyString_AsString(newfmt); usednew = 0; pin = PyString_AsString(format); while ((ch = *pin++) != '\0') { if (ch != '%') { ptoappend = pin - 1; ntoappend = 1; } else if ((ch = *pin++) == '\0') { /* There's a lone trailing %; doesn't make sense. */ PyErr_SetString(PyExc_ValueError, "strftime format " "ends with raw %"); goto Done; } /* A % has been seen and ch is the character after it. */ else if (ch == 'z') { if (zreplacement == NULL) { /* format utcoffset */ char buf[100]; PyObject *tzinfo = get_tzinfo_member(object); zreplacement = PyString_FromString(""); if (zreplacement == NULL) goto Done; if (tzinfo != Py_None && tzinfo != NULL) { assert(tzinfoarg != NULL); if (format_utcoffset(buf, sizeof(buf), "", tzinfo, tzinfoarg) < 0) goto Done; Py_DECREF(zreplacement); zreplacement = PyString_FromString(buf); if (zreplacement == NULL) goto Done; } } assert(zreplacement != NULL); ptoappend = PyString_AsString(zreplacement); ntoappend = PyString_Size(zreplacement); } else if (ch == 'Z') { /* format tzname */ if (Zreplacement == NULL) { PyObject *tzinfo = get_tzinfo_member(object); Zreplacement = PyString_FromString(""); if (Zreplacement == NULL) goto Done; if (tzinfo != Py_None && tzinfo != NULL) { PyObject *temp; assert(tzinfoarg != NULL); temp = call_tzname(tzinfo, tzinfoarg); if (temp == NULL) goto Done; if (temp != Py_None) { assert(PyString_Check(temp)); /* Since the tzname is getting * stuffed into the format, we * have to double any % signs * so that strftime doesn't * treat them as format codes. */ Py_DECREF(Zreplacement); Zreplacement = PyObject_CallMethod( temp, "replace", "ss", "%", "%%"); Py_DECREF(temp); if (Zreplacement == NULL) goto Done; } else Py_DECREF(temp); } } assert(Zreplacement != NULL); ptoappend = PyString_AsString(Zreplacement); ntoappend = PyString_Size(Zreplacement); } else { /* percent followed by neither z nor Z */ ptoappend = pin - 2; ntoappend = 2; } /* Append the ntoappend chars starting at ptoappend to * the new format. */ assert(ntoappend >= 0); if (ntoappend == 0) continue; while (usednew + ntoappend > totalnew) { int bigger = totalnew << 1; if ((bigger >> 1) != totalnew) { /* overflow */ PyErr_NoMemory(); goto Done; } if (_PyString_Resize(&newfmt, bigger) < 0) goto Done; totalnew = bigger; pnew = PyString_AsString(newfmt) + usednew; } memcpy(pnew, ptoappend, ntoappend); pnew += ntoappend; usednew += ntoappend; assert(usednew <= totalnew); } /* end while() */ if (_PyString_Resize(&newfmt, usednew) < 0) goto Done; { PyObject *time = PyImport_ImportModule("time"); if (time == NULL) goto Done; result = PyObject_CallMethod(time, "strftime", "OO", newfmt, timetuple); Py_DECREF(time); } Done: Py_XDECREF(zreplacement); Py_XDECREF(Zreplacement); Py_XDECREF(newfmt); return result; } static char * isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen) { int x; x = PyOS_snprintf(buffer, bufflen, "%04d-%02d-%02d", GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt)); return buffer + x; } static void isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen) { int us = DATE_GET_MICROSECOND(dt); PyOS_snprintf(buffer, bufflen, "%02d:%02d:%02d", /* 8 characters */ DATE_GET_HOUR(dt), DATE_GET_MINUTE(dt), DATE_GET_SECOND(dt)); if (us) PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us); } /* --------------------------------------------------------------------------- * Wrap functions from the time module. These aren't directly available * from C. Perhaps they should be. */ /* Call time.time() and return its result (a Python float). */ static PyObject * time_time(void) { PyObject *result = NULL; PyObject *time = PyImport_ImportModule("time"); if (time != NULL) { result = PyObject_CallMethod(time, "time", "()"); Py_DECREF(time); } return result; } /* Build a time.struct_time. The weekday and day number are automatically * computed from the y,m,d args. */ static PyObject * build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag) { PyObject *time; PyObject *result = NULL; time = PyImport_ImportModule("time"); if (time != NULL) { result = PyObject_CallMethod(time, "struct_time", "((iiiiiiiii))", y, m, d, hh, mm, ss, weekday(y, m, d), days_before_month(y, m) + d, dstflag); Py_DECREF(time); } return result; } /* --------------------------------------------------------------------------- * Miscellaneous helpers. */ /* For obscure reasons, we need to use tp_richcompare instead of tp_compare. * The comparisons here all most naturally compute a cmp()-like result. * This little helper turns that into a bool result for rich comparisons. */ static PyObject * diff_to_bool(int diff, int op) { PyObject *result; int istrue; switch (op) { case Py_EQ: istrue = diff == 0; break; case Py_NE: istrue = diff != 0; break; case Py_LE: istrue = diff <= 0; break; case Py_GE: istrue = diff >= 0; break; case Py_LT: istrue = diff < 0; break; case Py_GT: istrue = diff > 0; break; default: assert(! "op unknown"); istrue = 0; /* To shut up compiler */ } result = istrue ? Py_True : Py_False; Py_INCREF(result); return result; } /* --------------------------------------------------------------------------- * Helpers for setting object fields. These work on pointers to the * appropriate base class. */ /* For date, datetime and datetimetz. */ static void set_date_fields(PyDateTime_Date *self, int y, int m, int d) { self->hashcode = -1; SET_YEAR(self, y); SET_MONTH(self, m); SET_DAY(self, d); } /* For datetime and datetimetz. */ static void set_datetime_time_fields(PyDateTime_Date *self, int h, int m, int s, int us) { DATE_SET_HOUR(self, h); DATE_SET_MINUTE(self, m); DATE_SET_SECOND(self, s); DATE_SET_MICROSECOND(self, us); } /* For time and timetz. */ static void set_time_fields(PyDateTime_Time *self, int h, int m, int s, int us) { self->hashcode = -1; TIME_SET_HOUR(self, h); TIME_SET_MINUTE(self, m); TIME_SET_SECOND(self, s); TIME_SET_MICROSECOND(self, us); } /* --------------------------------------------------------------------------- * Create various objects, mostly without range checking. */ /* Create a date instance with no range checking. */ static PyObject * new_date(int year, int month, int day) { PyDateTime_Date *self; self = PyObject_New(PyDateTime_Date, &PyDateTime_DateType); if (self != NULL) set_date_fields(self, year, month, day); return (PyObject *) self; } /* Create a datetime instance with no range checking. */ static PyObject * new_datetime(int year, int month, int day, int hour, int minute, int second, int usecond) { PyDateTime_DateTime *self; self = PyObject_New(PyDateTime_DateTime, &PyDateTime_DateTimeType); if (self != NULL) { set_date_fields((PyDateTime_Date *)self, year, month, day); set_datetime_time_fields((PyDateTime_Date *)self, hour, minute, second, usecond); } return (PyObject *) self; } /* Create a datetimetz instance with no range checking. */ static PyObject * new_datetimetz(int year, int month, int day, int hour, int minute, int second, int usecond, PyObject *tzinfo) { PyDateTime_DateTimeTZ *self; self = PyObject_New(PyDateTime_DateTimeTZ, &PyDateTime_DateTimeTZType); if (self != NULL) { set_date_fields((PyDateTime_Date *)self, year, month, day); set_datetime_time_fields((PyDateTime_Date *)self, hour, minute, second, usecond); Py_INCREF(tzinfo); self->tzinfo = tzinfo; } return (PyObject *) self; } /* Create a time instance with no range checking. */ static PyObject * new_time(int hour, int minute, int second, int usecond) { PyDateTime_Time *self; self = PyObject_New(PyDateTime_Time, &PyDateTime_TimeType); if (self != NULL) set_time_fields(self, hour, minute, second, usecond); return (PyObject *) self; } /* Create a timetz instance with no range checking. */ static PyObject * new_timetz(int hour, int minute, int second, int usecond, PyObject *tzinfo) { PyDateTime_TimeTZ *self; self = PyObject_New(PyDateTime_TimeTZ, &PyDateTime_TimeTZType); if (self != NULL) { set_time_fields((PyDateTime_Time *)self, hour, minute, second, usecond); Py_INCREF(tzinfo); self->tzinfo = tzinfo; } return (PyObject *) self; } /* Create a timedelta instance. Normalize the members iff normalize is * true. Passing false is a speed optimization, if you know for sure * that seconds and microseconds are already in their proper ranges. In any * case, raises OverflowError and returns NULL if the normalized days is out * of range). */ static PyObject * new_delta(int days, int seconds, int microseconds, int normalize) { PyDateTime_Delta *self; if (normalize) normalize_d_s_us(&days, &seconds, µseconds); assert(0 <= seconds && seconds < 24*3600); assert(0 <= microseconds && microseconds < 1000000); if (check_delta_day_range(days) < 0) return NULL; self = PyObject_New(PyDateTime_Delta, &PyDateTime_DeltaType); if (self != NULL) { self->hashcode = -1; SET_TD_DAYS(self, days); SET_TD_SECONDS(self, seconds); SET_TD_MICROSECONDS(self, microseconds); } return (PyObject *) self; } /* --------------------------------------------------------------------------- * Cached Python objects; these are set by the module init function. */ /* Conversion factors. */ static PyObject *us_per_us = NULL; /* 1 */ static PyObject *us_per_ms = NULL; /* 1000 */ static PyObject *us_per_second = NULL; /* 1000000 */ static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */ static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */ static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */ static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */ static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */ /* Callables to support unpickling. */ static PyObject *date_unpickler_object = NULL; static PyObject *datetime_unpickler_object = NULL; static PyObject *datetimetz_unpickler_object = NULL; static PyObject *tzinfo_unpickler_object = NULL; static PyObject *time_unpickler_object = NULL; static PyObject *timetz_unpickler_object = NULL; /* --------------------------------------------------------------------------- * Class implementations. */ /* * PyDateTime_Delta implementation. */ /* Convert a timedelta to a number of us, * (24*3600*self.days + self.seconds)*1000000 + self.microseconds * as a Python int or long. * Doing mixed-radix arithmetic by hand instead is excruciating in C, * due to ubiquitous overflow possibilities. */ static PyObject * delta_to_microseconds(PyDateTime_Delta *self) { PyObject *x1 = NULL; PyObject *x2 = NULL; PyObject *x3 = NULL; PyObject *result = NULL; x1 = PyInt_FromLong(GET_TD_DAYS(self)); if (x1 == NULL) goto Done; x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */ if (x2 == NULL) goto Done; Py_DECREF(x1); x1 = NULL; /* x2 has days in seconds */ x1 = PyInt_FromLong(GET_TD_SECONDS(self)); /* seconds */ if (x1 == NULL) goto Done; x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */ if (x3 == NULL) goto Done; Py_DECREF(x1); Py_DECREF(x2); x1 = x2 = NULL; /* x3 has days+seconds in seconds */ x1 = PyNumber_Multiply(x3, us_per_second); /* us */ if (x1 == NULL) goto Done; Py_DECREF(x3); x3 = NULL; /* x1 has days+seconds in us */ x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self)); if (x2 == NULL) goto Done; result = PyNumber_Add(x1, x2); Done: Py_XDECREF(x1); Py_XDECREF(x2); Py_XDECREF(x3); return result; } /* Convert a number of us (as a Python int or long) to a timedelta. */ static PyObject * microseconds_to_delta(PyObject *pyus) { int us; int s; int d; long temp; PyObject *tuple = NULL; PyObject *num = NULL; PyObject *result = NULL; tuple = PyNumber_Divmod(pyus, us_per_second); if (tuple == NULL) goto Done; num = PyTuple_GetItem(tuple, 1); /* us */ if (num == NULL) goto Done; temp = PyLong_AsLong(num); num = NULL; if (temp == -1 && PyErr_Occurred()) goto Done; assert(0 <= temp && temp < 1000000); us = (int)temp; if (us < 0) { /* The divisor was positive, so this must be an error. */ assert(PyErr_Occurred()); goto Done; } num = PyTuple_GetItem(tuple, 0); /* leftover seconds */ if (num == NULL) goto Done; Py_INCREF(num); Py_DECREF(tuple); tuple = PyNumber_Divmod(num, seconds_per_day); if (tuple == NULL) goto Done; Py_DECREF(num); num = PyTuple_GetItem(tuple, 1); /* seconds */ if (num == NULL) goto Done; temp = PyLong_AsLong(num); num = NULL; if (temp == -1 && PyErr_Occurred()) goto Done; assert(0 <= temp && temp < 24*3600); s = (int)temp; if (s < 0) { /* The divisor was positive, so this must be an error. */ assert(PyErr_Occurred()); goto Done; } num = PyTuple_GetItem(tuple, 0); /* leftover days */ if (num == NULL) goto Done; Py_INCREF(num); temp = PyLong_AsLong(num); if (temp == -1 && PyErr_Occurred()) goto Done; d = (int)temp; if ((long)d != temp) { PyErr_SetString(PyExc_OverflowError, "normalized days too " "large to fit in a C int"); goto Done; } result = new_delta(d, s, us, 0); Done: Py_XDECREF(tuple); Py_XDECREF(num); return result; } static PyObject * multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta) { PyObject *pyus_in; PyObject *pyus_out; PyObject *result; pyus_in = delta_to_microseconds(delta); if (pyus_in == NULL) return NULL; pyus_out = PyNumber_Multiply(pyus_in, intobj); Py_DECREF(pyus_in); if (pyus_out == NULL) return NULL; result = microseconds_to_delta(pyus_out); Py_DECREF(pyus_out); return result; } static PyObject * divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj) { PyObject *pyus_in; PyObject *pyus_out; PyObject *result; pyus_in = delta_to_microseconds(delta); if (pyus_in == NULL) return NULL; pyus_out = PyNumber_FloorDivide(pyus_in, intobj); Py_DECREF(pyus_in); if (pyus_out == NULL) return NULL; result = microseconds_to_delta(pyus_out); Py_DECREF(pyus_out); return result; } static PyObject * delta_add(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDelta_Check(left) && PyDelta_Check(right)) { /* delta + delta */ /* The C-level additions can't overflow because of the * invariant bounds. */ int days = GET_TD_DAYS(left) + GET_TD_DAYS(right); int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right); int microseconds = GET_TD_MICROSECONDS(left) + GET_TD_MICROSECONDS(right); result = new_delta(days, seconds, microseconds, 1); } if (result == Py_NotImplemented) Py_INCREF(result); return result; } static PyObject * delta_negative(PyDateTime_Delta *self) { return new_delta(-GET_TD_DAYS(self), -GET_TD_SECONDS(self), -GET_TD_MICROSECONDS(self), 1); } static PyObject * delta_positive(PyDateTime_Delta *self) { /* Could optimize this (by returning self) if this isn't a * subclass -- but who uses unary + ? Approximately nobody. */ return new_delta(GET_TD_DAYS(self), GET_TD_SECONDS(self), GET_TD_MICROSECONDS(self), 0); } static PyObject * delta_abs(PyDateTime_Delta *self) { PyObject *result; assert(GET_TD_MICROSECONDS(self) >= 0); assert(GET_TD_SECONDS(self) >= 0); if (GET_TD_DAYS(self) < 0) result = delta_negative(self); else result = delta_positive(self); return result; } static PyObject * delta_subtract(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDelta_Check(left) && PyDelta_Check(right)) { /* delta - delta */ PyObject *minus_right = PyNumber_Negative(right); if (minus_right) { result = delta_add(left, minus_right); Py_DECREF(minus_right); } else result = NULL; } if (result == Py_NotImplemented) Py_INCREF(result); return result; } /* This is more natural as a tp_compare, but doesn't work then: for whatever * reason, Python's try_3way_compare ignores tp_compare unless * PyInstance_Check returns true, but these aren't old-style classes. */ static PyObject * delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op) { int diff; if (! PyDelta_CheckExact(other)) { PyErr_Format(PyExc_TypeError, "can't compare %s to %s instance", self->ob_type->tp_name, other->ob_type->tp_name); return NULL; } diff = GET_TD_DAYS(self) - GET_TD_DAYS(other); if (diff == 0) { diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other); if (diff == 0) diff = GET_TD_MICROSECONDS(self) - GET_TD_MICROSECONDS(other); } return diff_to_bool(diff, op); } static PyObject *delta_getstate(PyDateTime_Delta *self); static long delta_hash(PyDateTime_Delta *self) { if (self->hashcode == -1) { PyObject *temp = delta_getstate(self); if (temp != NULL) { self->hashcode = PyObject_Hash(temp); Py_DECREF(temp); } } return self->hashcode; } static PyObject * delta_multiply(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDelta_Check(left)) { /* delta * ??? */ if (PyInt_Check(right) || PyLong_Check(right)) result = multiply_int_timedelta(right, (PyDateTime_Delta *) left); } else if (PyInt_Check(left) || PyLong_Check(left)) result = multiply_int_timedelta(left, (PyDateTime_Delta *) right); if (result == Py_NotImplemented) Py_INCREF(result); return result; } static PyObject * delta_divide(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDelta_Check(left)) { /* delta * ??? */ if (PyInt_Check(right) || PyLong_Check(right)) result = divide_timedelta_int( (PyDateTime_Delta *)left, right); } if (result == Py_NotImplemented) Py_INCREF(result); return result; } /* Fold in the value of the tag ("seconds", "weeks", etc) component of a * timedelta constructor. sofar is the # of microseconds accounted for * so far, and there are factor microseconds per current unit, the number * of which is given by num. num * factor is added to sofar in a * numerically careful way, and that's the result. Any fractional * microseconds left over (this can happen if num is a float type) are * added into *leftover. * Note that there are many ways this can give an error (NULL) return. */ static PyObject * accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor, double *leftover) { PyObject *prod; PyObject *sum; assert(num != NULL); if (PyInt_Check(num) || PyLong_Check(num)) { prod = PyNumber_Multiply(num, factor); if (prod == NULL) return NULL; sum = PyNumber_Add(sofar, prod); Py_DECREF(prod); return sum; } if (PyFloat_Check(num)) { double dnum; double fracpart; double intpart; PyObject *x; PyObject *y; /* The Plan: decompose num into an integer part and a * fractional part, num = intpart + fracpart. * Then num * factor == * intpart * factor + fracpart * factor * and the LHS can be computed exactly in long arithmetic. * The RHS is again broken into an int part and frac part. * and the frac part is added into *leftover. */ dnum = PyFloat_AsDouble(num); if (dnum == -1.0 && PyErr_Occurred()) return NULL; fracpart = modf(dnum, &intpart); x = PyLong_FromDouble(intpart); if (x == NULL) return NULL; prod = PyNumber_Multiply(x, factor); Py_DECREF(x); if (prod == NULL) return NULL; sum = PyNumber_Add(sofar, prod); Py_DECREF(prod); if (sum == NULL) return NULL; if (fracpart == 0.0) return sum; /* So far we've lost no information. Dealing with the * fractional part requires float arithmetic, and may * lose a little info. */ assert(PyInt_Check(factor) || PyLong_Check(factor)); if (PyInt_Check(factor)) dnum = (double)PyInt_AsLong(factor); else dnum = PyLong_AsDouble(factor); dnum *= fracpart; fracpart = modf(dnum, &intpart); x = PyLong_FromDouble(intpart); if (x == NULL) { Py_DECREF(sum); return NULL; } y = PyNumber_Add(sum, x); Py_DECREF(sum); Py_DECREF(x); *leftover += fracpart; return y; } PyErr_Format(PyExc_TypeError, "unsupported type for timedelta %s component: %s", tag, num->ob_type->tp_name); return NULL; } static PyObject * delta_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; /* Argument objects. */ PyObject *day = NULL; PyObject *second = NULL; PyObject *us = NULL; PyObject *ms = NULL; PyObject *minute = NULL; PyObject *hour = NULL; PyObject *week = NULL; PyObject *x = NULL; /* running sum of microseconds */ PyObject *y = NULL; /* temp sum of microseconds */ double leftover_us = 0.0; static char *keywords[] = { "days", "seconds", "microseconds", "milliseconds", "minutes", "hours", "weeks", NULL }; if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__", keywords, &day, &second, &us, &ms, &minute, &hour, &week) == 0) goto Done; x = PyInt_FromLong(0); if (x == NULL) goto Done; #define CLEANUP \ Py_DECREF(x); \ x = y; \ if (x == NULL) \ goto Done if (us) { y = accum("microseconds", x, us, us_per_us, &leftover_us); CLEANUP; } if (ms) { y = accum("milliseconds", x, ms, us_per_ms, &leftover_us); CLEANUP; } if (second) { y = accum("seconds", x, second, us_per_second, &leftover_us); CLEANUP; } if (minute) { y = accum("minutes", x, minute, us_per_minute, &leftover_us); CLEANUP; } if (hour) { y = accum("hours", x, hour, us_per_hour, &leftover_us); CLEANUP; } if (day) { y = accum("days", x, day, us_per_day, &leftover_us); CLEANUP; } if (week) { y = accum("weeks", x, week, us_per_week, &leftover_us); CLEANUP; } if (leftover_us) { /* Round to nearest whole # of us, and add into x. */ PyObject *temp; if (leftover_us >= 0.0) leftover_us = floor(leftover_us + 0.5); else leftover_us = ceil(leftover_us - 0.5); temp = PyLong_FromDouble(leftover_us); if (temp == NULL) { Py_DECREF(x); goto Done; } y = PyNumber_Add(x, temp); Py_DECREF(temp); CLEANUP; } self = microseconds_to_delta(x); Py_DECREF(x); Done: return self; #undef CLEANUP } static int delta_nonzero(PyDateTime_Delta *self) { return (GET_TD_DAYS(self) != 0 || GET_TD_SECONDS(self) != 0 || GET_TD_MICROSECONDS(self) != 0); } static PyObject * delta_repr(PyDateTime_Delta *self) { if (GET_TD_MICROSECONDS(self) != 0) return PyString_FromFormat("%s(%d, %d, %d)", self->ob_type->tp_name, GET_TD_DAYS(self), GET_TD_SECONDS(self), GET_TD_MICROSECONDS(self)); if (GET_TD_SECONDS(self) != 0) return PyString_FromFormat("%s(%d, %d)", self->ob_type->tp_name, GET_TD_DAYS(self), GET_TD_SECONDS(self)); return PyString_FromFormat("%s(%d)", self->ob_type->tp_name, GET_TD_DAYS(self)); } static PyObject * delta_str(PyDateTime_Delta *self) { int days = GET_TD_DAYS(self); int seconds = GET_TD_SECONDS(self); int us = GET_TD_MICROSECONDS(self); int hours; int minutes; char buf[100]; char *pbuf = buf; size_t buflen = sizeof(buf); int n; minutes = divmod(seconds, 60, &seconds); hours = divmod(minutes, 60, &minutes); if (days) { n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days, (days == 1 || days == -1) ? "" : "s"); if (n < 0 || (size_t)n >= buflen) goto Fail; pbuf += n; buflen -= (size_t)n; } n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d", hours, minutes, seconds); if (n < 0 || (size_t)n >= buflen) goto Fail; pbuf += n; buflen -= (size_t)n; if (us) { n = PyOS_snprintf(pbuf, buflen, ".%06d", us); if (n < 0 || (size_t)n >= buflen) goto Fail; pbuf += n; } return PyString_FromStringAndSize(buf, pbuf - buf); Fail: PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf"); return NULL; } /* Pickle support. Quite a maze! While __getstate__/__setstate__ sufficed * in the Python implementation, the C implementation also requires * __reduce__, and a __safe_for_unpickling__ attr in the type object. */ static PyObject * delta_getstate(PyDateTime_Delta *self) { return Py_BuildValue("iii", GET_TD_DAYS(self), GET_TD_SECONDS(self), GET_TD_MICROSECONDS(self)); } static PyObject * delta_setstate(PyDateTime_Delta *self, PyObject *state) { int day; int second; int us; if (!PyArg_ParseTuple(state, "iii:__setstate__", &day, &second, &us)) return NULL; self->hashcode = -1; SET_TD_DAYS(self, day); SET_TD_SECONDS(self, second); SET_TD_MICROSECONDS(self, us); Py_INCREF(Py_None); return Py_None; } static PyObject * delta_reduce(PyDateTime_Delta* self) { PyObject* result = NULL; PyObject* state = delta_getstate(self); if (state != NULL) { /* The funky "()" in the format string creates an empty * tuple as the 2nd component of the result 3-tuple. */ result = Py_BuildValue("O()O", self->ob_type, state); Py_DECREF(state); } return result; } #define OFFSET(field) offsetof(PyDateTime_Delta, field) static PyMemberDef delta_members[] = { {"days", T_INT, OFFSET(days), READONLY, PyDoc_STR("Number of days.")}, {"seconds", T_INT, OFFSET(seconds), READONLY, PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")}, {"microseconds", T_INT, OFFSET(microseconds), READONLY, PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")}, {NULL} }; static PyMethodDef delta_methods[] = { {"__setstate__", (PyCFunction)delta_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)delta_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL}, }; static char delta_doc[] = PyDoc_STR("Difference between two datetime values."); static PyNumberMethods delta_as_number = { delta_add, /* nb_add */ delta_subtract, /* nb_subtract */ delta_multiply, /* nb_multiply */ delta_divide, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ (unaryfunc)delta_negative, /* nb_negative */ (unaryfunc)delta_positive, /* nb_positive */ (unaryfunc)delta_abs, /* nb_absolute */ (inquiry)delta_nonzero, /* nb_nonzero */ 0, /*nb_invert*/ 0, /*nb_lshift*/ 0, /*nb_rshift*/ 0, /*nb_and*/ 0, /*nb_xor*/ 0, /*nb_or*/ 0, /*nb_coerce*/ 0, /*nb_int*/ 0, /*nb_long*/ 0, /*nb_float*/ 0, /*nb_oct*/ 0, /*nb_hex*/ 0, /*nb_inplace_add*/ 0, /*nb_inplace_subtract*/ 0, /*nb_inplace_multiply*/ 0, /*nb_inplace_divide*/ 0, /*nb_inplace_remainder*/ 0, /*nb_inplace_power*/ 0, /*nb_inplace_lshift*/ 0, /*nb_inplace_rshift*/ 0, /*nb_inplace_and*/ 0, /*nb_inplace_xor*/ 0, /*nb_inplace_or*/ delta_divide, /* nb_floor_divide */ 0, /* nb_true_divide */ 0, /* nb_inplace_floor_divide */ 0, /* nb_inplace_true_divide */ }; static PyTypeObject PyDateTime_DeltaType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.timedelta", /* tp_name */ sizeof(PyDateTime_Delta), /* tp_basicsize */ 0, /* tp_itemsize */ 0, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)delta_repr, /* tp_repr */ &delta_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)delta_hash, /* tp_hash */ 0, /* tp_call */ (reprfunc)delta_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES, /* tp_flags */ delta_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ (richcmpfunc)delta_richcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ delta_methods, /* tp_methods */ delta_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ delta_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* * PyDateTime_Date implementation. */ /* Accessor properties. */ static PyObject * date_year(PyDateTime_Date *self, void *unused) { return PyInt_FromLong(GET_YEAR(self)); } static PyObject * date_month(PyDateTime_Date *self, void *unused) { return PyInt_FromLong(GET_MONTH(self)); } static PyObject * date_day(PyDateTime_Date *self, void *unused) { return PyInt_FromLong(GET_DAY(self)); } static PyGetSetDef date_getset[] = { {"year", (getter)date_year}, {"month", (getter)date_month}, {"day", (getter)date_day}, {NULL} }; /* Constructors. */ static char *date_kws[] = {"year", "month", "day", NULL}; static PyObject * date_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; int year; int month; int day; if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws, &year, &month, &day)) { if (check_date_args(year, month, day) < 0) return NULL; self = new_date(year, month, day); } return self; } /* Return new date from localtime(t). */ static PyObject * date_local_from_time_t(PyObject *cls, time_t t) { struct tm *tm; PyObject *result = NULL; tm = localtime(&t); if (tm) result = PyObject_CallFunction(cls, "iii", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday); else PyErr_SetString(PyExc_ValueError, "timestamp out of range for " "platform localtime() function"); return result; } /* Return new date from current time. * We say this is equivalent to fromtimestamp(time.time()), and the * only way to be sure of that is to *call* time.time(). That's not * generally the same as calling C's time. */ static PyObject * date_today(PyObject *cls, PyObject *dummy) { PyObject *time; PyObject *result; time = time_time(); if (time == NULL) return NULL; /* Note well: today() is a class method, so this may not call * date.fromtimestamp. For example, it may call * datetime.fromtimestamp. That's why we need all the accuracy * time.time() delivers; if someone were gonzo about optimization, * date.today() could get away with plain C time(). */ result = PyObject_CallMethod(cls, "fromtimestamp", "O", time); Py_DECREF(time); return result; } /* Return new date from given timestamp (Python timestamp -- a double). */ static PyObject * date_fromtimestamp(PyObject *cls, PyObject *args) { double timestamp; PyObject *result = NULL; if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp)) result = date_local_from_time_t(cls, (time_t)timestamp); return result; } /* Return new date from proleptic Gregorian ordinal. Raises ValueError if * the ordinal is out of range. */ static PyObject * date_fromordinal(PyObject *cls, PyObject *args) { PyObject *result = NULL; int ordinal; if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) { int year; int month; int day; if (ordinal < 1) PyErr_SetString(PyExc_ValueError, "ordinal must be " ">= 1"); else { ord_to_ymd(ordinal, &year, &month, &day); result = PyObject_CallFunction(cls, "iii", year, month, day); } } return result; } /* * Date arithmetic. */ /* date + timedelta -> date. If arg negate is true, subtract the timedelta * instead. */ static PyObject * add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate) { PyObject *result = NULL; int year = GET_YEAR(date); int month = GET_MONTH(date); int deltadays = GET_TD_DAYS(delta); /* C-level overflow is impossible because |deltadays| < 1e9. */ int day = GET_DAY(date) + (negate ? -deltadays : deltadays); if (normalize_date(&year, &month, &day) >= 0) result = new_date(year, month, day); return result; } static PyObject * date_add(PyObject *left, PyObject *right) { if (PyDateTime_Check(left) || PyDateTime_Check(right)) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } if (PyDate_CheckExact(left)) { /* date + ??? */ if (PyDelta_Check(right)) /* date + delta */ return add_date_timedelta((PyDateTime_Date *) left, (PyDateTime_Delta *) right, 0); } else { /* ??? + date * 'right' must be one of us, or we wouldn't have been called */ if (PyDelta_Check(left)) /* delta + date */ return add_date_timedelta((PyDateTime_Date *) right, (PyDateTime_Delta *) left, 0); } Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } static PyObject * date_subtract(PyObject *left, PyObject *right) { if (PyDateTime_Check(left) || PyDateTime_Check(right)) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } if (PyDate_CheckExact(left)) { if (PyDate_CheckExact(right)) { /* date - date */ int left_ord = ymd_to_ord(GET_YEAR(left), GET_MONTH(left), GET_DAY(left)); int right_ord = ymd_to_ord(GET_YEAR(right), GET_MONTH(right), GET_DAY(right)); return new_delta(left_ord - right_ord, 0, 0, 0); } if (PyDelta_Check(right)) { /* date - delta */ return add_date_timedelta((PyDateTime_Date *) left, (PyDateTime_Delta *) right, 1); } } Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } /* Various ways to turn a date into a string. */ static PyObject * date_repr(PyDateTime_Date *self) { char buffer[1028]; char *typename; typename = self->ob_type->tp_name; PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)", typename, GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); return PyString_FromString(buffer); } static PyObject * date_isoformat(PyDateTime_Date *self) { char buffer[128]; isoformat_date(self, buffer, sizeof(buffer)); return PyString_FromString(buffer); } /* str() calls the appropriate isofomat() method. */ static PyObject * date_str(PyDateTime_Date *self) { return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); } static PyObject * date_ctime(PyDateTime_Date *self) { return format_ctime(self, 0, 0, 0); } static PyObject * date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw) { /* This method can be inherited, and needs to call the * timetuple() method appropriate to self's class. */ PyObject *result; PyObject *format; PyObject *tuple; static char *keywords[] = {"format", NULL}; if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords, &PyString_Type, &format)) return NULL; tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()"); if (tuple == NULL) return NULL; result = wrap_strftime((PyObject *)self, format, tuple, (PyObject *)self); Py_DECREF(tuple); return result; } /* ISO methods. */ static PyObject * date_isoweekday(PyDateTime_Date *self) { int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); return PyInt_FromLong(dow + 1); } static PyObject * date_isocalendar(PyDateTime_Date *self) { int year = GET_YEAR(self); int week1_monday = iso_week1_monday(year); int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self)); int week; int day; week = divmod(today - week1_monday, 7, &day); if (week < 0) { --year; week1_monday = iso_week1_monday(year); week = divmod(today - week1_monday, 7, &day); } else if (week >= 52 && today >= iso_week1_monday(year + 1)) { ++year; week = 0; } return Py_BuildValue("iii", year, week + 1, day + 1); } /* Miscellaneous methods. */ /* This is more natural as a tp_compare, but doesn't work then: for whatever * reason, Python's try_3way_compare ignores tp_compare unless * PyInstance_Check returns true, but these aren't old-style classes. */ static PyObject * date_richcompare(PyDateTime_Date *self, PyObject *other, int op) { int diff; if (! PyDate_Check(other)) { PyErr_Format(PyExc_TypeError, "can't compare date to %s instance", other->ob_type->tp_name); return NULL; } diff = memcmp(self->data, ((PyDateTime_Date *)other)->data, _PyDateTime_DATE_DATASIZE); return diff_to_bool(diff, op); } static PyObject * date_timetuple(PyDateTime_Date *self) { return build_struct_time(GET_YEAR(self), GET_MONTH(self), GET_DAY(self), 0, 0, 0, -1); } static PyObject * date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw) { PyObject *clone; PyObject *tuple; int year = GET_YEAR(self); int month = GET_MONTH(self); int day = GET_DAY(self); if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws, &year, &month, &day)) return NULL; tuple = Py_BuildValue("iii", year, month, day); if (tuple == NULL) return NULL; clone = date_new(self->ob_type, tuple, NULL); Py_DECREF(tuple); return clone; } static PyObject *date_getstate(PyDateTime_Date *self); static long date_hash(PyDateTime_Date *self) { if (self->hashcode == -1) { PyObject *temp = date_getstate(self); if (temp != NULL) { self->hashcode = PyObject_Hash(temp); Py_DECREF(temp); } } return self->hashcode; } static PyObject * date_toordinal(PyDateTime_Date *self) { return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self), GET_DAY(self))); } static PyObject * date_weekday(PyDateTime_Date *self) { int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); return PyInt_FromLong(dow); } /* Pickle support. Quite a maze! */ static PyObject * date_getstate(PyDateTime_Date *self) { return PyString_FromStringAndSize(self->data, _PyDateTime_DATE_DATASIZE); } static PyObject * date_setstate(PyDateTime_Date *self, PyObject *state) { const int len = PyString_Size(state); unsigned char *pdata = (unsigned char*)PyString_AsString(state); if (! PyString_Check(state) || len != _PyDateTime_DATE_DATASIZE) { PyErr_SetString(PyExc_TypeError, "bad argument to date.__setstate__"); return NULL; } memcpy(self->data, pdata, _PyDateTime_DATE_DATASIZE); self->hashcode = -1; Py_INCREF(Py_None); return Py_None; } /* XXX This seems a ridiculously inefficient way to pickle a short string. */ static PyObject * date_pickler(PyObject *module, PyDateTime_Date *date) { PyObject *state; PyObject *result = NULL; if (! PyDate_CheckExact(date)) { PyErr_Format(PyExc_TypeError, "bad type passed to date pickler: %s", date->ob_type->tp_name); return NULL; } state = date_getstate(date); if (state) { result = Py_BuildValue("O(O)", date_unpickler_object, state); Py_DECREF(state); } return result; } static PyObject * date_unpickler(PyObject *module, PyObject *arg) { PyDateTime_Date *self; if (! PyString_CheckExact(arg)) { PyErr_Format(PyExc_TypeError, "bad type passed to date unpickler: %s", arg->ob_type->tp_name); return NULL; } self = PyObject_New(PyDateTime_Date, &PyDateTime_DateType); if (self != NULL) { PyObject *res = date_setstate(self, arg); if (res == NULL) { Py_DECREF(self); return NULL; } Py_DECREF(res); } return (PyObject *)self; } static PyMethodDef date_methods[] = { /* Class methods: */ {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS | METH_CLASS, PyDoc_STR("timestamp -> local date from a POSIX timestamp (like " "time.time()).")}, {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS | METH_CLASS, PyDoc_STR("int -> date corresponding to a proleptic Gregorian " "ordinal.")}, {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS, PyDoc_STR("Current date or datetime: same as " "self.__class__.fromtimestamp(time.time()).")}, /* Instance methods: */ {"ctime", (PyCFunction)date_ctime, METH_NOARGS, PyDoc_STR("Return ctime() style string.")}, {"strftime", (PyCFunction)date_strftime, METH_KEYWORDS, PyDoc_STR("format -> strftime() style string.")}, {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS, PyDoc_STR("Return time tuple, compatible with time.localtime().")}, {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS, PyDoc_STR("Return a 3-tuple containing ISO year, week number, and " "weekday.")}, {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS, PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")}, {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS, PyDoc_STR("Return the day of the week represented by the date.\n" "Monday == 1 ... Sunday == 7")}, {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS, PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year " "1 is day 1.")}, {"weekday", (PyCFunction)date_weekday, METH_NOARGS, PyDoc_STR("Return the day of the week represented by the date.\n" "Monday == 0 ... Sunday == 6")}, {"replace", (PyCFunction)date_replace, METH_KEYWORDS, PyDoc_STR("Return date with new specified fields.")