/************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* DO NOT EDIT THIS FILE! */ /* This file is automatically written by the merge-files.py script included with the PCRE distribution for Python; it's produced from several C files, and code is removed in the process. If you want to modify the code or track down bugs, it will be much easier to work with the code in its original, multiple-file form. Don't edit this file by hand, or submit patches to it. The Python-specific PCRE distribution can be retrieved from http://starship.skyport.net/crew/amk/regex/ The unmodified original PCRE distribution is available at ftp://ftp.cus.cam.ac.uk/pub/software/programs/pcre/, and is originally written by: Philip Hazel Extensively modified by the Python String-SIG: Send bug reports to: (They'll figure out if it's a bug in PCRE or in the Python-specific changes.) Copyright (c) 1997 University of Cambridge ----------------------------------------------------------------------------- Permission is granted to anyone to use this software for any purpose on any computer system, and to redistribute it freely, subject to the following restrictions: 1. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 2. The origin of this software must not be misrepresented, either by explicit claim or by omission. 3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software. ----------------------------------------------------------------------------- */ #define FOR_PYTHON #include "pcre-int.h" #include "Python.h" #include "mymalloc.h" #include #include "graminit.h" /************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* This file is automatically written by the makechartables auxiliary program. If you edit it by hand, you might like to edit the Makefile to prevent its ever being regenerated. */ /* This table is a lower casing table. */ unsigned char pcre_lcc[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111, 112,113,114,115,116,117,118,119, 120,121,122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111, 112,113,114,115,116,117,118,119, 120,121,122,123,124,125,126,127, 128,129,130,131,132,133,134,135, 136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151, 152,153,154,155,156,157,158,159, 160,161,162,163,164,165,166,167, 168,169,170,171,172,173,174,175, 176,177,178,179,180,181,182,183, 184,185,186,187,188,189,190,191, 192,193,194,195,196,197,198,199, 200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223, 224,225,226,227,228,229,230,231, 232,233,234,235,236,237,238,239, 240,241,242,243,244,245,246,247, 248,249,250,251,252,253,254,255 }; /* This table is a case flipping table. */ unsigned char pcre_fcc[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111, 112,113,114,115,116,117,118,119, 120,121,122, 91, 92, 93, 94, 95, 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127, 128,129,130,131,132,133,134,135, 136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151, 152,153,154,155,156,157,158,159, 160,161,162,163,164,165,166,167, 168,169,170,171,172,173,174,175, 176,177,178,179,180,181,182,183, 184,185,186,187,188,189,190,191, 192,193,194,195,196,197,198,199, 200,201,202,203,204,205,206,207, 208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223, 224,225,226,227,228,229,230,231, 232,233,234,235,236,237,238,239, 240,241,242,243,244,245,246,247, 248,249,250,251,252,253,254,255 }; /* This table contains bit maps for digits, letters, 'word' chars, and white space. Each map is 32 bytes long and the bits run from the least significant end of each byte. */ unsigned char pcre_cbits[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xfe,0xff,0xff,0x07,0xfe,0xff,0xff,0x07, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03, 0xfe,0xff,0xff,0x87,0xfe,0xff,0xff,0x07, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x3e,0x00,0x00,0x01,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; /* This table identifies various classes of character by individual bits: 0x01 white space character 0x02 letter 0x04 decimal digit 0x08 hexadecimal digit 0x10 alphanumeric or '_' 0x80 regular expression metacharacter or binary zero */ unsigned char pcre_ctypes[] = { 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ 0x00,0x01,0x01,0x01,0x01,0x01,0x00,0x00, /* 8- 15 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ 0x01,0x00,0x00,0x00,0x80,0x00,0x00,0x00, /* - ' */ 0x80,0x80,0x80,0x80,0x00,0x00,0x80,0x00, /* ( - / */ 0x3c,0x3c,0x3c,0x3c,0x3c,0x3c,0x3c,0x3c, /* 0 - 7 */ 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x80, /* 8 - ? */ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* @ - G */ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* H - O */ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* P - W */ 0x12,0x12,0x12,0x80,0x00,0x00,0x80,0x10, /* X - _ */ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* ` - g */ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* h - o */ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* p - w */ 0x12,0x12,0x12,0x80,0x80,0x00,0x00,0x00, /* x -127 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ /* End of chartables.c */ /************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* This is a library of functions to support regular expressions whose syntax and semantics are as close as possible to those of the Perl 5 language. See the file Tech.Notes for some information on the internals. Written by: Philip Hazel Copyright (c) 1998 University of Cambridge ----------------------------------------------------------------------------- Permission is granted to anyone to use this software for any purpose on any computer system, and to redistribute it freely, subject to the following restrictions: 1. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 2. The origin of this software must not be misrepresented, either by explicit claim or by omission. 3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software. ----------------------------------------------------------------------------- */ /* Include the internals header, which itself includes Standard C headers plus the external pcre header. */ /************************************************* * Create bitmap of starting chars * *************************************************/ /* This function scans a compiled unanchored expression and attempts to build a bitmap of the set of initial characters. If it can't, it returns FALSE. As time goes by, we may be able to get more clever at doing this. Arguments: code points to an expression start_bits points to a 32-byte table, initialized to 0 Returns: TRUE if table built, FALSE otherwise */ static BOOL set_start_bits(const uschar *code, uschar *start_bits) { register int c; do { const uschar *tcode = code + 3; BOOL try_next = TRUE; while (try_next) { try_next = FALSE; if ((int)*tcode >= OP_BRA || *tcode == OP_ASSERT) { if (!set_start_bits(tcode, start_bits)) return FALSE; } else switch(*tcode) { default: return FALSE; /* BRAZERO does the bracket, but carries on. */ case OP_BRAZERO: case OP_BRAMINZERO: if (!set_start_bits(++tcode, start_bits)) return FALSE; do tcode += (tcode[1] << 8) + tcode[2]; while (*tcode == OP_ALT); tcode += 3; try_next = TRUE; break; /* Single-char * or ? sets the bit and tries the next item */ case OP_STAR: case OP_MINSTAR: case OP_QUERY: case OP_MINQUERY: start_bits[tcode[1]/8] |= (1 << (tcode[1]&7)); tcode += 2; try_next = TRUE; break; /* Single-char upto sets the bit and tries the next */ case OP_UPTO: case OP_MINUPTO: start_bits[tcode[3]/8] |= (1 << (tcode[3]&7)); tcode += 4; try_next = TRUE; break; /* At least one single char sets the bit and stops */ case OP_EXACT: /* Fall through */ tcode++; case OP_CHARS: /* Fall through */ tcode++; case OP_PLUS: case OP_MINPLUS: start_bits[tcode[1]/8] |= (1 << (tcode[1]&7)); break; /* Single character type sets the bits and stops */ case OP_NOT_DIGIT: for (c = 0; c < 32; c++) start_bits[c] |= ~pcre_cbits[c+cbit_digit]; break; case OP_DIGIT: for (c = 0; c < 32; c++) start_bits[c] |= pcre_cbits[c+cbit_digit]; break; case OP_NOT_WHITESPACE: for (c = 0; c < 32; c++) start_bits[c] |= ~pcre_cbits[c+cbit_space]; break; case OP_WHITESPACE: for (c = 0; c < 32; c++) start_bits[c] |= pcre_cbits[c+cbit_space]; break; case OP_NOT_WORDCHAR: for (c = 0; c < 32; c++) start_bits[c] |= ~(pcre_cbits[c] | pcre_cbits[c+cbit_word]); break; case OP_WORDCHAR: for (c = 0; c < 32; c++) start_bits[c] |= (pcre_cbits[c] | pcre_cbits[c+cbit_word]); break; /* One or more character type fudges the pointer and restarts, knowing it will hit a single character type and stop there. */ case OP_TYPEPLUS: case OP_TYPEMINPLUS: tcode++; try_next = TRUE; break; case OP_TYPEEXACT: tcode += 3; try_next = TRUE; break; /* Zero or more repeats of character types set the bits and then try again. */ case OP_TYPEUPTO: case OP_TYPEMINUPTO: tcode += 2; /* Fall through */ case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEQUERY: case OP_TYPEMINQUERY: switch(tcode[1]) { case OP_NOT_DIGIT: for (c = 0; c < 32; c++) start_bits[c] |= ~pcre_cbits[c+cbit_digit]; break; case OP_DIGIT: for (c = 0; c < 32; c++) start_bits[c] |= pcre_cbits[c+cbit_digit]; break; case OP_NOT_WHITESPACE: for (c = 0; c < 32; c++) start_bits[c] |= ~pcre_cbits[c+cbit_space]; break; case OP_WHITESPACE: for (c = 0; c < 32; c++) start_bits[c] |= pcre_cbits[c+cbit_space]; break; case OP_NOT_WORDCHAR: for (c = 0; c < 32; c++) start_bits[c] |= ~(pcre_cbits[c] | pcre_cbits[c+cbit_word]); break; case OP_WORDCHAR: for (c = 0; c < 32; c++) start_bits[c] |= (pcre_cbits[c] | pcre_cbits[c+cbit_word]); break; } tcode += 2; try_next = TRUE; break; /* Character class: set the bits and either carry on or not, according to the repeat count. */ case OP_CLASS: case OP_NEGCLASS: { tcode++; for (c = 0; c < 32; c++) start_bits[c] |= tcode[c]; tcode += 32; switch (*tcode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRQUERY: case OP_CRMINQUERY: tcode++; try_next = TRUE; break; case OP_CRRANGE: case OP_CRMINRANGE: if (((tcode[1] << 8) + tcode[2]) == 0) { tcode += 5; try_next = TRUE; } break; } } break; /* End of class handling */ } /* End of switch */ } /* End of try_next loop */ code += (code[1] << 8) + code[2]; /* Advance to next branch */ } while (*code == OP_ALT); return TRUE; } /************************************************* * Study a compiled expression * *************************************************/ /* This function is handed a compiled expression that it must study to produce information that will speed up the matching. It returns a pcre_extra block which then gets handed back to pcre_exec(). Arguments: re points to the compiled expression options contains option bits errorptr points to where to place error messages; set NULL unless error Returns: pointer to a pcre_extra block, NULL on error or if no optimization possible */ pcre_extra * pcre_study(const pcre *external_re, int options, const char **errorptr) { BOOL caseless; uschar start_bits[32]; real_pcre_extra *extra; const real_pcre *re = (const real_pcre *)external_re; *errorptr = NULL; if (re == NULL || re->magic_number != MAGIC_NUMBER) { *errorptr = "argument is not a compiled regular expression"; return NULL; } if ((options & ~PUBLIC_STUDY_OPTIONS) != 0) { *errorptr = "unknown or incorrect option bit(s) set"; return NULL; } /* Caseless can either be from the compiled regex or from options. */ caseless = ((re->options | options) & PCRE_CASELESS) != 0; /* For an anchored pattern, or an unchored pattern that has a first char, or a multiline pattern that matches only at "line starts", no further processing at present. */ if ((re->options & (PCRE_ANCHORED|PCRE_FIRSTSET|PCRE_STARTLINE)) != 0) return NULL; /* See if we can find a fixed set of initial characters for the pattern. */ memset(start_bits, 0, 32 * sizeof(uschar)); if (!set_start_bits(re->code, start_bits)) return NULL; /* If this studying is caseless, scan the created bit map and duplicate the bits for any letters. */ if (caseless) { register int c; for (c = 0; c < 256; c++) { if ((start_bits[c/8] & (1 << (c&7))) != 0 && (pcre_ctypes[c] & ctype_letter) != 0) { int d = pcre_fcc[c]; start_bits[d/8] |= (1 << (d&7)); } } } /* Get an "extra" block and put the information therein. */ extra = (real_pcre_extra *)(pcre_malloc)(sizeof(real_pcre_extra)); if (extra == NULL) { *errorptr = "failed to get memory"; return NULL; } extra->options = PCRE_STUDY_MAPPED | (caseless? PCRE_STUDY_CASELESS : 0); memcpy(extra->start_bits, start_bits, sizeof(start_bits)); return (pcre_extra *)extra; } /* End of study.c */ /************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* This is a library of functions to support regular expressions whose syntax and semantics are as close as possible to those of the Perl 5 language. See the file Tech.Notes for some information on the internals. Written by: Philip Hazel Copyright (c) 1998 University of Cambridge ----------------------------------------------------------------------------- Permission is granted to anyone to use this software for any purpose on any computer system, and to redistribute it freely, subject to the following restrictions: 1. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 2. The origin of this software must not be misrepresented, either by explicit claim or by omission. 