# Copyright 2007 Google, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Abstract Base Classes (ABCs) for collections, according to PEP 3119. DON'T USE THIS MODULE DIRECTLY! The classes here should be imported via collections; they are defined here only to alleviate certain bootstrapping issues. Unit tests are in test_collections. """ from abc import ABCMeta, abstractmethod import sys __all__ = ["Hashable", "Iterable", "Iterator", "Sized", "Container", "Callable", "Set", "MutableSet", "Mapping", "MutableMapping", "MappingView", "KeysView", "ItemsView", "ValuesView", "Sequence", "MutableSequence", "ByteString", "bytearray_iterator", "bytes_iterator", "dict_itemiterator", "dict_items", "dict_keyiterator", "dict_keys", "dict_proxy", "dict_valueiterator", "dict_values", "list_iterator", "list_reverseiterator", "range_iterator", "set_iterator", "str_iterator", "tuple_iterator", "zip_iterator", ] ### collection related types which are not exposed through builtin ### ## iterators ## bytes_iterator = type(iter(b'')) bytearray_iterator = type(iter(bytearray())) #callable_iterator = ??? dict_keyiterator = type(iter({}.keys())) dict_valueiterator = type(iter({}.values())) dict_itemiterator = type(iter({}.items())) list_iterator = type(iter([])) list_reverseiterator = type(iter(reversed([]))) range_iterator = type(iter(range(0))) set_iterator = type(iter(set())) str_iterator = type(iter("")) tuple_iterator = type(iter(())) zip_iterator = type(iter(zip())) ## views ## dict_keys = type({}.keys()) dict_values = type({}.values()) dict_items = type({}.items()) ## misc ## dict_proxy = type(type.__dict__) ### ONE-TRICK PONIES ### class Hashable(metaclass=ABCMeta): @abstractmethod def __hash__(self): return 0 @classmethod def __subclasshook__(cls, C): if cls is Hashable: for B in C.__mro__: if "__hash__" in B.__dict__: if B.__dict__["__hash__"]: return True break return NotImplemented class Iterable(metaclass=ABCMeta): @abstractmethod def __iter__(self): while False: yield None @classmethod def __subclasshook__(cls, C): if cls is Iterable: if any("__iter__" in B.__dict__ for B in C.__mro__): return True return NotImplemented class Iterator(Iterable): @abstractmethod def __next__(self): raise StopIteration def __iter__(self): return self @classmethod def __subclasshook__(cls, C): if cls is Iterator: if any("__next__" in B.__dict__ for B in C.__mro__): return True return NotImplemented Iterator.register(bytes_iterator) Iterator.register(bytearray_iterator) #Iterator.register(callable_iterator) Iterator.register(dict_keyiterator) Iterator.register(dict_valueiterator) Iterator.register(dict_itemiterator) Iterator.register(list_iterator) Iterator.register(list_reverseiterator) Iterator.register(range_iterator) Iterator.register(set_iterator) Iterator.register(str_iterator) Iterator.register(tuple_iterator) Iterator.register(zip_iterator) class Sized(metaclass=ABCMeta): @abstractmethod def __len__(self): return 0 @classmethod def __subclasshook__(cls, C): if cls is Sized: if any("__len__" in B.__dict__ for B in C.__mro__): return True return NotImplemented class Container(metaclass=ABCMeta): @abstractmethod def __contains__(self, x): return False @classmethod def __subclasshook__(cls, C): if cls is Container: if any("__contains__" in B.__dict__ for B in C.__mro__): return True return NotImplemented class Callable(metaclass=ABCMeta): @abstractmethod def __call__(self, *args, **kwds): return False @classmethod def __subclasshook__(cls, C): if cls is Callable: if any("__call__" in B.__dict__ for B in C.__mro__): return True return NotImplemented ### SETS ### class Set(Sized, Iterable, Container): """A set is a finite, iterable container. This class provides concrete generic implementations of all methods except for __contains__, __iter__ and __len__. To override the comparisons (presumably for speed, as the semantics are fixed), all you have to do is redefine __le__ and then the other operations will automatically follow suit. """ def __le__(self, other): if not isinstance(other, Set): return NotImplemented if len(self) > len(other): return False for elem in self: if elem not in other: return False return True def __lt__(self, other): if not isinstance(other, Set): return NotImplemented return len(self) < len(other) and self.__le__(other) def __gt__(self, other): if not isinstance(other, Set): return NotImplemented return other < self def __ge__(self, other): if not isinstance(other, Set): return NotImplemented return other <= self def __eq__(self, other): if not isinstance(other, Set): return NotImplemented return len(self) == len(other) and self.__le__(other) def __ne__(self, other): return not (self == other) @classmethod def _from_iterable(cls, it): '''Construct an instance of the class from any iterable input. Must override this method if the class constructor signature does not accept an iterable for an input. ''' return cls(it) def __and__(self, other): if not isinstance(other, Iterable): return NotImplemented return self._from_iterable(value for value in other if value in self) def isdisjoint(self, other): for value in other: if value in self: return False return True def __or__(self, other): if not isinstance(other, Iterable): return NotImplemented chain = (e for s in (self, other) for e in s) return self._from_iterable(chain) def __sub__(self, other): if not isinstance(other, Set): if not isinstance(other, Iterable): return NotImplemented other = self._from_iterable(other) return self._from_iterable(value for value in self if value not in other) def __xor__(self, other): if not isinstance(other, Set): if not isinstance(other, Iterable): return NotImplemented other = self._from_iterable(other) return (self - other) | (other - self) def _hash(self): """Compute the hash value of a set. Note that we don't define __hash__: not all sets are hashable. But if you define a hashable set type, its __hash__ should call this function. This must be compatible __eq__. All sets ought to compare equal if they contain the same elements, regardless of how they are implemented, and regardless of the order of the elements; so there's not much freedom for __eq__ or __hash__. We match the algorithm used by the built-in frozenset type. """ MAX = sys.maxsize MASK = 2 * MAX + 1 n = len(self) h = 1927868237 * (n + 1) h &= MASK for x in self: hx = hash(x) h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 h &= MASK h = h * 69069 + 907133923 h &= MASK if h > MAX: h -= MASK + 1 if h == -1: h = 590923713 return h Set.register(frozenset) class MutableSet(Set): @abstractmethod def add(self, value): """Add an element.""" raise NotImplementedError @abstractmethod def discard(self, value): """Remove an element. Do not raise an exception if absent.""" raise NotImplementedError def remove(self, value): """Remove an element. If not a member, raise a KeyError.""" if value not in self: raise KeyError(value) self.discard(value) def pop(self): """Return the popped value. Raise KeyError if empty.""" it = iter(self) try: value = next(it) except StopIteration: raise KeyError self.discard(value) return value def clear(self): """This is slow (creates N new iterators!) but effective.""" try: while True: self.pop() except KeyError: pass def __ior__(self, it: Iterable): for value in it: self.add(value) return self def __iand__(self, c: Container): for value in self: if value not in c: self.discard(value) return self def __ixor__(self, it: Iterable): if not isinstance(it, Set): it = self._from_iterable(it) for value in it: if value in self: self.discard(value) else: self.add(value) return self def __isub__(self, it: Iterable): for value in it: self.discard(value) return self MutableSet.register(set) ### MAPPINGS ### class Mapping(Sized, Iterable, Container): @abstractmethod def __getitem__(self, key): raise KeyError def get(self, key, default=None): try: return self[key] except KeyError: return default def __contains__(self, key): try: self[key] except KeyError: return False else: return True def keys(self): return KeysView(self) def items(self): return ItemsView(self) def values(self): return ValuesView(self) def __eq__(self, other): return isinstance(other, Mapping) and \ dict(self.items()) == dict(other.items()) def __ne__(self, other): return not (self == other) class MappingView(Sized): def __init__(self, mapping): self._mapping = mapping def __len__(self): return len(self._mapping) def __repr__(self): return '{0.__class__.__name__}({0._mapping!r})'.format(self) class KeysView(MappingView, Set): def __contains__(self, key): return key in self._mapping def __iter__(self): for key in self._mapping: yield key KeysView.register(dict_keys) class ItemsView(MappingView, Set): def __contains__(self, item): key, value = item try: v = self._mapping[key] except KeyError: return False else: return v == value def __iter__(self): for key in self._mapping: yield (key, self._mapping[key]) ItemsView.register(dict_items) class ValuesView(MappingView): def __contains__(self, value): for key in self._mapping: if value == self._mapping[key]: return True return False def __iter__(self): for key in self._mapping: yield self._mapping[key] ValuesView.register(dict_values) class MutableMapping(Mapping): @abstractmethod def __setitem__(self, key, value): raise KeyError @abstractmethod def __delitem__(self, key): raise KeyError __marker = object() def pop(self, key, default=__marker): try: value = self[key] except KeyError: if default is self.__marker: raise return default else: del self[key] return value def popitem(self): try: key = next(iter(self)) except StopIteration: raise KeyError value = self[key] del self[key] return key, value def clear(self): try: while True: self.popitem() except KeyError: pass def update(self, other=(), **kwds): if isinstance(other, Mapping): for key in other: self[key] = other[key] elif hasattr(other, "keys"): for key in other.keys(): self[key] = other[key] else: for key, value in other: self[key] = value for key, value in kwds.items(): self[key] = value def setdefault(self, key, default=None): try: return self[key] except KeyError: self[key] = default return default MutableMapping.register(dict) ### SEQUENCES ### class Sequence(Sized, Iterable, Container): """All the operations on a read-only sequence. Concrete subclasses must override __new__ or __init__, __getitem__, and __len__. """ @abstractmethod def __getitem__(self, index): raise IndexError def __iter__(self): i = 0 try: while True: v = self[i] yield v i += 1 except IndexError: return def __contains__(self, value): for v in self: if v == value: return True return False def __reversed__(self): for i in reversed(range(len(self))): yield self[i] def index(self, value): for i, v in enumerate(self): if v == value: return i raise ValueError def count(self, value): return sum(1 for v in self if v == value) Sequence.register(tuple) Sequence.register(str) Sequence.register(range) class ByteString(Sequence): """This unifies bytes and bytearray. XXX Should add all their methods. """ ByteString.register(bytes) ByteString.register(bytearray) class MutableSequence(Sequence): @abstractmethod def __setitem__(self, index, value): raise IndexError @abstractmethod def __delitem__(self, index): raise IndexError @abstractmethod def insert(self, index, value): raise IndexError def append(self, value): self.insert(len(self), value) def reverse(self): n = len(self) for i in range(n//2): self[i], self[n-i-1] = self[n-i-1], self[i] def extend(self, values): for v in values: self.append(v) def pop(self, index=-1): v = self[index] del self[index] return v def remove(self, value): del self[self.index(value)] def __iadd__(self, values): self.extend(values) MutableSequence.register(list) MutableSequence.register(bytearray) # Multiply inheriting, see ByteString