importlib.machinery.FileFinder.
While originally moved to stop special-casing '' as PathFinder farther
up the typical call chain now uses the cwd in the instance of '', it
was deemed an unnecessary risk to breaking subclasses of FileFinder to
take the special-casing out.
exists when checking for a package.
Before there was an isdir check and then various isfile checks for
possible __init__ files when looking for a package.
This change drops the isdir check by leaning
on the assumption that a directory will not contain something named
after the module being imported which is not a directory. If the module
is a package then it saves a stat call. If there is nothing in the
directory with the potential package name it also saves a stat call.
Only if there is something in the directory named the same thing as
the potential package will the number of stat calls increase
(due to more wasteful __init__ checks).
Semantically there is no change as the isdir check moved
down so that namespace packages continue to have no chance of
accidentally collecting non-existent directories.
and stop importlib.machinery.FileFinder treating '' as '.'.
Previous PathFinder transformed '' into '.' which led to __file__ for
modules imported from the cwd to always be relative paths. This meant
the values of the attribute were wrong as soon as the cwd changed.
This change now means that as long as the site module is run (which
makes all entries in sys.path absolute) then all values for __file__
will also be absolute unless it's for __main__ when specified by file
path in a relative way (modules imported by runpy will have an
absolute path).
Now that PathFinder is no longer treating '' as '.' it only makes
sense for FileFinder to stop doing so as well. Now no transformation
is performed for the directory given to the __init__ method.
Thanks to Madison May for the initial patch.
This commit fixes a regression that sneaked into Python 3.3 where importlib
was not respecting -E when checking for the PYTHONCASEOK environment variable.
This commit fixes a regression that sneaked into Python 3.3 where importlib
was not respecting -E when checking for the PYTHONCASEOK environment variable.
importlib._bootstrap._get_sourcefile().
Thanks to its only use by the C API, it was never properly tested
until now.
Thanks to Neal Norwitz for discovering the bug and Madison May for the patch.
The private attribute was leaking out of importlib and led to at least
one person noticing it. Switch to another hack which won't leak
outside of importlib and is nearly as robust.
The helper function makes it easier to implement
imoprtlib.abc.InspectLoader.get_source() by making that function
require just the raw bytes for source code and handling all other
details.
UnicodeDecodeError as ImportError. That was over-reaching the point of
raising ImportError in get_source() (which is to signal the source
code was not found when it should have). Conflating the two exceptions
with ImportError could lead to masking errors with the source which
should be known outside of whether there was an error simply getting
the source to begin with.
Forgot to raise ModuleNotFoundError when None is found in sys.modules.
This led to introducing the C function PyErr_SetImportErrorSubclass()
to make setting ModuleNotFoundError easier.
Also updated the reference docs to mention ModuleNotFoundError
appropriately. Updated the docs for ModuleNotFoundError to mention the
None in sys.modules case.
Lastly, it was noticed that PyErr_SetImportError() was not setting an
exception when returning None in one case. That issue is now fixed.
ImportError.
The exception is raised by import when a module could not be found.
Technically this is defined as no viable loader could be found for the
specified module. This includes ``from ... import`` statements so that
the module usage is consistent for all situations where import
couldn't find what was requested.
This should allow for the common idiom of::
try:
import something
except ImportError:
pass
to be updated to using ModuleNotFoundError and not accidentally mask
ImportError messages that should propagate (e.g. issues with a
loader).
This work was driven by the fact that the ``from ... import``
statement needed to be able to tell the difference between an
ImportError that simply couldn't find a module (and thus silence the
exception so that ceval can raise it) and an ImportError that
represented an actual problem.
importlib.abc.Loader.init_module_attrs() and implement
importlib.abc.InspectLoader.load_module().
The importlib.abc.Loader.init_module_attrs() method sets the various
attributes on the module being loaded. It is done unconditionally to
support reloading. Typically people used
importlib.util.module_for_loader, but since that's a decorator there
was no way to override it's actions, so init_module_attrs() came into
existence to allow for overriding. This is also why module_for_loader
is now pending deprecation (having its other use replaced by
importlib.util.module_to_load).
All of this allowed for importlib.abc.InspectLoader.load_module() to
be implemented. At this point you can now implement a loader with
nothing more than get_code() (which only requires get_source();
package support requires is_package()). Thanks to init_module_attrs()
the implementation of load_module() is basically a context manager
containing 2 methods calls, a call to exec(), and a return statement.
handle providing (and cleaning up if needed) the module to be loaded.
A future commit will use the context manager in
Lib/importlib/_bootstrap.py and thus why the code is placed there
instead of in Lib/importlib/util.py.
attributes to None.
The long-term goal is for people to be able to rely on these
attributes existing and checking for None to see if they have been
set. Since import itself sets these attributes when a loader does not
the only instances when the attributes are None are from someone
overloading __import__() and not using a loader or someone creating a
module from scratch.
This patch also unifies module initialization. Before you could have
different attributes with default values depending on how the module
object was created. Now the only way to not get the same default set
of attributes is to circumvent initialization by calling
ModuleType.__new__() directly.
the default exception/value when called instead of raising/returning
NotimplementedError/NotImplemented (except where appropriate).
This should allow for the ABCs to act as the bottom/end of the MRO with expected
default results.
As part of this work, also make importlib.abc.Loader.module_repr()
optional instead of an abstractmethod.
First, because the mtime can exceed 4 bytes, make sure to mask it down to 4
bytes before getting its little-endian representation for writing out to a .pyc
file.
Two, cap an rsplit() call to 1 split, else can lead to too many values being
returned for unpacking.
importlib.machinery.FileFinder when the directory has become
unreadable or a file. This brings semantics in line with Python 3.2
import.
Reported and diagnosed by David Pritchard.
fromlist of __import__ propagate.
The problem previously was that if something listed in fromlist didn't
exist then that's okay. The fix for that was too broad in terms of
catching ImportError.
The trick with the solution to this issue is that the proper
refactoring of import thanks to importlib doesn't allow for a way to
distinguish (portably) between an ImportError because finders couldn't
find a loader, or a loader raised the exception. In Python 3.4 the
hope is to introduce a new exception (e.g. ModuleNotFound) to make it
clean to differentiate why ImportError was raised.
When the fromlist argument is specified for __import__() and the
attribute doesn't already exist, an import is attempted. If that fails
(e.g. module doesn't exist), the ImportError will now be silenced (for
backwards-compatibility). This *does not* affect
``from ... import ...`` statements.
Thanks to Eric Snow for the patch and Simon Feltman for reporting the
regression.