/* * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include #include "bits.h" #include "constants.h" #include "fnt.h" #include "fourstep.h" #include "numbertheory.h" #include "sixstep.h" #include "umodarith.h" #include "convolute.h" /* Bignum: Fast convolution using the Number Theoretic Transform. Used for the multiplication of very large coefficients. */ /* Convolute the data in c1 and c2. Result is in c1. */ int fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum) { int (*fnt)(mpd_uint_t *, mpd_size_t, int); int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int); #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t n_inv, umod; mpd_size_t i; SETMODULUS(modnum); n_inv = POWMOD(n, (umod-2)); if (ispower2(n)) { if (n > SIX_STEP_THRESHOLD) { fnt = six_step_fnt; inv_fnt = inv_six_step_fnt; } else { fnt = std_fnt; inv_fnt = std_inv_fnt; } } else { fnt = four_step_fnt; inv_fnt = inv_four_step_fnt; } if (!fnt(c1, n, modnum)) { return 0; } if (!fnt(c2, n, modnum)) { return 0; } for (i = 0; i < n-1; i += 2) { mpd_uint_t x0 = c1[i]; mpd_uint_t y0 = c2[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t y1 = c2[i+1]; MULMOD2(&x0, y0, &x1, y1); c1[i] = x0; c1[i+1] = x1; } if (!inv_fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-3; i += 4) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t x2 = c1[i+2]; mpd_uint_t x3 = c1[i+3]; MULMOD2C(&x0, &x1, n_inv); MULMOD2C(&x2, &x3, n_inv); c1[i] = x0; c1[i+1] = x1; c1[i+2] = x2; c1[i+3] = x3; } return 1; } /* Autoconvolute the data in c1. Result is in c1. */ int fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum) { int (*fnt)(mpd_uint_t *, mpd_size_t, int); int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int); #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t n_inv, umod; mpd_size_t i; SETMODULUS(modnum); n_inv = POWMOD(n, (umod-2)); if (ispower2(n)) { if (n > SIX_STEP_THRESHOLD) { fnt = six_step_fnt; inv_fnt = inv_six_step_fnt; } else { fnt = std_fnt; inv_fnt = std_inv_fnt; } } else { fnt = four_step_fnt; inv_fnt = inv_four_step_fnt; } if (!fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-1; i += 2) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; MULMOD2(&x0, x0, &x1, x1); c1[i] = x0; c1[i+1] = x1; } if (!inv_fnt(c1, n, modnum)) { return 0; } for (i = 0; i < n-3; i += 4) { mpd_uint_t x0 = c1[i]; mpd_uint_t x1 = c1[i+1]; mpd_uint_t x2 = c1[i+2]; mpd_uint_t x3 = c1[i+3]; MULMOD2C(&x0, &x1, n_inv); MULMOD2C(&x2, &x3, n_inv); c1[i] = x0; c1[i+1] = x1; c1[i+2] = x2; c1[i+3] = x3; } return 1; }