}, {"__setstate__", (PyCFunction)date_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)date_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL} }; static char date_doc[] = PyDoc_STR("Basic date type."); static PyNumberMethods date_as_number = { date_add, /* nb_add */ date_subtract, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ 0, /* nb_nonzero */ }; static PyTypeObject PyDateTime_DateType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.date", /* tp_name */ sizeof(PyDateTime_Date), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)PyObject_Del, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)date_repr, /* tp_repr */ &date_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)date_hash, /* tp_hash */ 0, /* tp_call */ (reprfunc)date_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ date_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ (richcmpfunc)date_richcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ date_methods, /* tp_methods */ 0, /* tp_members */ date_getset, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ date_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* * PyDateTime_DateTime implementation. */ /* Accessor properties. */ static PyObject * datetime_hour(PyDateTime_DateTime *self, void *unused) { return PyInt_FromLong(DATE_GET_HOUR(self)); } static PyObject * datetime_minute(PyDateTime_DateTime *self, void *unused) { return PyInt_FromLong(DATE_GET_MINUTE(self)); } static PyObject * datetime_second(PyDateTime_DateTime *self, void *unused) { return PyInt_FromLong(DATE_GET_SECOND(self)); } static PyObject * datetime_microsecond(PyDateTime_DateTime *self, void *unused) { return PyInt_FromLong(DATE_GET_MICROSECOND(self)); } static PyGetSetDef datetime_getset[] = { {"hour", (getter)datetime_hour}, {"minute", (getter)datetime_minute}, {"second", (getter)datetime_second}, {"microsecond", (getter)datetime_microsecond}, {NULL} }; /* Constructors. */ static char *datetime_kws[] = {"year", "month", "day", "hour", "minute", "second", "microsecond", NULL}; static PyObject * datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; int year; int month; int day; int hour = 0; int minute = 0; int second = 0; int usecond = 0; if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiii", datetime_kws, &year, &month, &day, &hour, &minute, &second, &usecond)) { if (check_date_args(year, month, day) < 0) return NULL; if (check_time_args(hour, minute, second, usecond) < 0) return NULL; self = new_datetime(year, month, day, hour, minute, second, usecond); } return self; } /* TM_FUNC is the shared type of localtime() and gmtime(). */ typedef struct tm *(*TM_FUNC)(const time_t *timer); /* Internal helper. * Build datetime from a time_t and a distinct count of microseconds. * Pass localtime or gmtime for f, to control the interpretation of timet. */ static PyObject * datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us) { struct tm *tm; PyObject *result = NULL; tm = f(&timet); if (tm) result = PyObject_CallFunction(cls, "iiiiiii", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, us); else PyErr_SetString(PyExc_ValueError, "timestamp out of range for " "platform localtime()/gmtime() function"); return result; } /* Internal helper. * Build datetime from a Python timestamp. Pass localtime or gmtime for f, * to control the interpretation of the timestamp. Since a double doesn't * have enough bits to cover a datetime's full range of precision, it's * better to call datetime_from_timet_and_us provided you have a way * to get that much precision (e.g., C time() isn't good enough). */ static PyObject * datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp) { time_t timet = (time_t)timestamp; int us = (int)((timestamp - (double)timet) * 1e6); return datetime_from_timet_and_us(cls, f, timet, us); } /* Internal helper. * Build most accurate possible datetime for current time. Pass localtime or * gmtime for f as appropriate. */ static PyObject * datetime_best_possible(PyObject *cls, TM_FUNC f) { #ifdef HAVE_GETTIMEOFDAY struct timeval t; #ifdef GETTIMEOFDAY_NO_TZ gettimeofday(&t); #else gettimeofday(&t, (struct timezone *)NULL); #endif return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec); #else /* ! HAVE_GETTIMEOFDAY */ /* No flavor of gettimeofday exists on this platform. Python's * time.time() does a lot of other platform tricks to get the * best time it can on the platform, and we're not going to do * better than that (if we could, the better code would belong * in time.time()!) We're limited by the precision of a double, * though. */ PyObject *time; double dtime; time = time_time(); if (time == NULL) return NULL; dtime = PyFloat_AsDouble(time); Py_DECREF(time); if (dtime == -1.0 && PyErr_Occurred()) return NULL; return datetime_from_timestamp(cls, f, dtime); #endif /* ! HAVE_GETTIMEOFDAY */ } /* Return new local datetime from timestamp (Python timestamp -- a double). */ static PyObject * datetime_fromtimestamp(PyObject *cls, PyObject *args) { double timestamp; PyObject *result = NULL; if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp)) result = datetime_from_timestamp(cls, localtime, timestamp); return result; } /* Return new UTC datetime from timestamp (Python timestamp -- a double). */ static PyObject * datetime_utcfromtimestamp(PyObject *cls, PyObject *args) { double timestamp; PyObject *result = NULL; if (PyArg_ParseTuple(args, "d:utcfromtimestamp", ×tamp)) result = datetime_from_timestamp(cls, gmtime, timestamp); return result; } /* Return best possible local time -- this isn't constrained by the * precision of a timestamp. */ static PyObject * datetime_now(PyObject *cls, PyObject *dummy) { return datetime_best_possible(cls, localtime); } /* Return best possible UTC time -- this isn't constrained by the * precision of a timestamp. */ static PyObject * datetime_utcnow(PyObject *cls, PyObject *dummy) { return datetime_best_possible(cls, gmtime); } /* Return new datetime or datetimetz from date/datetime/datetimetz and * time/timetz arguments. */ static PyObject * datetime_combine(PyObject *cls, PyObject *args, PyObject *kw) { static char *keywords[] = {"date", "time", NULL}; PyObject *date; PyObject *time; PyObject *result = NULL; if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords, &PyDateTime_DateType, &date, &PyDateTime_TimeType, &time)) result = PyObject_CallFunction(cls, "iiiiiii", GET_YEAR(date), GET_MONTH(date), GET_DAY(date), TIME_GET_HOUR(time), TIME_GET_MINUTE(time), TIME_GET_SECOND(time), TIME_GET_MICROSECOND(time)); if (result && PyTimeTZ_Check(time) && PyDateTimeTZ_Check(result)) { /* Copy the tzinfo field. */ replace_tzinfo(result, ((PyDateTime_TimeTZ *)time)->tzinfo); } return result; } /* datetime arithmetic. */ static PyObject * add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta) { /* Note that the C-level additions can't overflow, because of * invariant bounds on the member values. */ int year = GET_YEAR(date); int month = GET_MONTH(date); int day = GET_DAY(date) + GET_TD_DAYS(delta); int hour = DATE_GET_HOUR(date); int minute = DATE_GET_MINUTE(date); int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta); int microsecond = DATE_GET_MICROSECOND(date) + GET_TD_MICROSECONDS(delta); if (normalize_datetime(&year, &month, &day, &hour, &minute, &second, µsecond) < 0) return NULL; else return new_datetime(year, month, day, hour, minute, second, microsecond); } static PyObject * sub_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta) { /* Note that the C-level subtractions can't overflow, because of * invariant bounds on the member values. */ int year = GET_YEAR(date); int month = GET_MONTH(date); int day = GET_DAY(date) - GET_TD_DAYS(delta); int hour = DATE_GET_HOUR(date); int minute = DATE_GET_MINUTE(date); int second = DATE_GET_SECOND(date) - GET_TD_SECONDS(delta); int microsecond = DATE_GET_MICROSECOND(date) - GET_TD_MICROSECONDS(delta); if (normalize_datetime(&year, &month, &day, &hour, &minute, &second, µsecond) < 0) return NULL; else return new_datetime(year, month, day, hour, minute, second, microsecond); } static PyObject * sub_datetime_datetime(PyDateTime_DateTime *left, PyDateTime_DateTime *right) { int days1 = ymd_to_ord(GET_YEAR(left), GET_MONTH(left), GET_DAY(left)); int days2 = ymd_to_ord(GET_YEAR(right), GET_MONTH(right), GET_DAY(right)); /* These can't overflow, since the values are normalized. At most * this gives the number of seconds in one day. */ int delta_s = (DATE_GET_HOUR(left) - DATE_GET_HOUR(right)) * 3600 + (DATE_GET_MINUTE(left) - DATE_GET_MINUTE(right)) * 60 + DATE_GET_SECOND(left) - DATE_GET_SECOND(right); int delta_us = DATE_GET_MICROSECOND(left) - DATE_GET_MICROSECOND(right); return new_delta(days1 - days2, delta_s, delta_us, 1); } static PyObject * datetime_add(PyObject *left, PyObject *right) { if (PyDateTime_Check(left)) { /* datetime + ??? */ if (PyDelta_Check(right)) /* datetime + delta */ return add_datetime_timedelta( (PyDateTime_DateTime *)left, (PyDateTime_Delta *)right); } else if (PyDelta_Check(left)) { /* delta + datetime */ return add_datetime_timedelta((PyDateTime_DateTime *) right, (PyDateTime_Delta *) left); } Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } static PyObject * datetime_subtract(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDateTime_Check(left)) { /* datetime - ??? */ if (PyDateTime_Check(right)) { /* datetime - datetime */ result = sub_datetime_datetime( (PyDateTime_DateTime *)left, (PyDateTime_DateTime *)right); } else if (PyDelta_Check(right)) { /* datetime - delta */ result = sub_datetime_timedelta( (PyDateTime_DateTime *)left, (PyDateTime_Delta *)right); } } if (result == Py_NotImplemented) Py_INCREF(result); return result; } /* Various ways to turn a datetime into a string. */ static PyObject * datetime_repr(PyDateTime_DateTime *self) { char buffer[1000]; char *typename = self->ob_type->tp_name; if (DATE_GET_MICROSECOND(self)) { PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d, %d, %d, %d, %d)", typename, GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), DATE_GET_MICROSECOND(self)); } else if (DATE_GET_SECOND(self)) { PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d, %d, %d, %d)", typename, GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self)); } else { PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d, %d, %d)", typename, GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self)); } return PyString_FromString(buffer); } static PyObject * datetime_str(PyDateTime_DateTime *self) { return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " "); } static PyObject * datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) { char sep = 'T'; static char *keywords[] = {"sep", NULL}; char buffer[100]; char *cp; if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords, &sep)) return NULL; cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer)); assert(cp != NULL); *cp++ = sep; isoformat_time(self, cp, sizeof(buffer) - (cp - buffer)); return PyString_FromString(buffer); } static PyObject * datetime_ctime(PyDateTime_DateTime *self) { return format_ctime((PyDateTime_Date *)self, DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self)); } /* Miscellaneous methods. */ /* This is more natural as a tp_compare, but doesn't work then: for whatever * reason, Python's try_3way_compare ignores tp_compare unless * PyInstance_Check returns true, but these aren't old-style classes. * Note that this routine handles all comparisons for datetime and datetimetz. */ static PyObject * datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op) { int diff; naivety n1, n2; int offset1, offset2; if (! PyDateTime_Check(other)) { /* Stop this from falling back to address comparison. */ PyErr_Format(PyExc_TypeError, "can't compare '%s' to '%s'", self->ob_type->tp_name, other->ob_type->tp_name); return NULL; } if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, (PyObject *)self, other, &offset2, &n2, other) < 0) return NULL; assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); /* If they're both naive, or both aware and have the same offsets, * we get off cheap. Note that if they're both naive, offset1 == * offset2 == 0 at this point. */ if (n1 == n2 && offset1 == offset2) { diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data, _PyDateTime_DATETIME_DATASIZE); return diff_to_bool(diff, op); } if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { /* We want the sign of * (self - offset1 minutes) - (other - offset2 minutes) = * (self - other) + (offset2 - offset1) minutes. */ PyDateTime_Delta *delta; int days, seconds, us; assert(offset1 != offset2); /* else last "if" handled it */ delta = (PyDateTime_Delta *)sub_datetime_datetime(self, (PyDateTime_DateTime *)other); if (delta == NULL) return NULL; days = delta->days; seconds = delta->seconds + (offset2 - offset1) * 60; us = delta->microseconds; Py_DECREF(delta); normalize_d_s_us(&days, &seconds, &us); diff = days; if (diff == 0) diff = seconds | us; return diff_to_bool(diff, op); } assert(n1 != n2); PyErr_SetString(PyExc_TypeError, "can't compare offset-naive and " "offset-aware datetimes"); return NULL; } static PyObject *datetime_getstate(PyDateTime_DateTime *self); static long datetime_hash(PyDateTime_DateTime *self) { if (self->hashcode == -1) { naivety n; int offset; PyObject *temp; n = classify_utcoffset((PyObject *)self, (PyObject *)self, &offset); assert(n != OFFSET_UNKNOWN); if (n == OFFSET_ERROR) return -1; /* Reduce this to a hash of another object. */ if (n == OFFSET_NAIVE) temp = datetime_getstate(self); else { int days; int seconds; assert(n == OFFSET_AWARE); assert(PyDateTimeTZ_Check(self)); days = ymd_to_ord(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); seconds = DATE_GET_HOUR(self) * 3600 + (DATE_GET_MINUTE(self) - offset) * 60 + DATE_GET_SECOND(self); temp = new_delta(days, seconds, DATE_GET_MICROSECOND(self), 1); } if (temp != NULL) { self->hashcode = PyObject_Hash(temp); Py_DECREF(temp); } } return self->hashcode; } static PyObject * datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) { PyObject *clone; PyObject *tuple; int y = GET_YEAR(self); int m = GET_MONTH(self); int d = GET_DAY(self); int hh = DATE_GET_HOUR(self); int mm = DATE_GET_MINUTE(self); int ss = DATE_GET_SECOND(self); int us = DATE_GET_MICROSECOND(self); if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiii:replace", datetime_kws, &y, &m, &d, &hh, &mm, &ss, &us)) return NULL; tuple = Py_BuildValue("iiiiiii", y, m, d, hh, mm, ss, us); if (tuple == NULL) return NULL; clone = datetime_new(self->ob_type, tuple, NULL); Py_DECREF(tuple); return clone; } static PyObject * datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw) { PyObject *tzinfo; static char *keywords[] = {"tz", NULL}; if (! PyArg_ParseTupleAndKeywords(args, kw, "O:astimezone", keywords, &tzinfo)) return NULL; if (check_tzinfo_subclass(tzinfo) < 0) return NULL; return new_datetimetz(GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), DATE_GET_MICROSECOND(self), tzinfo); } static PyObject * datetime_timetuple(PyDateTime_DateTime *self) { return build_struct_time(GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), -1); } static PyObject * datetime_getdate(PyDateTime_DateTime *self) { return new_date(GET_YEAR(self), GET_MONTH(self), GET_DAY(self)); } static PyObject * datetime_gettime(PyDateTime_DateTime *self) { return new_time(DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), DATE_GET_MICROSECOND(self)); } /* Pickle support. Quite a maze! */ static PyObject * datetime_getstate(PyDateTime_DateTime *self) { return PyString_FromStringAndSize(self->data, _PyDateTime_DATETIME_DATASIZE); } static PyObject * datetime_setstate(PyDateTime_DateTime *self, PyObject *state) { const int len = PyString_Size(state); unsigned char *pdata = (unsigned char*)PyString_AsString(state); if (! PyString_Check(state) || len != _PyDateTime_DATETIME_DATASIZE) { PyErr_SetString(PyExc_TypeError, "bad argument to datetime.__setstate__"); return NULL; } memcpy(self->data, pdata, _PyDateTime_DATETIME_DATASIZE); self->hashcode = -1; Py_INCREF(Py_None); return Py_None; } /* XXX This seems a ridiculously inefficient way to pickle a short string. */ static PyObject * datetime_pickler(PyObject *module, PyDateTime_DateTime *datetime) { PyObject *state; PyObject *result = NULL; if (! PyDateTime_CheckExact(datetime)) { PyErr_Format(PyExc_TypeError, "bad type passed to datetime pickler: %s", datetime->ob_type->tp_name); return NULL; } state = datetime_getstate(datetime); if (state) { result = Py_BuildValue("O(O)", datetime_unpickler_object, state); Py_DECREF(state); } return result; } static PyObject * datetime_unpickler(PyObject *module, PyObject *arg) { PyDateTime_DateTime *self; if (! PyString_CheckExact(arg)) { PyErr_Format(PyExc_TypeError, "bad type passed to datetime unpickler: %s", arg->ob_type->tp_name); return NULL; } self = PyObject_New(PyDateTime_DateTime, &PyDateTime_DateTimeType); if (self != NULL) { PyObject *res = datetime_setstate(self, arg); if (res == NULL) { Py_DECREF(self); return NULL; } Py_DECREF(res); } return (PyObject *)self; } static PyMethodDef datetime_methods[] = { /* Class methods: */ {"now", (PyCFunction)datetime_now, METH_NOARGS | METH_CLASS, PyDoc_STR("Return a new datetime representing local day and time.")}, {"utcnow", (PyCFunction)datetime_utcnow, METH_NOARGS | METH_CLASS, PyDoc_STR("Return a new datetime representing UTC day and time.")}, {"fromtimestamp", (PyCFunction)datetime_fromtimestamp, METH_VARARGS | METH_CLASS, PyDoc_STR("timestamp -> local datetime from a POSIX timestamp " "(like time.time()).")}, {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp, METH_VARARGS | METH_CLASS, PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp " "(like time.time()).")}, {"combine", (PyCFunction)datetime_combine, METH_VARARGS | METH_KEYWORDS | METH_CLASS, PyDoc_STR("date, time -> datetime with same date and time fields")}, /* Instance methods: */ {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS, PyDoc_STR("Return time tuple, compatible with time.localtime().")}, {"date", (PyCFunction)datetime_getdate, METH_NOARGS, PyDoc_STR("Return date object with same year, month and day.")}, {"time", (PyCFunction)datetime_gettime, METH_NOARGS, PyDoc_STR("Return time object with same hour, minute, second and " "microsecond.")}, {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS, PyDoc_STR("Return ctime() style string.")}, {"isoformat", (PyCFunction)datetime_isoformat, METH_KEYWORDS, PyDoc_STR("[sep] -> string in ISO 8601 format, " "YYYY-MM-DDTHH:MM:SS[.mmmmmm].\n\n" "sep is used to separate the year from the time, and " "defaults\n" "to 'T'.")}, {"replace", (PyCFunction)datetime_replace, METH_KEYWORDS, PyDoc_STR("Return datetime with new specified fields.")}, {"astimezone", (PyCFunction)datetime_astimezone, METH_KEYWORDS, PyDoc_STR("tz -> datetimetz with same date & time, and tzinfo=tz\n")}, {"__setstate__", (PyCFunction)datetime_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)datetime_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL} }; static char datetime_doc[] = PyDoc_STR("Basic date/time type."); static PyNumberMethods datetime_as_number = { datetime_add, /* nb_add */ datetime_subtract, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ 0, /* nb_nonzero */ }; statichere PyTypeObject PyDateTime_DateTimeType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.datetime", /* tp_name */ sizeof(PyDateTime_DateTime), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)PyObject_Del, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)datetime_repr, /* tp_repr */ &datetime_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)datetime_hash, /* tp_hash */ 0, /* tp_call */ (reprfunc)datetime_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ datetime_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ (richcmpfunc)datetime_richcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ datetime_methods, /* tp_methods */ 0, /* tp_members */ datetime_getset, /* tp_getset */ &PyDateTime_DateType, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ datetime_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* * PyDateTime_Time implementation. */ /* Accessor properties. */ static PyObject * time_hour(PyDateTime_Time *self, void *unused) { return PyInt_FromLong(TIME_GET_HOUR(self)); } static PyObject * time_minute(PyDateTime_Time *self, void *unused) { return PyInt_FromLong(TIME_GET_MINUTE(self)); } static PyObject * py_time_second(PyDateTime_Time *self, void *unused) { return PyInt_FromLong(TIME_GET_SECOND(self)); } static PyObject * time_microsecond(PyDateTime_Time *self, void *unused) { return PyInt_FromLong(TIME_GET_MICROSECOND(self)); } static PyGetSetDef time_getset[] = { {"hour", (getter)time_hour}, {"minute", (getter)time_minute}, {"second", (getter)py_time_second}, {"microsecond", (getter)time_microsecond}, {NULL} }; /* Constructors. */ static char *time_kws[] = {"hour", "minute", "second", "microsecond", NULL}; static PyObject * time_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; int hour = 0; int minute = 0; int second = 0; int usecond = 0; if (PyArg_ParseTupleAndKeywords(args, kw, "|iiii", time_kws, &hour, &minute, &second, &usecond)) { if (check_time_args(hour, minute, second, usecond) < 0) return NULL; self = new_time(hour, minute, second, usecond); } return self; } /* Various ways to turn a time into a string. */ static PyObject * time_repr(PyDateTime_Time *self) { char buffer[100]; char *typename = self->ob_type->tp_name; int h = TIME_GET_HOUR(self); int m = TIME_GET_MINUTE(self); int s = TIME_GET_SECOND(self); int us = TIME_GET_MICROSECOND(self); if (us) PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d, %d)", typename, h, m, s, us); else if (s) PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)", typename, h, m, s); else PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d)", typename, h, m); return PyString_FromString(buffer); } static PyObject * time_str(PyDateTime_Time *self) { return PyObject_CallMethod((PyObject *)self, "isoformat", "()"); } static PyObject * time_isoformat(PyDateTime_Time *self) { char buffer[100]; /* Reuse the time format code from the datetime type. */ PyDateTime_DateTime datetime; PyDateTime_DateTime *pdatetime = &datetime; /* Copy over just the time bytes. */ memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE, self->data, _PyDateTime_TIME_DATASIZE); isoformat_time(pdatetime, buffer, sizeof(buffer)); return PyString_FromString(buffer); } static PyObject * time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw) { PyObject *result; PyObject *format; PyObject *tuple; static char *keywords[] = {"format", NULL}; if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords, &PyString_Type, &format)) return NULL; /* Python's strftime does insane things with the year part of the * timetuple. The year is forced to (the otherwise nonsensical) * 1900 to worm around that. */ tuple = Py_BuildValue("iiiiiiiii", 1900, 0, 0, /* year, month, day */ TIME_GET_HOUR(self), TIME_GET_MINUTE(self), TIME_GET_SECOND(self), 0, 0, -1); /* weekday, daynum, dst */ if (tuple == NULL) return NULL; assert(PyTuple_Size(tuple) == 9); result = wrap_strftime((PyObject *)self, format, tuple, Py_None); Py_DECREF(tuple); return result; } /* Miscellaneous methods. */ /* This is more natural as a tp_compare, but doesn't work then: for whatever * reason, Python's try_3way_compare ignores tp_compare unless * PyInstance_Check returns true, but these aren't old-style classes. * Note that this routine handles all comparisons for time and timetz. */ static PyObject * time_richcompare(PyDateTime_Time *self, PyObject *other, int op) { int diff; naivety n1, n2; int offset1, offset2; if (! PyTime_Check(other)) { /* Stop this from falling back to address comparison. */ PyErr_Format(PyExc_TypeError, "can't compare '%s' to '%s'", self->ob_type->tp_name, other->ob_type->tp_name); return NULL; } if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, Py_None, other, &offset2, &n2, Py_None) < 0) return NULL; assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); /* If they're both naive, or both aware and have the same offsets, * we get off cheap. Note that if they're both naive, offset1 == * offset2 == 0 at this point. */ if (n1 == n2 && offset1 == offset2) { diff = memcmp(self->data, ((PyDateTime_Time *)other)->data, _PyDateTime_TIME_DATASIZE); return diff_to_bool(diff, op); } if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) { assert(offset1 != offset2); /* else last "if" handled it */ /* Convert everything except microseconds to seconds. These * can't overflow (no more than the # of seconds in 2 days). */ offset1 = TIME_GET_HOUR(self) * 3600 + (TIME_GET_MINUTE(self) - offset1) * 60 + TIME_GET_SECOND(self); offset2 = TIME_GET_HOUR(other) * 3600 + (TIME_GET_MINUTE(other) - offset2) * 60 + TIME_GET_SECOND(other); diff = offset1 - offset2; if (diff == 0) diff = TIME_GET_MICROSECOND(self) - TIME_GET_MICROSECOND(other); return diff_to_bool(diff, op); } assert(n1 != n2); PyErr_SetString(PyExc_TypeError, "can't compare offset-naive and " "offset-aware times"); return NULL; } static PyObject *time_getstate(PyDateTime_Time *self); static long time_hash(PyDateTime_Time *self) { if (self->hashcode == -1) { naivety n; int offset; PyObject *temp; n = classify_utcoffset((PyObject *)self, Py_None, &offset); assert(n != OFFSET_UNKNOWN); if (n == OFFSET_ERROR) return -1; /* Reduce this to a hash of another object. */ if (offset == 0) temp = time_getstate(self); else { int hour; int minute; assert(n == OFFSET_AWARE); assert(PyTimeTZ_Check(self)); hour = divmod(TIME_GET_HOUR(self) * 60 + TIME_GET_MINUTE(self) - offset, 60, &minute); if (0 <= hour && hour < 24) temp = new_time(hour, minute, TIME_GET_SECOND(self), TIME_GET_MICROSECOND(self)); else temp = Py_BuildValue("iiii", hour, minute, TIME_GET_SECOND(self), TIME_GET_MICROSECOND(self)); } if (temp != NULL) { self->hashcode = PyObject_Hash(temp); Py_DECREF(temp); } } return self->hashcode; } static PyObject * time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw) { PyObject *clone; PyObject *tuple; int hh = TIME_GET_HOUR(self); int mm = TIME_GET_MINUTE(self); int ss = TIME_GET_SECOND(self); int us = TIME_GET_MICROSECOND(self); if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiii:replace", time_kws, &hh, &mm, &ss, &us)) return NULL; tuple = Py_BuildValue("iiii", hh, mm, ss, us); if (tuple == NULL) return NULL; clone = time_new(self->ob_type, tuple, NULL); Py_DECREF(tuple); return clone; } static int time_nonzero(PyDateTime_Time *self) { return TIME_GET_HOUR(self) || TIME_GET_MINUTE(self) || TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self); } /* Pickle support. Quite a maze! */ static PyObject * time_getstate(PyDateTime_Time *self) { return PyString_FromStringAndSize(self->data, _PyDateTime_TIME_DATASIZE); } static PyObject * time_setstate(PyDateTime_Time *self, PyObject *state) { const int len = PyString_Size(state); unsigned char *pdata = (unsigned char*)PyString_AsString(state); if (! PyString_Check(state) || len != _PyDateTime_TIME_DATASIZE) { PyErr_SetString(PyExc_TypeError, "bad argument to time.