3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software. ----------------------------------------------------------------------------- */ /* Define DEBUG to get debugging output on stdout. */ /* #define DEBUG */ /* Use a macro for debugging printing, 'cause that eliminates the the use of #ifdef inline, and there are *still* stupid compilers about that don't like indented pre-processor statements. I suppose it's only been 10 years... */ #ifdef DEBUG #define DPRINTF(p) printf p #else #define DPRINTF(p) /*nothing*/ #endif /* Include the internals header, which itself includes Standard C headers plus the external pcre header. */ #ifndef Py_eval_input /* For Python 1.4, graminit.h has to be explicitly included */ #define Py_eval_input eval_input #endif /* FOR_PYTHON */ /* Allow compilation as C++ source code, should anybody want to do that. */ #ifdef __cplusplus #define class pcre_class #endif /* Min and max values for the common repeats; for the maxima, 0 => infinity */ static const char rep_min[] = { 0, 0, 1, 1, 0, 0 }; static const char rep_max[] = { 0, 0, 0, 0, 1, 1 }; /* Text forms of OP_ values and things, for debugging (not all used) */ #ifdef DEBUG static const char *OP_names[] = { "End", "\\A", "\\B", "\\b", "\\D", "\\d", "\\S", "\\s", "\\W", "\\w", "Cut", "\\Z", "localized \\B", "localized \\b", "localized \\W", "localized \\w", "^", "$", "Any", "chars", "not", "*", "*?", "+", "+?", "?", "??", "{", "{", "{", "*", "*?", "+", "+?", "?", "??", "{", "{", "{", "*", "*?", "+", "+?", "?", "??", "{", "{", "{", "*", "*?", "+", "+?", "?", "??", "{", "{", "class", "negclass", "classL", "Ref", "Alt", "Ket", "KetRmax", "KetRmin", "Assert", "Assert not", "Once", "Brazero", "Braminzero", "Bra" }; #endif /* Table for handling escaped characters in the range '0'-'z'. Positive returns are simple data values; negative values are for special things like \d and so on. Zero means further processing is needed (for things like \x), or the escape is invalid. */ static const short int escapes[] = { 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ '@', -ESC_A, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */ 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ 0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */ '`', 7, -ESC_b, 0, -ESC_d, 0, '\f', 0, /* ` - g */ 0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */ 0, 0, '\r', -ESC_s, '\t', 0, '\v', -ESC_w, /* p - w */ 0, 0, 0 /* x - z */ }; /* Definition to allow mutual recursion */ static BOOL compile_regex(int, int *, uschar **, const uschar **, const char **, PyObject *); /* Structure for passing "static" information around between the functions doing the matching, so that they are thread-safe. */ typedef struct match_data { int errorcode; /* As it says */ int *offset_vector; /* Offset vector */ int offset_end; /* One past the end */ BOOL offset_overflow; /* Set if too many extractions */ BOOL caseless; /* Case-independent flag */ BOOL runtime_caseless; /* Caseless forced at run time */ BOOL multiline; /* Multiline flag */ BOOL notbol; /* NOTBOL flag */ BOOL noteol; /* NOTEOL flag */ BOOL dotall; /* Dot matches any char */ BOOL endonly; /* Dollar not before final \n */ const uschar *start_subject; /* Start of the subject string */ const uschar *end_subject; /* End of the subject string */ jmp_buf fail_env; /* Environment for longjump() break out */ const uschar *end_match_ptr; /* Subject position at end match */ int end_offset_top; /* Highwater mark at end of match */ jmp_buf error_env; /* For longjmp() if an error occurs deep inside a matching operation */ int length; /* Length of the allocated stacks */ int point; /* Point to add next item pushed onto stacks */ /* Pointers to the 6 stacks */ int *off_num, *offset_top, *r1, *r2; const uschar **eptr, **ecode; } match_data; /************************************************* * Global variables * *************************************************/ /* PCRE is thread-clean and doesn't use any global variables in the normal sense. However, it calls memory allocation and free functions via the two indirections below, which are can be changed by the caller, but are shared between all threads. */ void *(*pcre_malloc)(size_t) = malloc; void (*pcre_free)(void *) = free; /************************************************* * Return version string * *************************************************/ const char * pcre_version(void) { return PCRE_VERSION; } /************************************************* * Return info about a compiled pattern * *************************************************/ /* This function picks potentially useful data out of the private structure. Arguments: external_re points to compiled code optptr where to pass back the options first_char where to pass back the first character, or -1 if multiline and all branches start ^, or -2 otherwise Returns: number of identifying extraction brackets or negative values on error */ int pcre_info(const pcre *external_re, int *optptr, int *first_char) { const real_pcre *re = (real_pcre *)external_re; if (re == NULL) return PCRE_ERROR_NULL; if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; if (optptr != NULL) *optptr = (re->options & PUBLIC_OPTIONS); if (first_char != NULL) *first_char = ((re->options & PCRE_FIRSTSET) != 0)? re->first_char : ((re->options & PCRE_STARTLINE) != 0)? -1 : -2; return re->top_bracket; } #ifdef DEBUG /************************************************* * Debugging function to print chars * *************************************************/ /* Print a sequence of chars in printable format, stopping at the end of the subject if the requested. Arguments: p points to characters length number to print is_subject TRUE if printing from within md->start_subject md pointer to matching data block, if is_subject is TRUE Returns: nothing */ static void pchars(const uschar *p, int length, BOOL is_subject, match_data *md) { int c; if (is_subject && length > md->end_subject - p) length = md->end_subject - p; while (length-- > 0) if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c); } #endif /************************************************* * Check subpattern for empty operand * *************************************************/ /* This function checks a bracketed subpattern to see if any of the paths through it could match an empty string. This is used to diagnose an error if such a subpattern is followed by a quantifier with an unlimited upper bound. Argument: code points to the opening bracket Returns: TRUE or FALSE */ static BOOL could_be_empty(uschar *code) { do { uschar *cc = code + 3; /* Scan along the opcodes for this branch; as soon as we find something that matches a non-empty string, break out and advance to test the next branch. If we get to the end of the branch, return TRUE for the whole sub-expression. */ for (;;) { /* Test an embedded subpattern; if it could not be empty, break the loop. Otherwise carry on in the branch. */ if ((int)(*cc) >= OP_BRA || (int)(*cc) == OP_ONCE) { if (!could_be_empty(cc)) break; do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT); cc += 3; } else switch (*cc) { /* Reached end of a branch: the subpattern may match the empty string */ case OP_ALT: case OP_KET: case OP_KETRMAX: case OP_KETRMIN: return TRUE; /* Skip over entire bracket groups with zero lower bound */ case OP_BRAZERO: case OP_BRAMINZERO: cc++; /* Fall through */ /* Skip over assertive subpatterns */ case OP_ASSERT: case OP_ASSERT_NOT: do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT); cc += 3; break; /* Skip over things that don't match chars */ case OP_SOD: case OP_EOD: case OP_CIRC: case OP_DOLL: case OP_NOT_WORD_BOUNDARY: case OP_WORD_BOUNDARY: case OP_NOT_WORD_BOUNDARY_L: case OP_WORD_BOUNDARY_L: cc++; break; /* Skip over simple repeats with zero lower bound */ case OP_STAR: case OP_MINSTAR: case OP_QUERY: case OP_MINQUERY: case OP_NOTSTAR: case OP_NOTMINSTAR: case OP_NOTQUERY: case OP_NOTMINQUERY: case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEQUERY: case OP_TYPEMINQUERY: cc += 2; break; /* Skip over UPTOs (lower bound is zero) */ case OP_UPTO: case OP_MINUPTO: case OP_TYPEUPTO: case OP_TYPEMINUPTO: cc += 4; break; /* Check a class or a back reference for a zero minimum */ case OP_CLASS: case OP_NEGCLASS: case OP_REF: case OP_CLASS_L: switch(*cc) { case (OP_REF): cc += 2; break; case (OP_CLASS): case (OP_NEGCLASS): cc += 1+32; break; case (OP_CLASS_L): cc += 1+1+32; break; } switch (*cc) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRQUERY: case OP_CRMINQUERY: cc++; break; case OP_CRRANGE: case OP_CRMINRANGE: if ((cc[1] << 8) + cc[2] != 0) goto NEXT_BRANCH; cc += 3; break; default: goto NEXT_BRANCH; } break; /* Anything else matches at least one character */ default: goto NEXT_BRANCH; } } NEXT_BRANCH: code += (code[1] << 8) + code[2]; } while (*code == OP_ALT); /* No branches match the empty string */ return FALSE; } /* Determine the length of a group ID in an expression like (?P...) Arguments: ptr pattern position pointer (say that 3 times fast) finalchar the character that will mark the end of the ID errorptr points to the pointer to the error message */ static int get_group_id(const uschar *ptr, char finalchar, const char **errorptr) { const uschar *start = ptr; /* If the first character is not in \w, or is in \w but is a digit, report an error */ if (!(pcre_ctypes[*ptr] & ctype_word) || (pcre_ctypes[*ptr++] & ctype_digit)) { *errorptr = "(?P identifier must start with a letter or underscore"; return 0; } /* Increment ptr until we either hit a null byte, the desired final character, or a non-word character */ for(; (*ptr != 0) && (*ptr != finalchar) && (pcre_ctypes[*ptr] & ctype_word); ptr++) { /* Empty loop body */ } if (*ptr==finalchar) return ptr-start; if (*ptr==0) { *errorptr = "unterminated (?P identifier"; return 0; } *errorptr = "illegal character in (?P identifier"; return 0; } /************************************************* * Handle escapes * *************************************************/ /* This function is called when a \ has been encountered. It either returns a positive value for a simple escape such as \n, or a negative value which encodes one of the more complicated things such as \d. On entry, ptr is pointing at the \. On exit, it is on the final character of the escape sequence. Arguments: ptrptr points to the pattern position pointer errorptr points to the pointer to the error message bracount number of previous extracting brackets options the options bits isclass TRUE if inside a character class Returns: zero or positive => a data character negative => a special escape sequence on error, errorptr is set */ static int check_escape(const uschar **ptrptr, const char **errorptr, int bracount, int options, BOOL isclass) { const uschar *ptr = *ptrptr; int c = *(++ptr) & 255; /* Ensure > 0 on signed-char systems */ int i; if (c == 0) *errorptr = ERR1; /* Digits or letters may have special meaning; all others are literals. */ else if (c < '0' || c > 'z') {} /* Do an initial lookup in a table. A non-zero result is something that can be returned immediately. Otherwise further processing may be required. */ else if ((i = escapes[c - '0']) != 0) c = i; /* Escapes that need further processing, or are illegal. */ else { switch (c) { /* The handling of escape sequences consisting of a string of digits starting with one that is not zero is not straightforward. By experiment, the way Perl works seems to be as follows: Outside a character class, the digits are read as a decimal number. If the number is less than 10, or if there are that many previous extracting left brackets, then it is a back reference. Otherwise, up to three octal digits are read to form an escaped byte. Thus \123 is likely to be octal 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal value is greater than 377, the least significant 8 bits are taken. Inside a character class, \ followed by a digit is always an octal number. */ case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* PYTHON: Try to compute an octal value for a character */ for(c=0, i=0; ptr[i]!=0 && i<3; i++) { if (( pcre_ctypes[ ptr[i] ] & ctype_odigit) != 0) c = c * 8 + ptr[i]-'0'; else break; /* Non-octal character--break out of the loop */ } /* It's a character if there were exactly 3 octal digits, or if we're inside a character class and there was at least one octal digit. */ if ( (i == 3) || (isclass && i!=0) ) { ptr += i-1; break; } c = ptr[0]; /* Restore the first character after the \ */ c -= '0'; i = 1; while (i<2 && (pcre_ctypes[ptr[1]] & ctype_digit) != 0) { c = c * 10 + ptr[1] - '0'; ptr++; i++; } if (c > 255 - ESC_REF) *errorptr = "back reference too big"; c = -(ESC_REF + c); } break; /* \0 always starts an octal number, but we may drop through to here with a larger first octal digit */ case '0': c -= '0'; while(i++ < 2 && (pcre_ctypes[ptr[1]] & ctype_digit) != 0 && ptr[1] != '8' && ptr[1] != '9') c = c * 8 + *(++ptr) - '0'; break; /* Special escapes not starting with a digit are straightforward */ case 'x': c = 0; while ( (pcre_ctypes[ptr[1]] & ctype_xdigit) != 0) { ptr++; c = c * 16 + pcre_lcc[*ptr] - (((pcre_ctypes[*ptr] & ctype_digit) != 0)? '0' : 'W'); c &= 255; } break; /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any other alphameric following \ is an error if PCRE_EXTRA was set; otherwise, for Perl compatibility, it is a literal. */ default: if ((options & PCRE_EXTRA) != 0) switch(c) { case 'X': c = -ESC_X; /* This could be a lookup if it ever got into Perl */ break; default: *errorptr = ERR3; break; } break; } } *ptrptr = ptr; return c; } /************************************************* * Check for counted repeat * *************************************************/ /* This function is called when a '{' is encountered in a place where it might start a quantifier. It looks ahead to see if it really is a quantifier or not. It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} where the ddds are digits. Arguments: p pointer to the first char after '{' Returns: TRUE or FALSE */ static BOOL is_counted_repeat(const uschar *p) { if ((pcre_ctypes[*p++] & ctype_digit) == 0) return FALSE; while ((pcre_ctypes[*p] & ctype_digit) != 0) p++; if (*p == '}') return TRUE; if (*p++ != ',') return FALSE; if (*p == '}') return TRUE; if ((pcre_ctypes[*p++] & ctype_digit) == 0) return FALSE; while ((pcre_ctypes[*p] & ctype_digit) != 0) p++; return (*p == '}'); } /************************************************* * Read repeat counts * *************************************************/ /* Read an item of the form {n,m} and return the values. This is called only after is_counted_repeat() has confirmed that a repeat-count quantifier exists, so the syntax is guaranteed to be correct, but we need to check the values. Arguments: p pointer to first char after '{' minp pointer to int for min maxp pointer to int for max returned as -1 if no max errorptr points to pointer to error message Returns: pointer to '}' on success; current ptr on error, with errorptr set */ static const uschar * read_repeat_counts(const uschar *p, int *minp, int *maxp, const char **errorptr) { int min = 0; int max = -1; while ((pcre_ctypes[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0'; if (*p == '}') max = min; else { if (*(++p) != '}') { max = 0; while((pcre_ctypes[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0'; if (max < min) { *errorptr = ERR4; return p; } } } /* Do paranoid checks, then fill in the required variables, and pass back the pointer to the terminating '}'. */ if (min > 65535 || max > 65535) *errorptr = ERR5; else { *minp = min; *maxp = max; } return p; } /************************************************* * Compile one branch * *************************************************/ /* Scan the pattern, compiling it into the code vector. Arguments: options the option bits bracket points to number of brackets used code points to the pointer to the current code point ptrptr points to the current pattern pointer errorptr points to pointer to error message Returns: TRUE on success FALSE, with *errorptr set on error */ static BOOL compile_branch(int options, int *brackets, uschar **codeptr, const uschar **ptrptr, const char **errorptr, PyObject *dictionary) { int repeat_type, op_type; int repeat_min, repeat_max; int bravalue, length; register int c; register uschar *code = *codeptr; const uschar *ptr = *ptrptr; const uschar *oldptr; uschar *previous = NULL; uschar class[32]; uschar *class_flag; /* Pointer to the single-byte flag for OP_CLASS_L */ /* Switch on next character until the end of the branch */ for (;; ptr++) { BOOL negate_class; int class_charcount; int class_lastchar; c = *ptr; if ((options & PCRE_EXTENDED) != 0) { if ((pcre_ctypes[c] & ctype_space) != 0) continue; if (c == '#') { while ((c = *(++ptr)) != 0 && c != '\n'); continue; } } switch(c) { /* The branch terminates at end of string, |, or ). */ case 0: case '|': case ')': *codeptr = code; *ptrptr = ptr; return TRUE; /* Handle single-character metacharacters */ case '^': previous = NULL; *code++ = OP_CIRC; break; case '$': previous = NULL; *code++ = OP_DOLL; break; case '.': previous = code; *code++ = OP_ANY; break; /* Character classes. These always build a 32-byte bitmap of the permitted characters, except in the special case where there is only one character. For negated classes, we build the map as usual, then invert it at the end. */ case '[': previous = code; if (options & PCRE_LOCALE) { *code++ = OP_CLASS_L; /* Set the flag for localized classes (like \w) to 0 */ class_flag = code; *class_flag = 0; } else { *code++ = OP_CLASS; class_flag = NULL; } /* If the first character is '^', set the negation flag, and use a different opcode. This only matters if caseless matching is specified at runtime. */ if ((c = *(++ptr)) == '^') { negate_class = TRUE; if (*(code-1)==OP_CLASS) *(code-1) = OP_NEGCLASS; c = *(++ptr); } else negate_class = FALSE; /* Keep a count of chars so that we can optimize the case of just a single character. */ class_charcount = 0; class_lastchar = -1; /* Initialize the 32-char bit map to all zeros. We have to build the map in a temporary bit of store, in case the class contains only 1 character, because in that case the compiled code doesn't use the bit map. */ memset(class, 0, 32 * sizeof(uschar)); /* Process characters until ] is reached. By writing this as a "do" it means that an initial ] is taken as a data character. */ do { if (c == 0) { *errorptr = ERR6; goto FAILED; } /* Backslash may introduce a single character, or it may introduce one of the specials, which just set a flag. Escaped items are checked for validity in the pre-compiling pass. The sequence \b is a special case. Inside a class (and only there) it is treated as backspace. Elsewhere it marks a word boundary. Other escapes have preset maps ready to or into the one we are building. We assume they have more than one character in them, so set class_count bigger than one. */ if (c == '\\') { c = check_escape(&ptr, errorptr, *brackets, options, TRUE); if (-c == ESC_b) c = '\b'; else if (c < 0) { class_charcount = 10; switch (-c) { case ESC_d: { for (c = 0; c < 32; c++) class[c] |= pcre_cbits[c+cbit_digit]; } continue; case ESC_D: { for (c = 0; c < 32; c++) class[c] |= ~pcre_cbits[c+cbit_digit]; } continue; case ESC_w: if (options & PCRE_LOCALE) { *class_flag |= 1; } else { for (c = 0; c < 32; c++) class[c] |= (pcre_cbits[c] | pcre_cbits[c+cbit_word]); } continue; case ESC_W: if (options & PCRE_LOCALE) { *class_flag |= 2; } else { for (c = 0; c < 32; c++) class[c] |= ~(pcre_cbits[c] | pcre_cbits[c+cbit_word]); } continue; case ESC_s: { for (c = 0; c < 32; c++) class[c] |= pcre_cbits[c+cbit_space]; } continue; case ESC_S: { for (c = 0; c < 32; c++) class[c] |= ~pcre_cbits[c+cbit_space]; } continue; default: *errorptr = ERR7; goto FAILED; } } /* Fall through if single character */ } /* A single character may be followed by '-' to form a range. However, Perl does not permit ']' to be the end of the range. A '-' character here is treated as a literal. */ if (ptr[1] == '-' && ptr[2] != ']') { int d; ptr += 2; d = *ptr; if (d == 0) { *errorptr = ERR6; goto FAILED; } /* The second part of a range can be a single-character escape, but not any of the other escapes. */ if (d == '\\') { d = check_escape(&ptr, errorptr, *brackets, options, TRUE); if (d < 0) { if (d == -ESC_b) d = '\b'; else { *errorptr = ERR7; goto FAILED; } } } if (d < c) { *errorptr = ERR8; goto FAILED; } for (; c <= d; c++) { class[c/8] |= (1 << (c&7)); if ((options & PCRE_CASELESS) != 0) { int uc = pcre_fcc[c]; /* flip case */ class[uc/8] |= (1 << (uc&7)); } class_charcount++; /* in case a one-char range */ class_lastchar = c; } continue; /* Go get the next char in the class */ } /* Handle a lone single character - we can get here for a normal non-escape char, or after \ that introduces a single character. */ class [c/8] |= (1 << (c&7)); if ((options & PCRE_CASELESS) != 0) { c = pcre_fcc[c]; /* flip case */ class[c/8] |= (1 << (c&7)); } class_charcount++; class_lastchar = c; } /* Loop until ']' reached; the check for end of string happens inside the loop. This "while" is the end of the "do" above. */ while ((c = *(++ptr)) != ']'); /* If class_charcount is 1 and class_lastchar is not negative, we saw precisely one character. This doesn't need the whole 32-byte bit map. We turn it into a 1-character OP_CHAR if it's positive, or OP_NOT if it's negative. */ if (class_charcount == 1 && class_lastchar >= 0) { if (negate_class) { code[-1] = OP_NOT; } else { code[-1] = OP_CHARS; *code++ = 1; } *code++ = class_lastchar; } /* Otherwise, negate the 32-byte map if necessary, and copy it into the code vector. */ else { /* If this is a localized opcode, bump the code pointer up */ if (class_flag) code++; if (negate_class) { if (class_flag) *class_flag = (*class_flag) ^ 63; for (c = 0; c < 32; c++) code[c] = ~class[c]; } else memcpy(code, class, 32); code += 32; } break; /* Various kinds of repeat */ case '{': if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR; ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr); if (*errorptr != NULL) goto FAILED; goto REPEAT; case '*': repeat_min = 0; repeat_max = -1; goto REPEAT; case '+': repeat_min = 1; repeat_max = -1; goto REPEAT; case '?': repeat_min = 0; repeat_max = 1; REPEAT: if (previous == NULL) { *errorptr = ERR9; goto FAILED; } /* If the next character is '?' this is a minimizing repeat. Advance to the next character. */ if (ptr[1] == '?') { repeat_type = 1; ptr++; } else repeat_type = 0; /* If the maximum is zero then the minimum must also be zero; Perl allows this case, so we do too - by simply omitting the item altogether. */ if (repeat_max == 0) code = previous; /* If previous was a string of characters, chop off the last one and use it as the subject of the repeat. If there was only one character, we can abolish the previous item altogether. */ else if (*previous == OP_CHARS) { int len = previous[1]; if (len == 1) { c = previous[2]; code = previous; } else { c = previous[len+1]; previous[1]--; code--; } op_type = 0; /* Use single-char op codes */ goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ } /* If previous was a single negated character ([^a] or similar), we use one of the special opcodes, replacing it. The code is shared with single- character repeats by adding a suitable offset into repeat_type. */ else if ((int)*previous == OP_NOT) { op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ c = previous[1]; code = previous; goto OUTPUT_SINGLE_REPEAT; } /* If previous was a character type match (\d or similar), abolish it and create a suitable repeat item. The code is shared with single-character repeats by adding a suitable offset into repeat_type. */ else if ((int)*previous < OP_CIRC || *previous == OP_ANY) { op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ c = *previous; code = previous; OUTPUT_SINGLE_REPEAT: repeat_type += op_type; /* Combine both values for many cases */ /* A minimum of zero is handled either as the special case * or ?, or as an UPTO, with the maximum given. */ if (repeat_min == 0) { if (repeat_max == -1) *code++ = OP_STAR + repeat_type; else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; else { *code++ = OP_UPTO + repeat_type; *code++ = repeat_max >> 8; *code++ = (repeat_max & 255); } } /* The case {1,} is handled as the special case + */ else if (repeat_min == 1 && repeat_max == -1) *code++ = OP_PLUS + repeat_type; /* The case {n,n} is just an EXACT, while the general case {n,m} is handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */ else { if (repeat_min != 1) { *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ *code++ = repeat_min >> 8; *code++ = (repeat_min & 255); } /* If the mininum is 1 and the previous item was a character string, we either have to put back the item that got cancelled if the string length was 1, or add the character back onto the end of a longer string. For a character type nothing need be done; it will just get put back naturally. */ else if (*previous == OP_CHARS) { if (code == previous) code += 2; else previous[1]++; } /* If the maximum is unlimited, insert an OP_STAR. */ if (repeat_max < 0) { *code++ = c; *code++ = OP_STAR + repeat_type; } /* Else insert an UPTO if the max is greater than the min. */ else if (repeat_max != repeat_min) { *code++ = c; repeat_max -= repeat_min; *code++ = OP_UPTO + repeat_type; *code++ = repeat_max >> 8; *code++ = (repeat_max & 255); } } /* The character or character type itself comes last in all cases. */ *code++ = c; } /* If previous was a character class or a back reference, we put the repeat stuff after it. */ else if (*previous == OP_CLASS || *previous == OP_NEGCLASS || *previous==OP_CLASS_L || *previous == OP_REF) { if (repeat_min == 0 && repeat_max == -1) *code++ = OP_CRSTAR + repeat_type; else if (repeat_min == 1 && repeat_max == -1) *code++ = OP_CRPLUS + repeat_type; else if (repeat_min == 0 && repeat_max == 1) *code++ = OP_CRQUERY + repeat_type; else { *code++ = OP_CRRANGE + repeat_type; *code++ = repeat_min >> 8; *code++ = repeat_min & 255; if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ *code++ = repeat_max >> 8; *code++ = repeat_max & 255; } } /* If previous was a bracket group, we may have to replicate it in certain cases. If the maximum repeat count is unlimited, check that the bracket group cannot match the empty string, and diagnose an error if it can. */ else if ((int)*previous >= OP_BRA) { int i; int len = code - previous; if (repeat_max == -1 && could_be_empty(previous)) { *errorptr = ERR10; goto FAILED; } /* If the minimum is greater than zero, and the maximum is unlimited or equal to the minimum, the first copy remains where it is, and is replicated up to the minimum number of times. This case includes the + repeat, but of course no replication is needed in that case. */ if (repeat_min > 0 && (repeat_max == -1 || repeat_max == repeat_min)) { for (i = 1; i < repeat_min; i++) { memcpy(code, previous, len); code += len; } } /* If the minimum is zero, stick BRAZERO in front of the first copy. Then, if there is a fixed upper limit, replicated up to that many times, sticking BRAZERO in front of all the optional ones. */ else { if (repeat_min == 0) { memmove(previous+1, previous, len); code++; *previous++ = OP_BRAZERO + repeat_type; } for (i = 1; i < repeat_min; i++) { memcpy(code, previous, len); code += len; } for (i = (repeat_min > 0)? repeat_min : 1; i < repeat_max; i++) { *code++ = OP_BRAZERO + repeat_type; memcpy(code, previous, len); code += len; } } /* If the maximum is unlimited, set a repeater in the final copy. */ if (repeat_max == -1) code[-3] = OP_KETRMAX + repeat_type; } /* Else there's some kind of shambles */ else { *errorptr = ERR11; goto FAILED; } /* In all case we no longer have a previous item. */ previous = NULL; break; /* Start of