__setstate__"); return NULL; } memcpy(self->data, pdata, _PyDateTime_TIME_DATASIZE); self->hashcode = -1; Py_INCREF(Py_None); return Py_None; } /* XXX This seems a ridiculously inefficient way to pickle a short string. */ static PyObject * time_pickler(PyObject *module, PyDateTime_Time *time) { PyObject *state; PyObject *result = NULL; if (! PyTime_CheckExact(time)) { PyErr_Format(PyExc_TypeError, "bad type passed to time pickler: %s", time->ob_type->tp_name); return NULL; } state = time_getstate(time); if (state) { result = Py_BuildValue("O(O)", time_unpickler_object, state); Py_DECREF(state); } return result; } static PyObject * time_unpickler(PyObject *module, PyObject *arg) { PyDateTime_Time *self; if (! PyString_CheckExact(arg)) { PyErr_Format(PyExc_TypeError, "bad type passed to time unpickler: %s", arg->ob_type->tp_name); return NULL; } self = PyObject_New(PyDateTime_Time, &PyDateTime_TimeType); if (self != NULL) { PyObject *res = time_setstate(self, arg); if (res == NULL) { Py_DECREF(self); return NULL; } Py_DECREF(res); } return (PyObject *)self; } static PyMethodDef time_methods[] = { {"isoformat", (PyCFunction)time_isoformat, METH_KEYWORDS, PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm].")}, {"strftime", (PyCFunction)time_strftime, METH_KEYWORDS, PyDoc_STR("format -> strftime() style string.")}, {"replace", (PyCFunction)time_replace, METH_KEYWORDS, PyDoc_STR("Return datetime with new specified fields.")}, {"__setstate__", (PyCFunction)time_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)time_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL} }; static char time_doc[] = PyDoc_STR("Basic time type."); static PyNumberMethods time_as_number = { 0, /* nb_add */ 0, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ (inquiry)time_nonzero, /* nb_nonzero */ }; statichere PyTypeObject PyDateTime_TimeType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.time", /* tp_name */ sizeof(PyDateTime_Time), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)PyObject_Del, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)time_repr, /* tp_repr */ &time_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)time_hash, /* tp_hash */ 0, /* tp_call */ (reprfunc)time_str, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ time_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ (richcmpfunc)time_richcompare, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ time_methods, /* tp_methods */ 0, /* tp_members */ time_getset, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ time_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* * PyDateTime_TZInfo implementation. */ /* This is a pure abstract base class, so doesn't do anything beyond * raising NotImplemented exceptions. Real tzinfo classes need * to derive from this. This is mostly for clarity, and for efficiency in * datetimetz and timetz constructors (their tzinfo arguments need to * be subclasses of this tzinfo class, which is easy and quick to check). * * Note: For reasons having to do with pickling of subclasses, we have * to allow tzinfo objects to be instantiated. This wasn't an issue * in the Python implementation (__init__() could raise NotImplementedError * there without ill effect), but doing so in the C implementation hit a * brick wall. */ static PyObject * tzinfo_nogo(const char* methodname) { PyErr_Format(PyExc_NotImplementedError, "a tzinfo subclass must implement %s()", methodname); return NULL; } /* Methods. A subclass must implement these. */ static PyObject* tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt) { return tzinfo_nogo("tzname"); } static PyObject* tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt) { return tzinfo_nogo("utcoffset"); } static PyObject* tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt) { return tzinfo_nogo("dst"); } /* * Pickle support. This is solely so that tzinfo subclasses can use * pickling -- tzinfo itself is supposed to be uninstantiable. The * pickler and unpickler functions are given module-level private * names, and registered with copy_reg, by the module init function. */ static PyObject* tzinfo_pickler(PyDateTime_TZInfo *self) { return Py_BuildValue("O()", tzinfo_unpickler_object); } static PyObject* tzinfo_unpickler(PyObject * unused) { return PyType_GenericNew(&PyDateTime_TZInfoType, NULL, NULL); } static PyMethodDef tzinfo_methods[] = { {"tzname", (PyCFunction)tzinfo_tzname, METH_O, PyDoc_STR("datetime -> string name of time zone.")}, {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O, PyDoc_STR("datetime -> minutes east of UTC (negative for " "west of UTC).")}, {"dst", (PyCFunction)tzinfo_dst, METH_O, PyDoc_STR("datetime -> DST offset in minutes east of UTC.")}, {NULL, NULL} }; static char tzinfo_doc[] = PyDoc_STR("Abstract base class for time zone info objects."); statichere PyTypeObject PyDateTime_TZInfoType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.tzinfo", /* tp_name */ sizeof(PyDateTime_TZInfo), /* tp_basicsize */ 0, /* tp_itemsize */ 0, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ tzinfo_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ tzinfo_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ PyType_GenericNew, /* tp_new */ 0, /* tp_free */ }; /* * PyDateTime_TimeTZ implementation. */ /* Accessor properties. Properties for hour, minute, second and microsecond * are inherited from time. */ static PyObject * timetz_tzinfo(PyDateTime_TimeTZ *self, void *unused) { Py_INCREF(self->tzinfo); return self->tzinfo; } static PyGetSetDef timetz_getset[] = { {"tzinfo", (getter)timetz_tzinfo}, {NULL} }; /* * Constructors. */ static char *timetz_kws[] = {"hour", "minute", "second", "microsecond", "tzinfo", NULL}; static PyObject * timetz_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; int hour = 0; int minute = 0; int second = 0; int usecond = 0; PyObject *tzinfo = Py_None; if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", timetz_kws, &hour, &minute, &second, &usecond, &tzinfo)) { if (check_time_args(hour, minute, second, usecond) < 0) return NULL; if (check_tzinfo_subclass(tzinfo) < 0) return NULL; self = new_timetz(hour, minute, second, usecond, tzinfo); } return self; } /* * Destructor. */ static void timetz_dealloc(PyDateTime_TimeTZ *self) { Py_XDECREF(self->tzinfo); self->ob_type->tp_free((PyObject *)self); } /* * Indirect access to tzinfo methods. */ /* These are all METH_NOARGS, so don't need to check the arglist. */ static PyObject * timetz_utcoffset(PyDateTime_TimeTZ *self, PyObject *unused) { return offset_as_timedelta(self->tzinfo, "utcoffset", Py_None); } static PyObject * timetz_dst(PyDateTime_TimeTZ *self, PyObject *unused) { return offset_as_timedelta(self->tzinfo, "dst", Py_None); } static PyObject * timetz_tzname(PyDateTime_TimeTZ *self, PyObject *unused) { return call_tzname(self->tzinfo, Py_None); } /* * Various ways to turn a timetz into a string. */ static PyObject * timetz_repr(PyDateTime_TimeTZ *self) { PyObject *baserepr = time_repr((PyDateTime_Time *)self); if (baserepr == NULL) return NULL; return append_keyword_tzinfo(baserepr, self->tzinfo); } /* Note: tp_str is inherited from time. */ static PyObject * timetz_isoformat(PyDateTime_TimeTZ *self) { char buf[100]; PyObject *result = time_isoformat((PyDateTime_Time *)self); if (result == NULL || self->tzinfo == Py_None) return result; /* We need to append the UTC offset. */ if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo, Py_None) < 0) { Py_DECREF(result); return NULL; } PyString_ConcatAndDel(&result, PyString_FromString(buf)); return result; } /* Note: strftime() is inherited from time. */ /* * Miscellaneous methods. */ /* Note: tp_richcompare and tp_hash are inherited from time. */ static PyObject * timetz_replace(PyDateTime_TimeTZ *self, PyObject *args, PyObject *kw) { PyObject *clone; PyObject *tuple; int hh = TIME_GET_HOUR(self); int mm = TIME_GET_MINUTE(self); int ss = TIME_GET_SECOND(self); int us = TIME_GET_MICROSECOND(self); PyObject *tzinfo = self->tzinfo; if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace", timetz_kws, &hh, &mm, &ss, &us, &tzinfo)) return NULL; tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo); if (tuple == NULL) return NULL; clone = timetz_new(self->ob_type, tuple, NULL); Py_DECREF(tuple); return clone; } static int timetz_nonzero(PyDateTime_TimeTZ *self) { int offset; int none; if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) { /* Since utcoffset is in whole minutes, nothing can * alter the conclusion that this is nonzero. */ return 1; } offset = 0; if (self->tzinfo != Py_None) { offset = call_utcoffset(self->tzinfo, Py_None, &none); if (offset == -1 && PyErr_Occurred()) return -1; } return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0; } /* * Pickle support. Quite a maze! */ /* Let basestate be the state string returned by time_getstate. * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). * So it's a tuple in any (non-error) case. */ static PyObject * timetz_getstate(PyDateTime_TimeTZ *self) { PyObject *basestate; PyObject *result = NULL; basestate = time_getstate((PyDateTime_Time *)self); if (basestate != NULL) { if (self->tzinfo == Py_None) result = Py_BuildValue("(O)", basestate); else result = Py_BuildValue("OO", basestate, self->tzinfo); Py_DECREF(basestate); } return result; } static PyObject * timetz_setstate(PyDateTime_TimeTZ *self, PyObject *state) { PyObject *temp; PyObject *basestate; PyObject *tzinfo = Py_None; if (! PyArg_ParseTuple(state, "O!|O:__setstate__", &PyString_Type, &basestate, &tzinfo)) return NULL; temp = time_setstate((PyDateTime_Time *)self, basestate); if (temp == NULL) return NULL; Py_DECREF(temp); Py_INCREF(tzinfo); Py_XDECREF(self->tzinfo); self->tzinfo = tzinfo; Py_INCREF(Py_None); return Py_None; } static PyObject * timetz_pickler(PyObject *module, PyDateTime_TimeTZ *timetz) { PyObject *state; PyObject *result = NULL; if (! PyTimeTZ_CheckExact(timetz)) { PyErr_Format(PyExc_TypeError, "bad type passed to timetz pickler: %s", timetz->ob_type->tp_name); return NULL; } state = timetz_getstate(timetz); if (state) { result = Py_BuildValue("O(O)", timetz_unpickler_object, state); Py_DECREF(state); } return result; } static PyObject * timetz_unpickler(PyObject *module, PyObject *arg) { PyDateTime_TimeTZ *self; self = PyObject_New(PyDateTime_TimeTZ, &PyDateTime_TimeTZType); if (self != NULL) { PyObject *res; self->tzinfo = NULL; res = timetz_setstate(self, arg); if (res == NULL) { Py_DECREF(self); return NULL; } Py_DECREF(res); } return (PyObject *)self; } static PyMethodDef timetz_methods[] = { {"isoformat", (PyCFunction)timetz_isoformat, METH_KEYWORDS, PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]" "[+HH:MM].")}, {"utcoffset", (PyCFunction)timetz_utcoffset, METH_NOARGS, PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, {"tzname", (PyCFunction)timetz_tzname, METH_NOARGS, PyDoc_STR("Return self.tzinfo.tzname(self).")}, {"dst", (PyCFunction)timetz_dst, METH_NOARGS, PyDoc_STR("Return self.tzinfo.dst(self).")}, {"replace", (PyCFunction)timetz_replace, METH_KEYWORDS, PyDoc_STR("Return timetz with new specified fields.")