nested bracket sub-expression, or comment or lookahead. First deal with special things that can come after a bracket; all are introduced by ?, and the appearance of any of them means that this is not a referencing group. They were checked for validity in the first pass over the string, so we don't have to check for syntax errors here. */ case '(': previous = code; /* Only real brackets can be repeated */ if (*(++ptr) == '?') { bravalue = OP_BRA; switch (*(++ptr)) { case '#': case 'i': case 'L': case 'm': case 's': case 'x': ptr++; while (*ptr != ')') ptr++; previous = NULL; continue; case ':': /* Non-extracting bracket */ ptr++; break; case '=': /* Assertions can't be repeated */ bravalue = OP_ASSERT; ptr++; previous = NULL; break; case '!': bravalue = OP_ASSERT_NOT; ptr++; previous = NULL; break; case ('P'): ptr++; if (*ptr=='<') { /* (?P...) */ int idlen; PyObject *string, *intobj; ptr++; idlen = get_group_id(ptr, '>', errorptr); if (*errorptr) { goto FAILED; } string = PyString_FromStringAndSize((char*)ptr, idlen); intobj = PyInt_FromLong( brackets[0] + 1 ); if (intobj == NULL || string == NULL) { Py_XDECREF(string); Py_XDECREF(intobj); *errorptr = "exception raised"; goto FAILED; } PyDict_SetItem(dictionary, string, intobj); Py_DECREF(string); Py_DECREF(intobj); /* XXX DECREF commented out! */ ptr += idlen+1; /* Point to rest of expression */ goto do_grouping_bracket; } if (*ptr=='=') { /* (?P=groupname) */ int idlen, refnum; PyObject *string, *intobj; ptr++; idlen = get_group_id(ptr, ')', errorptr); if (*errorptr) { goto FAILED; } string = PyString_FromStringAndSize((char *)ptr, idlen); if (string==NULL) { *errorptr = "exception raised"; goto FAILED; } intobj = PyDict_GetItem(dictionary, string); if (intobj==NULL) { Py_DECREF(string); *errorptr = "?P= group identifier isn't defined"; goto FAILED; } refnum = PyInt_AsLong(intobj); Py_DECREF(string); /* The caller doesn't own the reference to the value returned from PyDict_GetItem, so intobj is not DECREF'ed. */ *code++ = OP_REF; *code++ = refnum; /* The continue will cause the top-level for() loop to be resumed, so ptr will be immediately incremented. Therefore, the following line adds just idlen, not idlen+1 */ ptr += idlen; continue; } /* The character after ?P is neither < nor =, so report an error. Add more Python-extensions here. */ *errorptr="unknown after (?P"; goto FAILED; break; case '>': /* "Match once" brackets */ if ((options & PCRE_EXTRA) != 0) /* Not yet standard */ { bravalue = OP_ONCE; ptr++; previous = NULL; break; } /* Else fall through */ default: *errorptr = ERR12; goto FAILED; } } /* Else we have a referencing group */ else { do_grouping_bracket: if (++(*brackets) > EXTRACT_MAX) { *errorptr = ERR13; goto FAILED; } bravalue = OP_BRA + *brackets; } /* Process nested bracketed re; at end pointer is on the bracket. We copy code into a non-register variable in order to be able to pass its address because some compilers complain otherwise. */ *code = bravalue; { uschar *mcode = code; if (!compile_regex(options, brackets, &mcode, &ptr, errorptr, dictionary)) goto FAILED; code = mcode; } if (*ptr != ')') { *errorptr = ERR14; goto FAILED; } break; /* Check \ for being a real metacharacter; if not, fall through and handle it as a data character at the start of a string. Escape items are checked for validity in the pre-compiling pass. */ case '\\': oldptr = ptr; c = check_escape(&ptr, errorptr, *brackets, options, FALSE); /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values are arranged to be the negation of the corresponding OP_values. For the back references, the values are ESC_REF plus the reference number. Only back references and those types that consume a character may be repeated. We can test for values between ESC_b and ESC_Z for the latter; this may have to change if any new ones are ever created. */ if (c < 0) { if (-c >= ESC_REF) { int refnum = -c - ESC_REF; if (*brackets < refnum) { *errorptr = ERR15; goto FAILED; } previous = code; *code++ = OP_REF; *code++ = refnum; } else { previous = (-c > ESC_b && -c < ESC_X)? code : NULL; if ( (options & PCRE_LOCALE) != 0) { switch (c) { case (-ESC_b): c = -OP_WORD_BOUNDARY_L; break; case (-ESC_B): c = -OP_NOT_WORD_BOUNDARY_L; break; case (-ESC_w): c = -OP_WORDCHAR_L; break; case (-ESC_W): c = -OP_NOT_WORDCHAR_L; break; } } *code++ = -c; } continue; } /* Data character: Reset and fall through */ ptr = oldptr; c = '\\'; /* Handle a run of data characters until a metacharacter is encountered. The first character is guaranteed not to be whitespace or # when the extended flag is set. */ NORMAL_CHAR: default: previous = code; *code = OP_CHARS; code += 2; length = 0; do { if ((options & PCRE_EXTENDED) != 0) { if ((pcre_ctypes[c] & ctype_space) != 0) continue; if (c == '#') { while ((c = *(++ptr)) != 0 && c != '\n'); if (c == 0) break; continue; } } /* Backslash may introduce a data char or a metacharacter. Escaped items are checked for validity in the pre-compiling pass. Stop the string before a metaitem. */ if (c == '\\') { oldptr = ptr; c = check_escape(&ptr, errorptr, *brackets, options, FALSE); if (c < 0) { ptr = oldptr; break; } } /* Ordinary character or single-char escape */ *code++ = c; length++; } /* This "while" is the end of the "do" above. */ while (length < 255 && (pcre_ctypes[c = *(++ptr)] & ctype_meta) == 0); /* Compute the length and set it in the data vector, and advance to the next state. */ previous[1] = length; if (length < 255) ptr--; break; } } /* end of big loop */ /* Control never reaches here by falling through, only by a goto for all the error states. Pass back the position in the pattern so that it can be displayed to the user for diagnosing the error. */ FAILED: *ptrptr = ptr; return FALSE; } /************************************************* * Compile sequence of alternatives * *************************************************/ /* On entry, ptr is pointing past the bracket character, but on return it points to the closing bracket, or vertical bar, or end of string. The code variable is pointing at the byte into which the BRA operator has been stored. Argument: options the option bits brackets -> int containing the number of extracting brackets used codeptr -> the address of the current code pointer ptrptr -> the address of the current pattern pointer errorptr -> pointer to error message Returns: TRUE on success */ static BOOL compile_regex(int options, int *brackets, uschar **codeptr, const uschar **ptrptr, const char **errorptr, PyObject *dictionary) { const uschar *ptr = *ptrptr; uschar *code = *codeptr; uschar *start_bracket = code; for (;;) { int length; uschar *last_branch = code; code += 3; if (!compile_branch(options, brackets, &code, &ptr, errorptr, dictionary)) { *ptrptr = ptr; return FALSE; } /* Fill in the length of the last branch */ length = code - last_branch; last_branch[1] = length >> 8; last_branch[2] = length & 255; /* Reached end of expression, either ')' or end of pattern. Insert a terminating ket and the length of the whole bracketed item, and return, leaving the pointer at the terminating char. */ if (*ptr != '|') { length = code - start_bracket; *code++ = OP_KET; *code++ = length >> 8; *code++ = length & 255; *codeptr = code; *ptrptr = ptr; return TRUE; } /* Another branch follows; insert an "or" node and advance the pointer. */ *code = OP_ALT; ptr++; } /* Control never reaches here */ } /************************************************* * Check for anchored expression * *************************************************/ /* Try to find out if this is an anchored regular expression. Consider each alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then it's anchored. However, if this is a multiline pattern, then only OP_SOD counts, since OP_CIRC can match in the middle. A branch is also implicitly anchored if it starts with .* because that will try the rest of the pattern at all possible matching points, so there is no point trying them again. Argument: points to start of expression (the bracket) Returns: TRUE or FALSE */ static BOOL is_anchored(register const uschar *code, BOOL multiline) { do { int op = (int)code[3]; if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE) { if (!is_anchored(code+3, multiline)) return FALSE; } else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) { if (code[4] != OP_ANY) return FALSE; } else if (op != OP_SOD && (multiline || op != OP_CIRC)) return FALSE; code += (code[1] << 8) + code[2]; } while (*code == OP_ALT); return TRUE; } /************************************************* * Check for start with \n line expression * *************************************************/ /* This is called for multiline expressions to try to find out if every branch starts with ^ so that "first char" processing can be done to speed things up. Argument: points to start of expression (the bracket) Returns: TRUE or FALSE */ static BOOL is_startline(const uschar *code) { do { if ((int)code[3] >= OP_BRA || code[3] == OP_ASSERT) { if (!is_startline(code+3)) return FALSE; } else if (code[3] != OP_CIRC) return FALSE; code += (code[1] << 8) + code[2]; } while (*code == OP_ALT); return TRUE; } /************************************************* * Check for fixed first char * *************************************************/ /* Try to find out if there is a fixed first character. This is called for unanchored expressions, as it speeds up their processing quite considerably. Consider each alternative branch. If they all start with the same char, or with a bracket all of whose alternatives start with the same char (recurse ad lib), then we return that char, otherwise -1. Argument: points to start of expression (the bracket) Returns: -1 or the fixed first char */ static int find_firstchar(uschar *code) { register int c = -1; do { register int charoffset = 4; if ((int)code[3] >= OP_BRA || code[3] == OP_ASSERT) { register int d; if ((d = find_firstchar(code+3)) < 0) return -1; if (c < 0) c = d; else if (c != d) return -1; } else switch(code[3]) { default: return -1; case OP_EXACT: /* Fall through */ charoffset++; case OP_CHARS: /* Fall through */ charoffset++; case OP_PLUS: case OP_MINPLUS: if (c < 0) c = code[charoffset]; else if (c != code[charoffset]) return -1; break; } code += (code[1] << 8) + code[2]; } while (*code == OP_ALT); return c; } /************************************************* * Compile a Regular Expression * *************************************************/ /* This function takes a string and returns a pointer to a block of store holding a compiled version of the expression. Arguments: pattern the regular expression options various option bits errorptr pointer to pointer to error text erroroffset ptr offset in pattern where error was detected Returns: pointer to compiled data block, or NULL on error, with errorptr and erroroffset set */ pcre * pcre_compile(const char *pattern, int options, const char **errorptr, int *erroroffset, PyObject *dictionary) { real_pcre *re; int spaces = 0; int length = 3; /* For initial BRA plus length */ int runlength; int c, size; int bracount = 0; int brastack[200]; int top_backref = 0; unsigned int brastackptr = 0; uschar *code; const uschar *ptr; #ifdef DEBUG uschar *code_base, *code_end; #endif /* We can't pass back an error message if errorptr is NULL; I guess the best we can do is just return NULL. */ if (errorptr == NULL) return NULL; *errorptr = NULL; /* However, we can give a message for this error */ if (erroroffset == NULL) { *errorptr = ERR16; return NULL; } *erroroffset = 0; if ((options & ~PUBLIC_OPTIONS) != 0) { *errorptr = ERR17; return NULL; } DPRINTF(("------------------------------------------------------------------\n")); DPRINTF(("%s\n", pattern)); /* The first thing to do is to make a pass over the pattern to compute the amount of store required to hold the compiled code. This does not have to be perfect as long as errors are overestimates. At the same time we can detect any internal flag settings. Make an attempt to correct for any counted white space if an "extended" flag setting appears late in the pattern. We can't be so clever for #-comments. */ ptr = (const uschar *)(pattern - 1); while ((c = *(++ptr)) != 0) { int min, max; int class_charcount; if ((pcre_ctypes[c] & ctype_space) != 0) { if ((options & PCRE_EXTENDED) != 0) continue; spaces++; } if (c == '#' && (options & PCRE_EXTENDED) != 0) { while ((c = *(++ptr)) != 0 && c != '\n'); continue; } switch(c) { /* A backslashed item may be an escaped "normal" character or a character type. For a "normal" character, put the pointers and character back so that tests for whitespace etc. in the input are done correctly. */ case '\\': { const uschar *save_ptr = ptr; c = check_escape(&ptr, errorptr, bracount, options, FALSE); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if (c >= 0) { ptr = save_ptr; c = '\\'; goto NORMAL_CHAR; } } length++; /* A back reference needs an additional char, plus either one or 5 bytes for a repeat. We also need to keep the value of the highest back reference. */ if (c <= -ESC_REF) { int refnum = -c - ESC_REF; if (refnum > top_backref) top_backref = refnum; length++; /* For single back reference */ if (ptr[1] == '{' && is_counted_repeat(ptr+2)) { ptr = read_repeat_counts(ptr+2, &min, &max, errorptr); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if ((min == 0 && (max == 1 || max == -1)) || (min == 1 && max == -1)) length++; else length += 5; if (ptr[1] == '?') ptr++; } } continue; case '^': case '.': case '$': case '*': /* These repeats won't be after brackets; */ case '+': /* those are handled separately */ case '?': length++; continue; /* This covers the cases of repeats after a single char, metachar, class, or back reference. */ case '{': if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR; ptr = read_repeat_counts(ptr+1, &min, &max, errorptr); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if ((min == 0 && (max == 1 || max == -1)) || (min == 1 && max == -1)) length++; else { length--; /* Uncount the original char or metachar */ if (min == 1) length++; else if (min > 0) length += 4; if (max > 0) length += 4; else length += 2; } if (ptr[1] == '?') ptr++; continue; /* An alternation contains an offset to the next branch or ket. */ case '|': length += 3; continue; /* A character class uses 33 characters. Don't worry about character types that aren't allowed in classes - they'll get picked up during the compile. A character class that contains only one character uses 2 or 3 bytes, depending on whether it is negated or not. Notice this where we can. */ case '[': class_charcount = 0; if (*(++ptr) == '^') ptr++; do { if (*ptr == '\\') { int ch = check_escape(&ptr, errorptr, bracount, options, TRUE); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if (-ch == ESC_b) class_charcount++; else class_charcount = 10; } else class_charcount++; ptr++; } while (*ptr != 0 && *ptr != ']'); /* Repeats for negated single chars are handled by the general code */ if (class_charcount == 1) length += 3; else { length += 33; if (options & PCRE_LOCALE) length++; /* Add a byte for the localization flag */ /* A repeat needs either 1 or 5 bytes. */ if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2)) { ptr = read_repeat_counts(ptr+2, &min, &max, errorptr); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if ((min == 0 && (max == 1 || max == -1)) || (min == 1 && max == -1)) length++; else length += 5; if (ptr[1] == '?') ptr++; } } continue; /* Brackets may be genuine groups or special things */ case '(': /* Handle special forms of bracket, which all start (? */ if (ptr[1] == '?') switch (c = ptr[2]) { /* Skip over comments entirely */ case '#': ptr += 3; while (*ptr != 0 && *ptr != ')') ptr++; if (*ptr == 0) { *errorptr = ERR18; goto PCRE_ERROR_RETURN; } continue; /* Non-referencing groups and lookaheads just move the pointer on, and then behave like a non-special bracket, except that they don't increment the count of extracting brackets. */ case ':': case '=': case '!': ptr += 2; break; case ('P'): { int idlen; switch (*ptr++) { case ('<'): idlen = get_group_id(ptr++, '>', errorptr); if (*errorptr) goto PCRE_ERROR_RETURN; ptr += idlen+1; break; case ('='): idlen = get_group_id(ptr++, ')', errorptr); if (*errorptr) goto PCRE_ERROR_RETURN; ptr += idlen+1; length++; break; } } break; /* Ditto for the "once only" bracket, allowed only if the extra bit is set. */ case '>': if ((options & PCRE_EXTRA) != 0) { ptr += 2; break; } /* Else fall thourh */ /* Else loop setting valid options until ) is met. Anything else is an error. */ default: ptr += 2; for (;; ptr++) { if ((c = *ptr) == 'i') { options |= PCRE_CASELESS; continue; } else if ((c = *ptr) == 'L') { options |= PCRE_LOCALE; continue; } else if ((c = *ptr) == 'm') { options |= PCRE_MULTILINE; continue; } else if (c == 's') { options |= PCRE_DOTALL; continue; } else if (c == 'x') { options |= PCRE_EXTENDED; length -= spaces; /* Already counted spaces */ continue; } else if (c == ')') break; *errorptr = ERR12; goto PCRE_ERROR_RETURN; } continue; /* End of this bracket handling */ } /* Extracting brackets must be counted so we can process escapes in a Perlish way. */ else bracount++; /* Non-special forms of bracket. Save length for computing whole length at end if there's a repeat that requires duplication of the group. */ if (brastackptr >= sizeof(brastack)/sizeof(int)) { *errorptr = ERR19; goto PCRE_ERROR_RETURN; } brastack[brastackptr++] = length; length += 3; continue; /* Handle ket. Look for subsequent max/min; for certain sets of values we have to replicate this bracket up to that many times. If brastackptr is 0 this is an unmatched bracket which will generate an error, but take care not to try to access brastack[-1]. */ case ')': length += 3; { int minval = 1; int maxval = 1; int duplength = (brastackptr > 0)? length - brastack[--brastackptr] : 0; /* Leave ptr at the final char; for read_repeat_counts this happens automatically; for the others we need an increment. */ if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2)) { ptr = read_repeat_counts(ptr+2, &minval, &maxval, errorptr); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; } else if (c == '*') { minval = 0; maxval = -1; ptr++; } else if (c == '+') { maxval = -1; ptr++; } else if (c == '?') { minval = 0; ptr++; } /* If there is a minimum > 1 we have to replicate up to minval-1 times; if there is a limited maximum we have to replicate up to maxval-1 times and allow for a BRAZERO item before each optional copy, as we also have to do before the first copy if the minimum is zero. */ if (minval == 0) length++; else if (minval > 1) length += (minval - 1) * duplength; if (maxval > minval) length += (maxval - minval) * (duplength + 1); } continue; /* Non-special character. For a run of such characters the length required is the number of characters + 2, except that the maximum run length is 255. We won't get a skipped space or a non-data escape or the start of a # comment as the first character, so the length can't be zero. */ NORMAL_CHAR: default: length += 2; runlength = 0; do { if ((pcre_ctypes[c] & ctype_space) != 0) { if ((options & PCRE_EXTENDED) != 0) continue; spaces++; } if (c == '#' && (options & PCRE_EXTENDED) != 0) { while ((c = *(++ptr)) != 0 && c != '\n'); continue; } /* Backslash may introduce a data char or a metacharacter; stop the string before the latter. */ if (c == '\\') { const uschar *saveptr = ptr; c = check_escape(&ptr, errorptr, bracount, options, FALSE); if (*errorptr != NULL) goto PCRE_ERROR_RETURN; if (c < 0) { ptr = saveptr; break; } } /* Ordinary character or single-char escape */ runlength++; } /* This "while" is the end of the "do" above. */ while (runlength < 255 && (pcre_ctypes[c = *(++ptr)] & ctype_meta) == 0); ptr--; length += runlength; continue; } } length += 4; /* For final KET and END */ if (length > 65539) { *errorptr = ERR20; return NULL; } /* Compute the size of data block needed and get it, either from malloc or externally provided function. We specify "code[0]" in the offsetof() expression rather than just "code", because it has been reported that one broken compiler fails on "code" because it is also an independent variable. It should make no difference to the value of the offsetof(). */ size = length + offsetof(real_pcre, code[0]); re = (real_pcre *)(pcre_malloc)(size+50); if (re == NULL) { *errorptr = ERR21; return NULL; } /* Put in the magic number and the options. */ re->magic_number = MAGIC_NUMBER; re->options = options; /* Set up a starting, non-extracting bracket, then compile the expression. On error, *errorptr will be set non-NULL, so we don't need to look at the result of the function here. */ ptr = (const uschar *)pattern; code = re->code; *code = OP_BRA; bracount = 0; (void)compile_regex(options, &bracount, &code, &ptr, errorptr, dictionary); re->top_bracket = bracount; re->top_backref = top_backref; /* If not reached end of pattern on success, there's an excess bracket. */ if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22; /* Fill in the terminating state and check for disastrous overflow, but if debugging, leave the test till after things are printed out. */ *code++ = OP_END; #ifndef DEBUG if (code - re->code > length) *errorptr = ERR23; #endif /* Failed to compile */ if (*errorptr != NULL) { (pcre_free)(re); PCRE_ERROR_RETURN: *erroroffset = ptr - (const uschar *)pattern; return NULL; } /* If the anchored option was not passed, set flag if we can determine that it is anchored by virtue of ^ characters or \A or anything else. Otherwise, see if we can determine what the first character has to be, because that speeds up unanchored matches no end. In the case of multiline matches, an alternative is to set the PCRE_STARTLINE flag if all branches start with ^. */ if ((options & PCRE_ANCHORED) == 0) { if (is_anchored(re->code, (options & PCRE_MULTILINE) != 0)) re->options |= PCRE_ANCHORED; else { int ch = find_firstchar(re->code); if (ch >= 0) { re->first_char = ch; re->options |= PCRE_FIRSTSET; } else if (is_startline(re->code)) re->options |= PCRE_STARTLINE; } } /* Print out the compiled data for debugging */ #ifdef DEBUG printf("Length = %d top_bracket = %d top_backref=%d\n", length, re->top_bracket, re->top_backref); if (re->options != 0) { printf("%s%s%s%s%s%s%s\n", ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "", ((re->options & PCRE_CASELESS) != 0)? "caseless " : "", ((re->options & PCRE_EXTENDED) != 0)? "extended " : "", ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "", ((re->options & PCRE_DOTALL) != 0)? "dotall " : "", ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "", ((re->options & PCRE_EXTRA) != 0)? "extra " : ""); } if ((re->options & PCRE_FIRSTSET) != 0) { if (isprint(re->first_char)) printf("First char = %c\n", re->first_char); else printf("First char = \\x%02x\n", re->first_char); } code_end = code; code_base = code = re->code; while (code < code_end) { int charlength; printf("%3d ", code - code_base); if (*code >= OP_BRA) { printf("%3d Bra %d", (code[1] << 8) + code[2], *code - OP_BRA); code += 2; } else switch(*code) { case OP_CHARS: charlength = *(++code); printf("%3d ", charlength); while (charlength-- > 0) if (isprint(c = *(++code))) printf("%c", c); else printf("\\x%02x", c); break; case OP_KETRMAX: case OP_KETRMIN: case OP_ALT: case OP_KET: case OP_ASSERT: case OP_ASSERT_NOT: case OP_ONCE: printf("%3d %s", (code[1] << 8) + code[2], OP_names[*code]); code += 2; break; case OP_STAR: case OP_MINSTAR: case OP_PLUS: case OP_MINPLUS: case OP_QUERY: case OP_MINQUERY: case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEQUERY: case OP_TYPEMINQUERY: if (*code >= OP_TYPESTAR) printf(" %s", OP_names[code[1]]); else if (isprint(c = code[1])) printf(" %c", c); else printf(" \\x%02x", c); printf("%s", OP_names[*code++]); break; case OP_EXACT: case OP_UPTO: case OP_MINUPTO: if (isprint(c = code[3])) printf(" %c{", c); else printf(" \\x%02x{", c); if (*code != OP_EXACT) printf("0,"); printf("%d}", (code[1] << 8) + code[2]); if (*code == OP_MINUPTO) printf("?"); code += 3; break; case OP_TYPEEXACT: case OP_TYPEUPTO: case OP_TYPEMINUPTO: printf(" %s{", OP_names[code[3]]); if (*code != OP_TYPEEXACT) printf(","); printf("%d}", (code[1] << 8) + code[2]); if (*code == OP_TYPEMINUPTO) printf("?"); code += 3; break; case OP_NOT: if (isprint(c = *(++code))) printf(" [^%c]", c); else printf(" [^\\x%02x]", c); break; case OP_NOTSTAR: case OP_NOTMINSTAR: case OP_NOTPLUS: case OP_NOTMINPLUS: case OP_NOTQUERY: case OP_NOTMINQUERY: if (isprint(c = code[1])) printf(" [^%c]", c); else printf(" [^\\x%02x]", c); printf("%s", OP_names[*code++]); break; case OP_NOTEXACT: case OP_NOTUPTO: case OP_NOTMINUPTO: if (isprint(c = code[3])) printf(" [^%c]{", c); else printf(" [^\\x%02x]{", c); if (*code != OP_NOTEXACT) printf(","); printf("%d}", (code[1] << 8) + code[2]); if (*code == OP_NOTMINUPTO) printf("?"); code += 3; break; case OP_REF: printf(" \\%d", *(++code)); code ++; goto CLASS_REF_REPEAT; case OP_CLASS: case OP_NEGCLASS: case OP_CLASS_L: { int i, min, max; if (*code==OP_CLASS_L) { code++; printf("Locflag = %i ", *code++); printf(" ["); } else { if (*code++ == OP_CLASS) printf(" ["); else printf(" ^["); } for (i = 0; i < 256; i++) { if ((code[i/8] & (1 << (i&7))) != 0) { int j; for (j = i+1; j < 256; j++) if ((code[j/8] & (1 << (j&7))) == 0) break; if (i == '-' || i == ']') printf("\\"); if (isprint(i)) printf("%c", i); else printf("\\x%02x", i); if (--j > i) { printf("-"); if (j == '-' || j == ']') printf("\\"); if (isprint(j)) printf("%c", j); else printf("\\x%02x", j); } i = j; } } printf("]"); code += 32; /* code ++;*/ CLASS_REF_REPEAT: switch(*code) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRPLUS: case OP_CRMINPLUS: case OP_CRQUERY: case OP_CRMINQUERY: printf("%s", OP_names[*code]); break; case OP_CRRANGE: case OP_CRMINRANGE: min = (code[1] << 8) + code[2]; max = (code[3] << 8) + code[4]; if (max == 0) printf("{%d,}", min); else printf("{%d,%d}", min, max); if (*code == OP_CRMINRANGE) printf("?"); code += 4; break; default: code--; } } break; /* Anything else is just a one-node item */ default: printf(" %s", OP_names[*code]); break; } code++; printf("\n"); } printf("------------------------------------------------------------------\n"); /* This check is done here in the debugging case so that the code that was compiled can be seen. */ if (code - re->code > length) { printf("length=%i, code length=%i\n", length, code-re->code); *errorptr = ERR23; (pcre_free)(re); *erroroffset = ptr - (uschar *)pattern; return NULL; } #endif return (pcre *)re; } /************************************************* * Match a character type * *************************************************/ /* Not used in all the places it might be as it's sometimes faster to put the code inline. Arguments: type the character type c the character dotall the dotall flag Returns: TRUE if character is of the type */ static BOOL match_type(int type, int c, BOOL dotall) { #ifdef DEBUG if (isprint(c)) printf("matching subject %c against ", c); else printf("matching subject \\x%02x against ", c); printf("%s\n", OP_names[type]); #endif switch(type) { case OP_ANY: return dotall || c != '\n'; case OP_NOT_DIGIT: return (pcre_ctypes[c] & ctype_digit) == 0; case OP_DIGIT: return (pcre_ctypes[c] & ctype_digit) != 0; case OP_NOT_WHITESPACE: return (pcre_ctypes[c] & ctype_space) == 0; case OP_WHITESPACE: return (pcre_ctypes[c] & ctype_space) != 0; case OP_NOT_WORDCHAR: return (pcre_ctypes[c] & ctype_word) == 0; case OP_WORDCHAR: return (pcre_ctypes[c] & ctype_word) != 0; case OP_NOT_WORDCHAR_L: return (c!