}, {"__setstate__", (PyCFunction)timetz_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)timetz_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL} }; static char timetz_doc[] = PyDoc_STR("Time type."); static PyNumberMethods timetz_as_number = { 0, /* nb_add */ 0, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ (inquiry)timetz_nonzero, /* nb_nonzero */ }; statichere PyTypeObject PyDateTime_TimeTZType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.timetz", /* tp_name */ sizeof(PyDateTime_TimeTZ), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)timetz_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)timetz_repr, /* tp_repr */ &timetz_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ timetz_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ timetz_methods, /* tp_methods */ 0, /* tp_members */ timetz_getset, /* tp_getset */ &PyDateTime_TimeType, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ timetz_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* * PyDateTime_DateTimeTZ implementation. */ /* Accessor properties. Properties for day, month, year, hour, minute, * second and microsecond are inherited from datetime. */ static PyObject * datetimetz_tzinfo(PyDateTime_DateTimeTZ *self, void *unused) { Py_INCREF(self->tzinfo); return self->tzinfo; } static PyGetSetDef datetimetz_getset[] = { {"tzinfo", (getter)datetimetz_tzinfo}, {NULL} }; /* * Constructors. * These are like the datetime methods of the same names, but allow an * optional tzinfo argument. */ static char *datetimetz_kws[] = { "year", "month", "day", "hour", "minute", "second", "microsecond", "tzinfo", NULL }; static PyObject * datetimetz_new(PyTypeObject *type, PyObject *args, PyObject *kw) { PyObject *self = NULL; int year; int month; int day; int hour = 0; int minute = 0; int second = 0; int usecond = 0; PyObject *tzinfo = Py_None; if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetimetz_kws, &year, &month, &day, &hour, &minute, &second, &usecond, &tzinfo)) { if (check_date_args(year, month, day) < 0) return NULL; if (check_time_args(hour, minute, second, usecond) < 0) return NULL; if (check_tzinfo_subclass(tzinfo) < 0) return NULL; self = new_datetimetz(year, month, day, hour, minute, second, usecond, tzinfo); } return self; } /* Return best possible local time -- this isn't constrained by the * precision of a timestamp. */ static PyObject * datetimetz_now(PyObject *cls, PyObject *args, PyObject *kw) { PyObject *self = NULL; PyObject *tzinfo = Py_None; static char *keywords[] = {"tzinfo", NULL}; if (PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords, &tzinfo)) { if (check_tzinfo_subclass(tzinfo) < 0) return NULL; self = datetime_best_possible(cls, localtime); if (self != NULL) replace_tzinfo(self, tzinfo); } return self; } /* Return new local datetime from timestamp (Python timestamp -- a double). */ static PyObject * datetimetz_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw) { PyObject *self = NULL; double timestamp; PyObject *tzinfo = Py_None; static char *keywords[] = {"timestamp", "tzinfo", NULL}; if (PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp", keywords, ×tamp, &tzinfo)) { if (check_tzinfo_subclass(tzinfo) < 0) return NULL; self = datetime_from_timestamp(cls, localtime, timestamp); if (self != NULL) replace_tzinfo(self, tzinfo); } return self; } /* Note: utcnow() is inherited, and doesn't accept tzinfo. * Ditto utcfromtimestamp(). Ditto combine(). */ /* * Destructor. */ static void datetimetz_dealloc(PyDateTime_DateTimeTZ *self) { Py_XDECREF(self->tzinfo); self->ob_type->tp_free((PyObject *)self); } /* * Indirect access to tzinfo methods. */ /* These are all METH_NOARGS, so don't need to check the arglist. */ static PyObject * datetimetz_utcoffset(PyDateTime_DateTimeTZ *self, PyObject *unused) { return offset_as_timedelta(self->tzinfo, "utcoffset", (PyObject *)self); } static PyObject * datetimetz_dst(PyDateTime_DateTimeTZ *self, PyObject *unused) { return offset_as_timedelta(self->tzinfo, "dst", (PyObject *)self); } static PyObject * datetimetz_tzname(PyDateTime_DateTimeTZ *self, PyObject *unused) { return call_tzname(self->tzinfo, (PyObject *)self); } /* * datetimetz arithmetic. */ /* If base is Py_NotImplemented or NULL, just return it. * Else base is a datetime, exactly one of {left, right} is a datetimetz, * and we want to create a datetimetz with the same date and time fields * as base, and with the tzinfo field from left or right. Do that, * return it, and decref base. This is used to transform the result of * a binary datetime operation (base) into a datetimetz result. */ static PyObject * attach_tzinfo(PyObject *base, PyObject *left, PyObject *right) { PyDateTime_DateTimeTZ *self; PyDateTime_DateTimeTZ *result; if (base == NULL || base == Py_NotImplemented) return base; assert(PyDateTime_CheckExact(base)); if (PyDateTimeTZ_Check(left)) { assert(! PyDateTimeTZ_Check(right)); self = (PyDateTime_DateTimeTZ *)left; } else { assert(PyDateTimeTZ_Check(right)); self = (PyDateTime_DateTimeTZ *)right; } result = PyObject_New(PyDateTime_DateTimeTZ, &PyDateTime_DateTimeTZType); if (result != NULL) { memcpy(result->data, ((PyDateTime_DateTime *)base)->data, _PyDateTime_DATETIME_DATASIZE); Py_INCREF(self->tzinfo); result->tzinfo = self->tzinfo; } Py_DECREF(base); return (PyObject *)result; } static PyObject * datetimetz_add(PyObject *left, PyObject *right) { return attach_tzinfo(datetime_add(left, right), left, right); } static PyObject * datetimetz_subtract(PyObject *left, PyObject *right) { PyObject *result = Py_NotImplemented; if (PyDateTime_Check(left)) { /* datetime - ??? */ if (PyDateTime_Check(right)) { /* datetime - datetime */ naivety n1, n2; int offset1, offset2; PyDateTime_Delta *delta; if (classify_two_utcoffsets(left, &offset1, &n1, left, right, &offset2, &n2, right) < 0) return NULL; assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN); if (n1 != n2) { PyErr_SetString(PyExc_TypeError, "can't subtract offset-naive and " "offset-aware datetimes"); return NULL; } delta = (PyDateTime_Delta *)sub_datetime_datetime( (PyDateTime_DateTime *)left, (PyDateTime_DateTime *)right); if (delta == NULL || offset1 == offset2) return (PyObject *)delta; /* (left - offset1) - (right - offset2) = * (left - right) + (offset2 - offset1) */ result = new_delta(delta->days, delta->seconds + (offset2 - offset1) * 60, delta->microseconds, 1); Py_DECREF(delta); } else if (PyDelta_Check(right)) { /* datetimetz - delta */ result = sub_datetime_timedelta( (PyDateTime_DateTime *)left, (PyDateTime_Delta *)right); result = attach_tzinfo(result, left, right); } } if (result == Py_NotImplemented) Py_INCREF(result); return result; } /* Various ways to turn a datetime into a string. */ static PyObject * datetimetz_repr(PyDateTime_DateTimeTZ *self) { PyObject *baserepr = datetime_repr((PyDateTime_DateTime *)self); if (baserepr == NULL) return NULL; return append_keyword_tzinfo(baserepr, self->tzinfo); } /* Note: tp_str is inherited from datetime. */ static PyObject * datetimetz_isoformat(PyDateTime_DateTimeTZ *self, PyObject *args, PyObject *kw) { char buf[100]; PyObject *result = datetime_isoformat((PyDateTime_DateTime *)self, args, kw); if (result == NULL || self->tzinfo == Py_None) return result; /* We need to append the UTC offset. */ if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo, (PyObject *)self) < 0) { Py_DECREF(result); return NULL; } PyString_ConcatAndDel(&result, PyString_FromString(buf)); return result; } /* Miscellaneous methods. */ /* Note: tp_richcompare and tp_hash are inherited from datetime. */ static PyObject * datetimetz_replace(PyDateTime_DateTimeTZ *self, PyObject *args, PyObject *kw) { PyObject *clone; PyObject *tuple; int y = GET_YEAR(self); int m = GET_MONTH(self); int d = GET_DAY(self); int hh = DATE_GET_HOUR(self); int mm = DATE_GET_MINUTE(self); int ss = DATE_GET_SECOND(self); int us = DATE_GET_MICROSECOND(self); PyObject *tzinfo = self->tzinfo; if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace", datetimetz_kws, &y, &m, &d, &hh, &mm, &ss, &us, &tzinfo)) return NULL; tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo); if (tuple == NULL) return NULL; clone = datetimetz_new(self->ob_type, tuple, NULL); Py_DECREF(tuple); return clone; } static PyObject * datetimetz_astimezone(PyDateTime_DateTimeTZ *self, PyObject *args, PyObject *kw) { int y = GET_YEAR(self); int m = GET_MONTH(self); int d = GET_DAY(self); int hh = DATE_GET_HOUR(self); int mm = DATE_GET_MINUTE(self); int ss = DATE_GET_SECOND(self); int us = DATE_GET_MICROSECOND(self); PyObject *result; PyObject *temp; int selfoff, resoff, tempoff, total_added_to_result; int none; PyObject *tzinfo; static char *keywords[] = {"tz", NULL}; if (! PyArg_ParseTupleAndKeywords(args, kw, "O:astimezone", keywords, &tzinfo)) return NULL; if (check_tzinfo_subclass(tzinfo) < 0) return NULL; /* Don't call utcoffset unless necessary. */ result = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo); if (result == NULL || tzinfo == Py_None || self->tzinfo == Py_None || self->tzinfo == tzinfo) return result; /* Get the offsets. If either object turns out to be naive, again * there's no conversion of date or time fields. */ selfoff = call_utcoffset(self->tzinfo, (PyObject *)self, &none); if (selfoff == -1 && PyErr_Occurred()) goto Fail; if (none) return result; resoff = call_utcoffset(tzinfo, result, &none); if (resoff == -1 && PyErr_Occurred()) goto Fail; if (none) return result; /* Add resoff-selfoff to result. */ total_added_to_result = resoff - selfoff; mm += total_added_to_result; if ((mm < 0 || mm >= 60) && normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) goto Fail; temp = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo); if (temp == NULL) goto Fail; Py_DECREF(result); result = temp; /* If tz is a fixed-offset class, we're done, but we can't know * whether it is. If it's a DST-aware class, and we're not near a * DST boundary, we're also done. If we crossed a DST boundary, * the offset will be different now, and that's our only clue. * Unfortunately, we can be in trouble even if we didn't cross a * DST boundary, if we landed on one of the DST "problem hours". */ tempoff = call_utcoffset(tzinfo, result, &none); if (tempoff == -1 && PyErr_Occurred()) goto Fail; if (none) goto Inconsistent; if (tempoff != resoff) { /* We did cross a boundary. Try to correct. */ const int delta = tempoff - resoff; total_added_to_result += delta; mm += delta; if ((mm < 0 || mm >= 60) && normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) goto Fail; temp = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo); if (temp == NULL) goto Fail; Py_DECREF(result); result = temp; resoff = call_utcoffset(tzinfo, result, &none); if (resoff == -1 && PyErr_Occurred()) goto Fail; if (none) goto Inconsistent; } /* If this is the first hour of DST, it may be a local time that * doesn't make sense on the local clock, in which case the naive * hour before it (in standard time) is equivalent and does make * sense on the local clock. So force that. */ hh -= 1; if (hh < 0 && normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0) goto Fail; temp = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo); if (temp == NULL) goto Fail; tempoff = call_utcoffset(tzinfo, temp, &none); if (tempoff == -1 && PyErr_Occurred()) { Py_DECREF(temp); goto Fail; } if (none) { Py_DECREF(temp); goto Inconsistent; } /* Are temp and result really the same time? temp == result iff * temp - tempoff == result - resoff, iff * (result - HOUR) - tempoff = result - resoff, iff * resoff - tempoff == HOUR */ if (resoff - tempoff == 60) { /* use the local time that makes sense */ Py_DECREF(result); return temp; } Py_DECREF(temp); /* There's still a problem with the unspellable (in local time) * hour after DST ends. If self and result map to the same UTC time * time, we're OK, else the hour is unrepresentable in the tzinfo * zone. The result's local time now is * self + total_added_to_result, so self == result iff * self - selfoff == result - resoff, iff * self - selfoff == (self + total_added_to_result) - resoff, iff * - selfoff == total_added_to_result - resoff, iff * total_added_to_result == resoff - selfoff */ if (total_added_to_result == resoff - selfoff) return result; /* Else there's no way to spell self in zone tzinfo. */ PyErr_SetString(PyExc_ValueError, "astimezone(): the source " "datetimetz can't be expressed in the target " "timezone's local time"); goto Fail; Inconsistent: PyErr_SetString(PyExc_ValueError, "astimezone(): tz.utcoffset() " "gave inconsistent results; cannot convert"); /* fall thru to failure */ Fail: Py_DECREF(result); return NULL; } static PyObject * datetimetz_timetuple(PyDateTime_DateTimeTZ *self) { int dstflag = -1; if (self->tzinfo != Py_None) { int none; dstflag = call_dst(self->tzinfo, (PyObject *)self, &none); if (dstflag == -1 && PyErr_Occurred()) return NULL; if (none) dstflag = -1; else if (dstflag != 0) dstflag = 1; } return build_struct_time(GET_YEAR(self), GET_MONTH(self), GET_DAY(self), DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), dstflag); } static PyObject * datetimetz_utctimetuple(PyDateTime_DateTimeTZ *self) { int y = GET_YEAR(self); int m = GET_MONTH(self); int d = GET_DAY(self); int hh = DATE_GET_HOUR(self); int mm = DATE_GET_MINUTE(self); int ss = DATE_GET_SECOND(self); int us = 0; /* microseconds are ignored in a timetuple */ int offset = 0; if (self->tzinfo != Py_None) { int none; offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none); if (offset == -1 && PyErr_Occurred()) return NULL; } /* Even if offset is 0, don't call timetuple() -- tm_isdst should be * 0 in a UTC timetuple regardless of what dst() says. */ if (offset) { /* Subtract offset minutes & normalize. */ int stat; mm -= offset; stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us); if (stat < 0) { /* At the edges, it's possible we overflowed * beyond MINYEAR or MAXYEAR. */ if (PyErr_ExceptionMatches(PyExc_OverflowError)) PyErr_Clear(); else return NULL; } } return build_struct_time(y, m, d, hh, mm, ss, 0); } static PyObject * datetimetz_gettimetz(PyDateTime_DateTimeTZ *self) { return new_timetz(DATE_GET_HOUR(self), DATE_GET_MINUTE(self), DATE_GET_SECOND(self), DATE_GET_MICROSECOND(self), self->tzinfo); } /* * Pickle support. Quite a maze! */ /* Let basestate be the state string returned by datetime_getstate. * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo). * So it's a tuple in any (non-error) case. */ static PyObject * datetimetz_getstate(PyDateTime_DateTimeTZ *self) { PyObject *basestate; PyObject *result = NULL; basestate = datetime_getstate((PyDateTime_DateTime *)self); if (basestate != NULL) { if (self->tzinfo == Py_None) result = Py_BuildValue("(O)", basestate); else result = Py_BuildValue("OO", basestate, self->tzinfo); Py_DECREF(basestate); } return result; } static PyObject * datetimetz_setstate(PyDateTime_DateTimeTZ *self, PyObject *state) { PyObject *temp; PyObject *basestate; PyObject *tzinfo = Py_None; if (! PyArg_ParseTuple(state, "O!