='_' && !isalnum(c)); case OP_WORDCHAR_L: return (c=='_' || isalnum(c)); } return FALSE; } /************************************************* * Match a back-reference * *************************************************/ /* If a back reference hasn't been set, the match fails. Arguments: number reference number eptr points into the subject length length to be matched md points to match data block Returns: TRUE if matched */ static BOOL match_ref(int number, register const uschar *eptr, int length, match_data *md) { const uschar *p = md->start_subject + md->offset_vector[number]; #ifdef DEBUG if (eptr >= md->end_subject) printf("matching subject "); else { printf("matching subject "); pchars(eptr, length, TRUE, md); } printf(" against backref "); pchars(p, length, FALSE, md); printf("\n"); #endif /* Always fail if not enough characters left */ if (length > md->end_subject - p) return FALSE; /* Separate the caseless case for speed */ if (md->caseless) { while (length-- > 0) if (pcre_lcc[*p++] != pcre_lcc[*eptr++]) return FALSE; } else { while (length-- > 0) if (*p++ != *eptr++) return FALSE; } return TRUE; } static int free_stack(match_data *md) { /* Free any stack space that was allocated by the call to match(). */ if (md->off_num) free(md->off_num); if (md->offset_top) free(md->offset_top); if (md->r1) free(md->r1); if (md->r2) free(md->r2); if (md->eptr) free(md->eptr); if (md->ecode) free(md->ecode); return 0; } static int grow_stack(match_data *md) { if (md->length != 0) { md->length = md->length + md->length/2; } else { int string_len = md->end_subject - md->start_subject + 1; if (string_len < 80) {md->length = string_len; } else {md->length = 80;} } PyMem_RESIZE(md->offset_top, int, md->length); PyMem_RESIZE(md->eptr, const uschar *, md->length); PyMem_RESIZE(md->ecode, const uschar *, md->length); PyMem_RESIZE(md->off_num, int, md->length); PyMem_RESIZE(md->r1, int, md->length); PyMem_RESIZE(md->r2, int, md->length); if (md->offset_top == NULL || md->eptr == NULL || md->ecode == NULL || md->off_num == NULL || md->r1 == NULL || md->r2 == NULL) { PyErr_SetString(PyExc_MemoryError, "Can't increase failure stack for re operation"); longjmp(md->error_env, 1); } return 0; } /************************************************* * Match from current position * *************************************************/ /* On entry ecode points to the first opcode, and eptr to the first character. Arguments: eptr pointer in subject ecode position in code offset_top current top pointer md pointer to "static" info for the match Returns: TRUE if matched */ static BOOL match(register const uschar *eptr, register const uschar *ecode, int offset_top, match_data *md) { int save_stack_position = md->point; match_loop: #define SUCCEED goto succeed #define FAIL goto fail for (;;) { int min, max, ctype; register int i; register int c; BOOL minimize = FALSE; /* Opening bracket. Check the alternative branches in turn, failing if none match. We have to set the start offset if required and there is space in the offset vector so that it is available for subsequent back references if the bracket matches. However, if the bracket fails, we must put back the previous value of both offsets in case they were set by a previous copy of the same bracket. Don't worry about setting the flag for the error case here; that is handled in the code for KET. */ if ((int)*ecode >= OP_BRA) { int number = (*ecode - OP_BRA) << 1; int save_offset1 = 0, save_offset2 = 0; DPRINTF(("start bracket %d\n", number/2)); if (number > 0 && number < md->offset_end) { save_offset1 = md->offset_vector[number]; save_offset2 = md->offset_vector[number+1]; md->offset_vector[number] = eptr - md->start_subject; DPRINTF(("saving %d %d\n", save_offset1, save_offset2)); } /* Recurse for all the alternatives. */ do { if (match(eptr, ecode+3, offset_top, md)) SUCCEED; ecode += (ecode[1] << 8) + ecode[2]; } while (*ecode == OP_ALT); DPRINTF(("bracket %d failed\n", number/2)); if (number > 0 && number < md->offset_end) { md->offset_vector[number] = save_offset1; md->offset_vector[number+1] = save_offset2; } FAIL; } /* Other types of node can be handled by a switch */ switch(*ecode) { case OP_END: md->end_match_ptr = eptr; /* Record where we ended */ md->end_offset_top = offset_top; /* and how many extracts were taken */ SUCCEED; /* The equivalent of Prolog's "cut" - if the rest doesn't match, the whole thing doesn't match, so we have to get out via a longjmp(). */ case OP_CUT: if (match(eptr, ecode+1, offset_top, md)) SUCCEED; longjmp(md->fail_env, 1); /* Assertion brackets. Check the alternative branches in turn - the matching won't pass the KET for an assertion. If any one branch matches, the assertion is true. */ case OP_ASSERT: do { if (match(eptr, ecode+3, offset_top, md)) break; ecode += (ecode[1] << 8) + ecode[2]; } while (*ecode == OP_ALT); if (*ecode == OP_KET) FAIL; /* Continue from after the assertion, updating the offsets high water mark, since extracts may have been taken during the assertion. */ do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); ecode += 3; offset_top = md->end_offset_top; continue; /* Negative assertion: all branches must fail to match */ case OP_ASSERT_NOT: do { if (match(eptr, ecode+3, offset_top, md)) FAIL; ecode += (ecode[1] << 8) + ecode[2]; } while (*ecode == OP_ALT); ecode += 3; continue; /* "Once" brackets are like assertion brackets except that after a match, the point in the subject string is not moved back. Thus there can never be a move back into the brackets. Check the alternative branches in turn - the matching won't pass the KET for this kind of subpattern. If any one branch matches, we carry on, leaving the subject pointer. */ case OP_ONCE: do { if (match(eptr, ecode+3, offset_top, md)) break; ecode += (ecode[1] << 8) + ecode[2]; } while (*ecode == OP_ALT); if (*ecode == OP_KET) FAIL; /* Continue as from after the assertion, updating the offsets high water mark, since extracts may have been taken. */ do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); ecode += 3; offset_top = md->end_offset_top; eptr = md->end_match_ptr; continue; /* An alternation is the end of a branch; scan along to find the end of the bracketed group and go to there. */ case OP_ALT: do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); break; /* BRAZERO and BRAMINZERO occur just before a bracket group, indicating that it may occur zero times. It may repeat infinitely, or not at all - i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper repeat limits are compiled as a number of copies, with the optional ones preceded by BRAZERO or BRAMINZERO. */ case OP_BRAZERO: { const uschar *next = ecode+1; if (match(eptr, next, offset_top, md)) SUCCEED; do next += (next[1] << 8) + next[2]; while (*next == OP_ALT); ecode = next + 3; } break; case OP_BRAMINZERO: { const uschar *next = ecode+1; do next += (next[1] << 8) + next[2]; while (*next == OP_ALT); if (match(eptr, next+3, offset_top, md)) SUCCEED; ecode++; } break;; /* End of a group, repeated or non-repeating. If we are at the end of an assertion "group", stop matching and SUCCEED, but record the current high water mark for use by positive assertions. */ case OP_KET: case OP_KETRMIN: case OP_KETRMAX: { int number; const uschar *prev = ecode - (ecode[1] << 8) - ecode[2]; if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT || *prev == OP_ONCE) { md->end_match_ptr = eptr; /* For ONCE */ md->end_offset_top = offset_top; SUCCEED; } /* In all other cases we have to check the group number back at the start and if necessary complete handling an extraction by setting the final offset and bumping the high water mark. */ number = (*prev - OP_BRA) << 1; DPRINTF(("end bracket %d\n", number/2)); if (number > 0) { if (number >= md->offset_end) md->offset_overflow = TRUE; else { md->offset_vector[number+1] = eptr - md->start_subject; if (offset_top <= number) offset_top = number + 2; } } /* For a non-repeating ket, just advance to the next node and continue at this level. */ if (*ecode == OP_KET) { ecode += 3; break; } /* The repeating kets try the rest of the pattern or restart from the preceding bracket, in the appropriate order. */ if (*ecode == OP_KETRMIN) { const uschar *ptr; if (match(eptr, ecode+3, offset_top, md)) goto succeed; /* Handle alternation inside the BRA...KET; push the additional alternatives onto the stack */ ptr=prev; do { ptr += (ptr[1]<<8)+ ptr[2]; if (*ptr==OP_ALT) { if (md->length == md->point) { grow_stack(md); } md->offset_top[md->point] = offset_top; md->eptr[md->point] = eptr; md->ecode[md->point] = ptr+3; md->r1[md->point] = 0; md->r2[md->point] = 0; md->off_num[md->point] = 0; md->point++; } } while (*ptr==OP_ALT); ecode=prev+3; goto match_loop; } else /* OP_KETRMAX */ { const uschar *ptr; /*int points_pushed=0;*/ /* Push one failure point, that will resume matching at the code after the KETRMAX opcode. */ if (md->length == md->point) { grow_stack(md); } md->offset_top[md->point] = offset_top; md->eptr[md->point] = eptr; md->ecode[md->point] = ecode+3; md->r1[md->point] = md->offset_vector[number]; md->r2[md->point] = md->offset_vector[number+1]; md->off_num[md->point] = number; md->point++; md->offset_vector[number] = eptr - md->start_subject; /* Handle alternation inside the BRA...KET; push each of the additional alternatives onto the stack */ ptr=prev; do { ptr += (ptr[1]<<8)+ ptr[2]; if (*ptr==OP_ALT) { if (md->length == md->point) if (md->length == md->point) { grow_stack(md); } md->offset_top[md->point] = offset_top; md->eptr[md->point] = eptr; md->ecode[md->point] = ptr+3; md->r1[md->point] = 0; md->r2[md->point] = 0; md->off_num[md->point] = 0; md->point++; /*points_pushed++;*/ } } while (*ptr==OP_ALT); /* Jump to the first (or only) alternative and resume trying to match */ ecode=prev+3; goto match_loop; } } break; /* Start of subject unless notbol, or after internal newline if multiline */ case OP_CIRC: if (md->notbol && eptr == md->start_subject) FAIL; if (md->multiline) { if (eptr != md->start_subject && eptr[-1] != '\n') FAIL; ecode++; break; } /* ... else fall through */ /* Start of subject assertion */ case OP_SOD: if (eptr != md->start_subject) FAIL; ecode++; break; /* Assert before internal newline if multiline, or before a terminating newline unless endonly is set, else end of subject unless noteol is set. */ case OP_DOLL: if (md->noteol && eptr >= md->end_subject) FAIL; if (md->multiline) { if (eptr < md->end_subject && *eptr != '\n') FAIL; ecode++; break; } else if (!md->endonly) { if (eptr < md->end_subject - 1 || (eptr == md->end_subject - 1 && *eptr != '\n')) FAIL; ecode++; break; } /* ... else fall through */ /* End of subject assertion */ case OP_EOD: if (eptr < md->end_subject) FAIL; ecode++; break; /* Word boundary assertions */ case OP_NOT_WORD_BOUNDARY: case OP_WORD_BOUNDARY: { BOOL prev_is_word = (eptr != md->start_subject) && ((pcre_ctypes[eptr[-1]] & ctype_word) != 0); BOOL cur_is_word = (eptr < md->end_subject) && ((pcre_ctypes[*eptr] & ctype_word) != 0); if ((*ecode++ == OP_WORD_BOUNDARY)? cur_is_word == prev_is_word : cur_is_word != prev_is_word) FAIL; } break; case OP_NOT_WORD_BOUNDARY_L: case OP_WORD_BOUNDARY_L: { BOOL prev_is_word = (eptr != md->start_subject) && (isalnum(eptr[-1]) || eptr[-1]=='_'); BOOL cur_is_word = (eptr < md->end_subject) && (isalnum(*eptr) || *eptr=='_'); if ((*ecode++ == OP_WORD_BOUNDARY_L)? cur_is_word == prev_is_word : cur_is_word != prev_is_word) FAIL; } break; /* Match a single character type; inline for speed */ case OP_ANY: if (!md->dotall && eptr < md->end_subject && *eptr == '\n') FAIL; if (eptr++ >= md->end_subject) FAIL; ecode++; break; case OP_NOT_DIGIT: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_digit) != 0) FAIL; ecode++; break; case OP_DIGIT: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_digit) == 0) FAIL; ecode++; break; case OP_NOT_WHITESPACE: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_space) != 0) FAIL; ecode++; break; case OP_WHITESPACE: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_space) == 0) FAIL; ecode++; break; case OP_NOT_WORDCHAR: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_word) != 0) FAIL; ecode++; break; case OP_WORDCHAR: if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_word) == 0) FAIL; ecode++; break; case OP_NOT_WORDCHAR_L: if (eptr >= md->end_subject || (*eptr=='_' || isalnum(*eptr) )) FAIL; eptr++; ecode++; break; case OP_WORDCHAR_L: if (eptr >= md->end_subject || (*eptr!='_' && !isalnum(*eptr) )) FAIL; eptr++; ecode++; break; /* Match a back reference, possibly repeatedly. Look past the end of the item to see if there is repeat information following. The code is similar to that for character classes, but repeated for efficiency. Then obey similar code to character type repeats - written out again for speed. However, if the referenced string is the empty string, always treat it as matched, any number of times (otherwise there could be infinite loops). */ case OP_REF: { int length; int number = ecode[1] << 1; /* Doubled reference number */ ecode += 2; /* Advance past the item */ if (number >= offset_top || md->offset_vector[number] < 0) { md->errorcode = PCRE_ERROR_BADREF; FAIL; } length = md->offset_vector[number+1] - md->offset_vector[number]; switch (*ecode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRPLUS: case OP_CRMINPLUS: case OP_CRQUERY: case OP_CRMINQUERY: c = *ecode++ - OP_CRSTAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; break; case OP_CRRANGE: case OP_CRMINRANGE: minimize = (*ecode == OP_CRMINRANGE); min = (ecode[1] << 8) + ecode[2]; max = (ecode[3] << 8) + ecode[4]; if (max == 0) max = INT_MAX; ecode += 5; break; default: /* No repeat follows */ if (!match_ref(number, eptr, length, md)) FAIL; eptr += length; continue; /* With the main loop */ } /* If the length of the reference is zero, just continue with the main loop. */ if (length == 0) continue; /* First, ensure the minimum number of matches are present. We get back the length of the reference string explicitly rather than passing the address of eptr, so that eptr can be a register variable. */ for (i = 1; i <= min; i++) { if (!match_ref(number, eptr, length, md)) FAIL; eptr += length; } /* If min = max, continue at the same level without recursion. They are not both allowed to be zero. */ if (min == max) continue; /* If minimizing, keep trying and advancing the pointer */ if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || !match_ref(number, eptr, length, md)) FAIL; eptr += length; } /* Control never gets here */ } /* If maximizing, find the longest string and work backwards */ else { const uschar *pp = eptr; for (i = min; i < max; i++) { if (!match_ref(number, eptr, length, md)) break; eptr += length; } while (eptr >= pp) { if (match(eptr, ecode, offset_top, md)) SUCCEED; eptr -= length; } FAIL; } } /* Control never gets here */ /* Match a character class, possibly repeatedly. Look past the end of the item to see if there is repeat information following. Then obey similar code to character type repeats - written out again for speed. If caseless matching was set at runtime but not at compile time, we have to check both versions of a character, and we have to behave differently for positive and negative classes. This is the only time where OP_CLASS and OP_NEGCLASS are treated differently. */ case OP_CLASS: case OP_NEGCLASS: { BOOL nasty_case = *ecode == OP_NEGCLASS && md->runtime_caseless; const uschar *data = ecode + 1; /* Save for matching */ ecode += 33; /* Advance past the item */ switch (*ecode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRPLUS: case OP_CRMINPLUS: case OP_CRQUERY: case OP_CRMINQUERY: c = *ecode++ - OP_CRSTAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; break; case OP_CRRANGE: case OP_CRMINRANGE: minimize = (*ecode == OP_CRMINRANGE); min = (ecode[1] << 8) + ecode[2]; max = (ecode[3] << 8) + ecode[4]; if (max == 0) max = INT_MAX; ecode += 5; break; default: /* No repeat follows */ min = max = 1; break; } /* First, ensure the minimum number of matches are present. */ for (i = 1; i <= min; i++) { if (eptr >= md->end_subject) FAIL; c = *eptr++; /* Either not runtime caseless, or it was a positive class. For runtime caseless, continue if either case is in the map. */ if (!nasty_case) { if ((data[c/8] & (1 << (c&7))) != 0) continue; if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } } /* Runtime caseless and it was a negative class. Continue only if both cases are in the map. */ else { if ((data[c/8] & (1 << (c&7))) == 0) FAIL; c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } FAIL; } /* If max == min we can continue with the main loop without the need to recurse. */ if (min == max) continue; /* If minimizing, keep testing the rest of the expression and advancing the pointer while it matches the class. */ if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject) FAIL; c = *eptr++; /* Either not runtime caseless, or it was a positive class. For runtime caseless, continue if either case is in the map. */ if (!nasty_case) { if ((data[c/8] & (1 << (c&7))) != 0) continue; if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } } /* Runtime caseless and it was a negative class. Continue only if both cases are in the map. */ else { if ((data[c/8] & (1 << (c&7))) == 0) return FALSE; c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } FAIL; } /* Control never gets here */ } /* If maximizing, find the longest possible run, then work backwards. */ else { const uschar *pp = eptr; for (i = min; i < max; eptr++, i++) { if (eptr >= md->end_subject) break; c = *eptr; /* Either not runtime caseless, or it was a positive class. For runtime caseless, continue if either case is in the map. */ if (!nasty_case) { if ((data[c/8] & (1 << (c&7))) != 0) continue; if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } } /* Runtime caseless and it was a negative class. Continue only if both cases are in the map. */ else { if ((data[c/8] & (1 << (c&7))) == 0) break; c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; } break; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } } /* Control never gets here */ /* OP_CLASS_L opcode: handles localized character classes */ case OP_CLASS_L: { const uschar *data = ecode + 1; /* Save for matching */ const uschar locale_flag = *data; ecode++; data++; /* The localization support adds an extra byte */ ecode += 33; /* Advance past the item */ switch (*ecode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRPLUS: case OP_CRMINPLUS: case OP_CRQUERY: case OP_CRMINQUERY: c = *ecode++ - OP_CRSTAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; break; case OP_CRRANGE: case OP_CRMINRANGE: minimize = (*ecode == OP_CRMINRANGE); min = (ecode[1] << 8) + ecode[2]; max = (ecode[3] << 8) + ecode[4]; if (max == 0) max = INT_MAX; ecode += 5; break; default: /* No repeat follows */ if (eptr >= md->end_subject) FAIL; c = *eptr++; if ((data[c/8] & (1 << (c&7))) != 0) continue; /* With main loop */ if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ #if 0 if ( (locale_flag & 4) && isdigit(c) ) continue; /* Locale \d */ if ( (locale_flag & 8) && !isdigit(c) ) continue; /* Locale \D */ if ( (locale_flag & 16) && isspace(c) ) continue; /* Locale \s */ if ( (locale_flag & 32) && !isspace(c) ) continue; /* Locale \S */ #endif if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; /* With main loop */ if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ } FAIL; } /* First, ensure the minimum number of matches are present. */ for (i = 1; i <= min; i++) { if (eptr >= md->end_subject) FAIL; c = *eptr++; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ } FAIL; } /* If max == min we can continue with the main loop without the need to recurse. */ if (min == max) continue; /* If minimizing, keep testing the rest of the expression and advancing the pointer while it matches the class. */ if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject) FAIL; c = *eptr++; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ } FAIL; } /* Control never gets here */ } /* If maximizing, find the longest possible run, then work backwards. */ else { const uschar *pp = eptr; for (i = min; i < max; eptr++, i++) { if (eptr >= md->end_subject) break; c = *eptr; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ if (md->runtime_caseless) { c = pcre_fcc[c]; if ((data[c/8] & (1 << (c&7))) != 0) continue; if ( (locale_flag & 1) && (isalnum(c) || c=='_') ) continue; /* Locale \w */ if ( (locale_flag & 2) && (!isalnum(c) && c!='_') ) continue; /* Locale \W */ } break; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } } /* Control never gets here */ /* Match a run of characters */ case OP_CHARS: { register int length = ecode[1]; ecode += 2; #ifdef DEBUG /* Sigh. Some compilers never learn. */ if (eptr >= md->end_subject) printf("matching subject against pattern "); else { printf("matching subject "); pchars(eptr, length, TRUE, md); printf(" against pattern "); } pchars(ecode, length, FALSE, md); printf("\n"); #endif if (length > md->end_subject - eptr) FAIL; if (md->caseless) { while (length-- > 0) if (pcre_lcc[*ecode++] != pcre_lcc[*eptr++]) FAIL; } else { while (length-- > 0) if (*ecode++ != *eptr++) FAIL; } } break; /* Match a single character repeatedly; different opcodes share code. */ case OP_EXACT: min = max = (ecode[1] << 8) + ecode[2]; ecode += 3; goto REPEATCHAR; case OP_UPTO: case OP_MINUPTO: min = 0; max = (ecode[1] << 8) + ecode[2]; minimize = *ecode == OP_MINUPTO; ecode += 3; goto REPEATCHAR; case OP_STAR: case OP_MINSTAR: case OP_PLUS: case OP_MINPLUS: case OP_QUERY: case OP_MINQUERY: c = *ecode++ - OP_STAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; /* Common code for all repeated single-character matches. We can give up quickly if there are fewer than the minimum number of characters left in the subject. */ REPEATCHAR: if (min > md->end_subject - eptr) FAIL; c = *ecode++; /* The code is duplicated for the caseless and caseful cases, for speed, since matching characters is likely to be quite common. First, ensure the minimum number of matches are present. If min = max, continue at the same level without recursing. Otherwise, if minimizing, keep trying the rest of the expression and advancing one matching character if failing, up to the maximum. Alternatively, if maximizing, find the maximum number of characters and work backwards. */ DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max, max, eptr)); if (md->caseless) { c = pcre_lcc[c]; for (i = 1; i <= min; i++) if (c != pcre_lcc[*eptr++]) FAIL; if (min == max) continue; if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject || c != pcre_lcc[*eptr++]) FAIL; } /* Control never gets here */ } else { const uschar *pp = eptr; for (i = min; i < max; i++) { if (eptr >= md->end_subject || c != pcre_lcc[*eptr]) break; eptr++; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } /* Control never gets here */ } /* Caseful comparisons */ else { for (i = 1; i <= min; i++) if (c != *eptr++) FAIL; if (min == max) continue; if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject || c != *eptr++) FAIL; } /* Control never gets here */ } else { const uschar *pp = eptr; for (i = min; i < max; i++) { if (eptr >= md->end_subject || c != *eptr) break; eptr++; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } } /* Control never gets here */ /* Match a negated single character */ case OP_NOT: if (eptr >= md->end_subject) FAIL; ecode++; if (md->caseless) { if (pcre_lcc[*ecode++] == pcre_lcc[*eptr++]) FAIL; } else { if (*ecode++ == *eptr++) FAIL; } break; /* Match a negated single character repeatedly. This is almost a repeat of the code for a repeated single character, but I haven't found a nice way of commoning these up that doesn't require a test of the positive/negative option for each character match. Maybe that wouldn't add very much to the time taken, but character matching *is* what this is all about... */ case OP_NOTEXACT: min = max = (ecode[1] << 8) + ecode[2]; ecode += 3; goto REPEATNOTCHAR; case OP_NOTUPTO: case OP_NOTMINUPTO: min = 0; max = (ecode[1] << 8) + ecode[2]; minimize = *ecode == OP_NOTMINUPTO; ecode += 3; goto REPEATNOTCHAR; case OP_NOTSTAR: case OP_NOTMINSTAR: case OP_NOTPLUS: case OP_NOTMINPLUS: case OP_NOTQUERY: case OP_NOTMINQUERY: c = *ecode++ - OP_NOTSTAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; /* Common code for all repeated single-character matches. We can give up quickly if there are fewer than the minimum number of characters left in the subject. */ REPEATNOTCHAR: if (min > md->end_subject - eptr) FAIL; c = *ecode++; /* The code is duplicated for the caseless and caseful cases, for speed, since matching characters is likely to be quite common. First, ensure the minimum number of matches are present. If min = max, continue at the same level without recursing. Otherwise, if minimizing, keep trying the rest of the expression and advancing one matching character if failing, up to the maximum. Alternatively, if maximizing, find the maximum number of characters and work backwards. */ DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max, max, eptr)); if (md->caseless) { c = pcre_lcc[c]; for (i = 1; i <= min; i++) if (c == pcre_lcc[*eptr++]) FAIL; if (min == max) continue; if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject || c == pcre_lcc[*eptr++]) FAIL; } /* Control never gets here */ } else { const uschar *pp = eptr; for (i = min; i < max; i++) { if (eptr >= md->end_subject || c == pcre_lcc[*eptr]) break; eptr++; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } /* Control never gets here */ } /* Caseful comparisons */ else { for (i = 1; i <= min; i++) if (c == *eptr++) FAIL; if (min == max) continue; if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject || c == *eptr++) FAIL; } /* Control never gets here */ } else { const uschar *pp = eptr; for (i = min; i < max; i++) { if (eptr >= md->end_subject || c == *eptr) break; eptr++; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } } /* Control never gets here */ /* Match a single character type repeatedly; several different opcodes share code. This is very similar to the code for single characters, but we repeat it in the interests of efficiency. */ case OP_TYPEEXACT: min = max = (ecode[1] << 8) + ecode[2]; minimize = TRUE; ecode += 3; goto REPEATTYPE; case OP_TYPEUPTO: case OP_TYPEMINUPTO: min = 0; max = (ecode[1] << 8) + ecode[2]; minimize = *ecode == OP_TYPEMINUPTO; ecode += 3; goto REPEATTYPE; case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEQUERY: case OP_TYPEMINQUERY: c = *ecode++ - OP_TYPESTAR; minimize = (c & 1) != 0; min = rep_min[c]; /* Pick up values from tables; */ max = rep_max[c]; /* zero for max => infinity */ if (max == 0) max = INT_MAX; /* Common code for all repeated single character type matches */ REPEATTYPE: ctype = *ecode++; /* Code for the character type */ /* First, ensure the minimum number of matches are present. Use inline code for maximizing the speed, and do the type test once at the start (i.e. keep it out of the loop). Also test that there are at least the minimum number of characters before we start. */ if (min > md->end_subject - eptr) FAIL; if (min > 0) switch(ctype) { case OP_ANY: if (!md->dotall) { for (i = 1; i <= min; i++) if (*eptr++ == '\n') FAIL; } else eptr += min; break; case OP_NOT_DIGIT: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_digit) != 0) FAIL; break; case OP_DIGIT: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_digit) == 0) FAIL; break; case OP_NOT_WHITESPACE: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_space) != 0) FAIL; break; case OP_WHITESPACE: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_space) == 0) FAIL; break; case OP_NOT_WORDCHAR: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_word) != 0) FAIL; break; case OP_WORDCHAR: for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_word) == 0) FAIL; break; case OP_NOT_WORDCHAR_L: for (i = 1; i <= min; i++, eptr++) if (*eptr=='_' || isalnum(*eptr)) FAIL; break; case OP_WORDCHAR_L: for (i = 1; i <= min; i++, eptr++) if (*eptr!