|O:__setstate__", &PyString_Type, &basestate, &tzinfo)) return NULL; temp = datetime_setstate((PyDateTime_DateTime *)self, basestate); if (temp == NULL) return NULL; Py_DECREF(temp); Py_INCREF(tzinfo); Py_XDECREF(self->tzinfo); self->tzinfo = tzinfo; Py_INCREF(Py_None); return Py_None; } static PyObject * datetimetz_pickler(PyObject *module, PyDateTime_DateTimeTZ *datetimetz) { PyObject *state; PyObject *result = NULL; if (! PyDateTimeTZ_CheckExact(datetimetz)) { PyErr_Format(PyExc_TypeError, "bad type passed to datetimetz pickler: %s", datetimetz->ob_type->tp_name); return NULL; } state = datetimetz_getstate(datetimetz); if (state) { result = Py_BuildValue("O(O)", datetimetz_unpickler_object, state); Py_DECREF(state); } return result; } static PyObject * datetimetz_unpickler(PyObject *module, PyObject *arg) { PyDateTime_DateTimeTZ *self; self = PyObject_New(PyDateTime_DateTimeTZ, &PyDateTime_DateTimeTZType); if (self != NULL) { PyObject *res; self->tzinfo = NULL; res = datetimetz_setstate(self, arg); if (res == NULL) { Py_DECREF(self); return NULL; } Py_DECREF(res); } return (PyObject *)self; } static PyMethodDef datetimetz_methods[] = { /* Class methods: */ /* Inherited: combine(), utcnow(), utcfromtimestamp() */ {"now", (PyCFunction)datetimetz_now, METH_KEYWORDS | METH_CLASS, PyDoc_STR("[tzinfo] -> new datetimetz with local day and time.")}, {"fromtimestamp", (PyCFunction)datetimetz_fromtimestamp, METH_KEYWORDS | METH_CLASS, PyDoc_STR("timestamp[, tzinfo] -> local time from POSIX timestamp.")}, /* Instance methods: */ /* Inherited: date(), time(), ctime(). */ {"timetuple", (PyCFunction)datetimetz_timetuple, METH_NOARGS, PyDoc_STR("Return time tuple, compatible with time.localtime().")}, {"utctimetuple", (PyCFunction)datetimetz_utctimetuple, METH_NOARGS, PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")}, {"timetz", (PyCFunction)datetimetz_gettimetz, METH_NOARGS, PyDoc_STR("Return timetz object with same hour, minute, second, " "microsecond, and tzinfo.")}, {"isoformat", (PyCFunction)datetimetz_isoformat, METH_KEYWORDS, PyDoc_STR("[sep] -> string in ISO 8601 format, " "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n" "sep is used to separate the year from the time, and " "defaults to 'T'.")}, {"utcoffset", (PyCFunction)datetimetz_utcoffset, METH_NOARGS, PyDoc_STR("Return self.tzinfo.utcoffset(self).")}, {"tzname", (PyCFunction)datetimetz_tzname, METH_NOARGS, PyDoc_STR("Return self.tzinfo.tzname(self).")}, {"dst", (PyCFunction)datetimetz_dst, METH_NOARGS, PyDoc_STR("Return self.tzinfo.dst(self).")}, {"replace", (PyCFunction)datetimetz_replace, METH_KEYWORDS, PyDoc_STR("Return datetimetz with new specified fields.")}, {"astimezone", (PyCFunction)datetimetz_astimezone, METH_KEYWORDS, PyDoc_STR("tz -> convert to local time in new timezone tz\n")}, {"__setstate__", (PyCFunction)datetimetz_setstate, METH_O, PyDoc_STR("__setstate__(state)")}, {"__getstate__", (PyCFunction)datetimetz_getstate, METH_NOARGS, PyDoc_STR("__getstate__() -> state")}, {NULL, NULL} }; static char datetimetz_doc[] = PyDoc_STR("date/time type."); static PyNumberMethods datetimetz_as_number = { datetimetz_add, /* nb_add */ datetimetz_subtract, /* nb_subtract */ 0, /* nb_multiply */ 0, /* nb_divide */ 0, /* nb_remainder */ 0, /* nb_divmod */ 0, /* nb_power */ 0, /* nb_negative */ 0, /* nb_positive */ 0, /* nb_absolute */ 0, /* nb_nonzero */ }; statichere PyTypeObject PyDateTime_DateTimeTZType = { PyObject_HEAD_INIT(NULL) 0, /* ob_size */ "datetime.datetimetz", /* tp_name */ sizeof(PyDateTime_DateTimeTZ), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)datetimetz_dealloc, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)datetimetz_repr, /* tp_repr */ &datetimetz_as_number, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ PyObject_GenericGetAttr, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | Py_TPFLAGS_BASETYPE, /* tp_flags */ datetimetz_doc, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ datetimetz_methods, /* tp_methods */ 0, /* tp_members */ datetimetz_getset, /* tp_getset */ &PyDateTime_DateTimeType, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ datetimetz_new, /* tp_new */ _PyObject_Del, /* tp_free */ }; /* --------------------------------------------------------------------------- * Module methods and initialization. */ static PyMethodDef module_methods[] = { /* Private functions for pickling support, registered with the * copy_reg module by the module init function. */ {"_date_pickler", (PyCFunction)date_pickler, METH_O, NULL}, {"_date_unpickler", (PyCFunction)date_unpickler, METH_O, NULL}, {"_datetime_pickler", (PyCFunction)datetime_pickler, METH_O, NULL}, {"_datetime_unpickler", (PyCFunction)datetime_unpickler,METH_O, NULL}, {"_datetimetz_pickler", (PyCFunction)datetimetz_pickler,METH_O, NULL}, {"_datetimetz_unpickler",(PyCFunction)datetimetz_unpickler,METH_O, NULL}, {"_time_pickler", (PyCFunction)time_pickler, METH_O, NULL}, {"_time_unpickler", (PyCFunction)time_unpickler, METH_O, NULL}, {"_timetz_pickler", (PyCFunction)timetz_pickler, METH_O, NULL}, {"_timetz_unpickler", (PyCFunction)timetz_unpickler, METH_O, NULL}, {"_tzinfo_pickler", (PyCFunction)tzinfo_pickler, METH_O, NULL}, {"_tzinfo_unpickler", (PyCFunction)tzinfo_unpickler, METH_NOARGS, NULL}, {NULL, NULL} }; PyMODINIT_FUNC initdatetime(void) { PyObject *m; /* a module object */ PyObject *d; /* its dict */ PyObject *x; /* Types that use __reduce__ for pickling need to set the following * magical attr in the type dict, with a true value. */ PyObject *safepickle = PyString_FromString("__safe_for_unpickling__"); if (safepickle == NULL) return; m = Py_InitModule3("datetime", module_methods, "Fast implementation of the datetime type."); if (PyType_Ready(&PyDateTime_DateType) < 0) return; if (PyType_Ready(&PyDateTime_DateTimeType) < 0) return; if (PyType_Ready(&PyDateTime_DeltaType) < 0) return; if (PyType_Ready(&PyDateTime_TimeType) < 0) return; if (PyType_Ready(&PyDateTime_TZInfoType) < 0) return; if (PyType_Ready(&PyDateTime_TimeTZType) < 0) return; if (PyType_Ready(&PyDateTime_DateTimeTZType) < 0) return; /* Pickling support, via registering functions with copy_reg. */ { PyObject *pickler; PyObject *copyreg = PyImport_ImportModule("copy_reg"); if (copyreg == NULL) return; pickler = PyObject_GetAttrString(m, "_date_pickler"); if (pickler == NULL) return; date_unpickler_object = PyObject_GetAttrString(m, "_date_unpickler"); if (date_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_DateType, pickler, date_unpickler_object); if (x == NULL) return; Py_DECREF(x); Py_DECREF(pickler); pickler = PyObject_GetAttrString(m, "_datetime_pickler"); if (pickler == NULL) return; datetime_unpickler_object = PyObject_GetAttrString(m, "_datetime_unpickler"); if (datetime_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_DateTimeType, pickler, datetime_unpickler_object); if (x == NULL) return; Py_DECREF(x); Py_DECREF(pickler); pickler = PyObject_GetAttrString(m, "_time_pickler"); if (pickler == NULL) return; time_unpickler_object = PyObject_GetAttrString(m, "_time_unpickler"); if (time_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_TimeType, pickler, time_unpickler_object); if (x == NULL) return; Py_DECREF(x); Py_DECREF(pickler); pickler = PyObject_GetAttrString(m, "_timetz_pickler"); if (pickler == NULL) return; timetz_unpickler_object = PyObject_GetAttrString(m, "_timetz_unpickler"); if (timetz_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_TimeTZType, pickler, timetz_unpickler_object); if (x == NULL) return; Py_DECREF(x); Py_DECREF(pickler); pickler = PyObject_GetAttrString(m, "_tzinfo_pickler"); if (pickler == NULL) return; tzinfo_unpickler_object = PyObject_GetAttrString(m, "_tzinfo_unpickler"); if (tzinfo_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_TZInfoType, pickler, tzinfo_unpickler_object); if (x== NULL) return; Py_DECREF(x); Py_DECREF(pickler); pickler = PyObject_GetAttrString(m, "_datetimetz_pickler"); if (pickler == NULL) return; datetimetz_unpickler_object = PyObject_GetAttrString(m, "_datetimetz_unpickler"); if (datetimetz_unpickler_object == NULL) return; x = PyObject_CallMethod(copyreg, "pickle", "OOO", &PyDateTime_DateTimeTZType, pickler, datetimetz_unpickler_object); if (x== NULL) return; Py_DECREF(x); Py_DECREF(pickler); Py_DECREF(copyreg); } /* timedelta values */ d = PyDateTime_DeltaType.tp_dict; if (PyDict_SetItem(d, safepickle, Py_True) < 0) return; x = new_delta(0, 0, 1, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); /* date values */ d = PyDateTime_DateType.tp_dict; x = new_date(1, 1, 1); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_date(MAXYEAR, 12, 31); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); x = new_delta(1, 0, 0, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); /* datetime values */ d = PyDateTime_DateTimeType.tp_dict; x = new_datetime(1, 1, 1, 0, 0, 0, 0); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); x = new_delta(0, 0, 1, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); /* time values */ d = PyDateTime_TimeType.tp_dict; x = new_time(0, 0, 0, 0); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_time(23, 59, 59, 999999); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); x = new_delta(0, 0, 1, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); /* timetz values */ d = PyDateTime_TimeTZType.tp_dict; x = new_timetz(0, 0, 0, 0, Py_None); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_timetz(23, 59, 59, 999999, Py_None); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); x = new_delta(0, 0, 1, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); /* datetimetz values */ d = PyDateTime_DateTimeTZType.tp_dict; x = new_datetimetz(1, 1, 1, 0, 0, 0, 0, Py_None); if (x == NULL || PyDict_SetItemString(d, "min", x) < 0) return; Py_DECREF(x); x = new_datetimetz(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None); if (x == NULL || PyDict_SetItemString(d, "max", x) < 0) return; Py_DECREF(x); x = new_delta(0, 0, 1, 0); if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0) return; Py_DECREF(x); Py_DECREF(safepickle); /* module initialization */ PyModule_AddIntConstant(m, "MINYEAR", MINYEAR); PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR); Py_INCREF(&PyDateTime_DateType); PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType); Py_INCREF(&PyDateTime_DateTimeType); PyModule_AddObject(m, "datetime", (PyObject *) &PyDateTime_DateTimeType); Py_INCREF(&PyDateTime_DeltaType); PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType); Py_INCREF(&PyDateTime_TimeType); PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType); Py_INCREF(&PyDateTime_TZInfoType); PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType); Py_INCREF(&PyDateTime_TimeTZType); PyModule_AddObject(m, "timetz", (PyObject *) &PyDateTime_TimeTZType); Py_INCREF(&PyDateTime_DateTimeTZType); PyModule_AddObject(m, "datetimetz", (PyObject *)&PyDateTime_DateTimeTZType); /* A 4-year cycle has an extra leap day over what we'd get from * pasting together 4 single years. */ assert(DI4Y == 4 * 365 + 1); assert(DI4Y == days_before_year(4+1)); /* Similarly, a 400-year cycle has an extra leap day over what we'd * get from pasting together 4 100-year cycles. */ assert(DI400Y == 4 * DI100Y + 1); assert(DI400Y == days_before_year(400+1)); /* OTOH, a 100-year cycle has one fewer leap day than we'd get from * pasting together 25 4-year cycles. */ assert(DI100Y == 25 * DI4Y - 1); assert(DI100Y == days_before_year(100+1)); us_per_us = PyInt_FromLong(1); us_per_ms = PyInt_FromLong(1000); us_per_second = PyInt_FromLong(1000000); us_per_minute = PyInt_FromLong(60000000); seconds_per_day = PyInt_FromLong(24 * 3600); if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL || us_per_minute == NULL || seconds_per_day == NULL) return; /* The rest are too big for 32-bit ints, but even * us_per_week fits in 40 bits, so doubles should be exact. */ us_per_hour = PyLong_FromDouble(3600000000.0); us_per_day = PyLong_FromDouble(86400000000.0); us_per_week = PyLong_FromDouble(604800000000.0); if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL) return; }