='_' && !isalnum(*eptr)) FAIL; break; } /* If min = max, continue at the same level without recursing */ if (min == max) continue; /* If minimizing, we have to test the rest of the pattern before each subsequent match, so inlining isn't much help; just use the function. */ if (minimize) { for (i = min;; i++) { if (match(eptr, ecode, offset_top, md)) SUCCEED; if (i >= max || eptr >= md->end_subject || !match_type(ctype, *eptr++, md->dotall)) FAIL; } /* Control never gets here */ } /* If maximizing it is worth using inline code for speed, doing the type test once at the start (i.e. keep it out of the loop). */ else { const uschar *pp = eptr; switch(ctype) { case OP_ANY: if (!md->dotall) { for (i = min; i < max; i++) { if (eptr >= md->end_subject || *eptr == '\n') break; eptr++; } } else { c = max - min; if (c > md->end_subject - eptr) c = md->end_subject - eptr; eptr += c; } break; case OP_NOT_DIGIT: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_digit) != 0) break; eptr++; } break; case OP_DIGIT: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_digit) == 0) break; eptr++; } break; case OP_NOT_WHITESPACE: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_space) != 0) break; eptr++; } break; case OP_WHITESPACE: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_space) == 0) break; eptr++; } break; case OP_NOT_WORDCHAR: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_word) != 0) break; eptr++; } break; case OP_WORDCHAR: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_word) == 0) break; eptr++; } break; case OP_NOT_WORDCHAR_L: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (*eptr=='_' || isalnum(*eptr) ) ) break; eptr++; } break; case OP_WORDCHAR_L: for (i = min; i < max; i++) { if (eptr >= md->end_subject || (*eptr!='_' && !isalnum(*eptr) ) ) break; eptr++; } break; } while (eptr >= pp) if (match(eptr--, ecode, offset_top, md)) SUCCEED; FAIL; } /* Control never gets here */ /* There's been some horrible disaster. */ default: DPRINTF(("Unknown opcode %d\n", *ecode)); md->errorcode = PCRE_ERROR_UNKNOWN_NODE; FAIL; } /* Do not stick any code in here without much thought; it is assumed that "continue" in the code above comes out to here to repeat the main loop. */ } /* End of main loop */ /* Control never reaches here */ fail: if (md->point > save_stack_position) { /* If there are still points remaining on the stack, pop the next one off */ int off_num; md->point--; offset_top = md->offset_top[md->point]; eptr = md->eptr[md->point]; ecode = md->ecode[md->point]; off_num = md->off_num[md->point]; md->offset_vector[off_num] = md->r1[md->point]; md->offset_vector[off_num+1] = md->r2[md->point]; goto match_loop; } /* Failure, and nothing left on the stack, so end this function call */ /* Restore the top of the stack to where it was before this function call. This lets us use one stack for everything; recursive calls can push and pop information, and may increase the stack. When the call returns, the parent function can resume pushing and popping wherever it was. */ md->point = save_stack_position; return FALSE; succeed: return TRUE; } /************************************************* * Segregate setjmp() * *************************************************/ /* The -Wall option of gcc gives warnings for all local variables when setjmp() is used, even if the coding conforms to the rules of ANSI C. To avoid this, we hide it in a separate function. This is called only when PCRE_EXTRA is set, since it's needed only for the extension \X option, and with any luck, a good compiler will spot the tail recursion and compile it efficiently. Arguments: eptr pointer in subject ecode position in code offset_top current top pointer md pointer to "static" info for the match Returns: TRUE if matched */ static BOOL match_with_setjmp(const uschar *eptr, const uschar *ecode, int offset_top, match_data *match_block) { return setjmp(match_block->fail_env) == 0 && match(eptr, ecode, offset_top, match_block); } /************************************************* * Execute a Regular Expression * *************************************************/ /* This function applies a compiled re to a subject string and picks out portions of the string if it matches. Two elements in the vector are set for each substring: the offsets to the start and end of the substring. Arguments: external_re points to the compiled expression external_extra points to "hints" from pcre_study() or is NULL subject points to the subject string length length of subject string (may contain binary zeros) options option bits offsets points to a vector of ints to be filled in with offsets offsetcount the number of elements in the vector Returns: > 0 => success; value is the number of elements filled in = 0 => success, but offsets is not big enough -1 => failed to match < -1 => some kind of unexpected problem */ int pcre_exec(const pcre *external_re, const pcre_extra *external_extra, const char *subject, int length, int start_pos, int options, int *offsets, int offsetcount) { /* The "volatile" directives are to make gcc -Wall stop complaining that these variables can be clobbered by the longjmp. Hopefully they won't cost too much performance. */ volatile int resetcount, ocount; volatile int first_char = -1; match_data match_block; const uschar *start_bits = NULL; const uschar *start_match = (const uschar *)subject + start_pos; const uschar *end_subject; const real_pcre *re = (const real_pcre *)external_re; const real_pcre_extra *extra = (const real_pcre_extra *)external_extra; volatile BOOL using_temporary_offsets = FALSE; volatile BOOL anchored = ((re->options | options) & PCRE_ANCHORED) != 0; volatile BOOL startline = (re->options & PCRE_STARTLINE) != 0; if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION; if (re == NULL || subject == NULL || (offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL; if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; match_block.start_subject = (const uschar *)subject; match_block.end_subject = match_block.start_subject + length; end_subject = match_block.end_subject; match_block.caseless = ((re->options | options) & PCRE_CASELESS) != 0; match_block.runtime_caseless = match_block.caseless && (re->options & PCRE_CASELESS) == 0; match_block.multiline = ((re->options | options) & PCRE_MULTILINE) != 0; match_block.dotall = ((re->options | options) & PCRE_DOTALL) != 0; match_block.endonly = ((re->options | options) & PCRE_DOLLAR_ENDONLY) != 0; match_block.notbol = (options & PCRE_NOTBOL) != 0; match_block.noteol = (options & PCRE_NOTEOL) != 0; match_block.errorcode = PCRE_ERROR_NOMATCH; /* Default error */ /* Set the stack state to empty */ match_block.off_num = match_block.offset_top = NULL; match_block.r1 = match_block.r2 = NULL; match_block.eptr = match_block.ecode = NULL; match_block.point = match_block.length = 0; /* If the expression has got more back references than the offsets supplied can hold, we get a temporary bit of working store to use during the matching. Otherwise, we can use the vector supplied, rounding down its size to a multiple of 2. */ ocount = offsetcount & (-2); if (re->top_backref > 0 && re->top_backref >= ocount/2) { ocount = re->top_backref * 2 + 2; match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int)); if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY; using_temporary_offsets = TRUE; DPRINTF(("Got memory to hold back references\n")); } else match_block.offset_vector = offsets; match_block.offset_end = ocount; match_block.offset_overflow = FALSE; /* Compute the minimum number of offsets that we need to reset each time. Doing this makes a huge difference to execution time when there aren't many brackets in the pattern. */ resetcount = 2 + re->top_bracket * 2; if (resetcount > offsetcount) resetcount = ocount; /* If MULTILINE is set at exec time but was not set at compile time, and the anchored flag is set, we must re-check because a setting provoked by ^ in the pattern is not right in multi-line mode. Calling is_anchored() again here does the right check, because multiline is now set. If it now yields FALSE, the expression must have had ^ starting some of its branches. Check to see if that is true for *all* branches, and if so, set the startline flag. */ if (match_block.multiline && anchored && (re->options & PCRE_MULTILINE) == 0 && !is_anchored(re->code, match_block.multiline)) { anchored = FALSE; if (is_startline(re->code)) startline = TRUE; } /* Set up the first character to match, if available. The first_char value is never set for an anchored regular expression, but the anchoring may be forced at run time, so we have to test for anchoring. The first char may be unset for an unanchored pattern, of course. If there's no first char and the pattern was studied, the may be a bitmap of possible first characters. However, we can use this only if the caseless state of the studying was correct. */ if (!anchored) { if ((re->options & PCRE_FIRSTSET) != 0) { first_char = re->first_char; if (match_block.caseless) first_char = pcre_lcc[first_char]; } else if (!startline && extra != NULL && (extra->options & PCRE_STUDY_MAPPED) != 0 && ((extra->options & PCRE_STUDY_CASELESS) != 0) == match_block.caseless) start_bits = extra->start_bits; } /* Loop for unanchored matches; for anchored regexps the loop runs just once. */ do { int rc; register int *iptr = match_block.offset_vector; register int *iend = iptr + resetcount; /* Reset the maximum number of extractions we might see. */ while (iptr < iend) *iptr++ = -1; /* Advance to a unique first char if possible */ if (first_char >= 0) { if (match_block.caseless) while (start_match < end_subject && pcre_lcc[*start_match] != first_char) start_match++; else while (start_match < end_subject && *start_match != first_char) start_match++; } /* Or to just after \n for a multiline match if possible */ else if (startline) { if (start_match > match_block.start_subject) { while (start_match < end_subject && start_match[-1] != '\n') start_match++; } } /* Or to a non-unique first char */ else if (start_bits != NULL) { while (start_match < end_subject) { register int c = *start_match; if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break; } } #ifdef DEBUG /* Sigh. Some compilers never learn. */ printf(">>>> Match against: "); pchars(start_match, end_subject - start_match, TRUE, &match_block); printf("\n"); #endif /* When a match occurs, substrings will be set for all internal extractions; we just need to set up the whole thing as substring 0 before returning. If there were too many extractions, set the return code to zero. In the case where we had to get some local store to hold offsets for backreferences, copy those back references that we can. In this case there need not be overflow if certain parts of the pattern were not used. Before starting the match, we have to set up a longjmp() target to enable the "cut" operation to fail a match completely without backtracking. This is done in a separate function to avoid compiler warnings. We need not do it unless PCRE_EXTRA is set, since only in that case is the "cut" operation enabled. */ /* To handle errors such as running out of memory for the failure stack, we need to save this location via setjmp(), so error-handling code can call longjmp() to jump out of deeply-nested code. */ if (setjmp(match_block.error_env)==0) { if ((re->options & PCRE_EXTRA) != 0) { if (!match_with_setjmp(start_match, re->code, 2, &match_block)) continue; } else if (!match(start_match, re->code, 2, &match_block)) continue; /* Copy the offset information from temporary store if necessary */ if (using_temporary_offsets) { if (offsetcount >= 4) { memcpy(offsets + 2, match_block.offset_vector + 2, (offsetcount - 2) * sizeof(int)); DPRINTF(("Copied offsets from temporary memory\n")); } if (match_block.end_offset_top > offsetcount) match_block.offset_overflow = TRUE; DPRINTF(("Freeing temporary memory\n")); (pcre_free)(match_block.offset_vector); } rc = match_block.offset_overflow? 0 : match_block.end_offset_top/2; if (match_block.offset_end < 2) rc = 0; else { offsets[0] = start_match - match_block.start_subject; offsets[1] = match_block.end_match_ptr - match_block.start_subject; } DPRINTF((">>>> returning %d\n", rc)); free_stack(&match_block); return rc; } /* End of (if setjmp(match_block.error_env)...) */ free_stack(&match_block); /* Return an error code; pcremodule.c will preserve the exception */ if (PyErr_Occurred()) return PCRE_ERROR_NOMEMORY; } while (!anchored && match_block.errorcode == PCRE_ERROR_NOMATCH && start_match++ < end_subject); if (using_temporary_offsets) { DPRINTF(("Freeing temporary memory\n")); (pcre_free)(match_block.offset_vector); } #ifdef DEBUG printf(">>>> returning %d\n", match_block.errorcode); #endif return match_block.errorcode; } /* End of pcre.c */