Known limitations of the current implementation:
- documentation changes are incomplete
- there's a reference leak I haven't tracked down yet
The leak is most visible by running:
./python -m test -R3:3 test_importlib
However, you can also see it by running:
./python -X showrefcount
Importing the array or _testmultiphase modules, and
then deleting them from both sys.modules and the local
namespace shows significant increases in the total
number of active references each cycle. By contrast,
with _testcapi (which continues to use single-phase
initialisation) the global refcounts stabilise after
a couple of cycles.
Replaces the PyList_GET_ITEM and PyList_SET_ITEM macros with normal array
accesses. Replace the siftup unpredicatable branch with arithmetic.
Replace the rc == -1 tests with rc < 0. Gives nicer looking assembly
with both Clang and GCC-4.9. Also gives a small performance both for both.
Add also a new _PyTime_AsMicroseconds() function.
threading.TIMEOUT_MAX is now be smaller: only 292 years instead of 292,271
years on 64-bit system for example. Sorry, your threads will hang a *little
bit* shorter. Call me if you want to ensure that your locks wait longer, I can
share some tricks with you.
* _PyTime_AsTimeval() now ensures that tv_usec is always positive
* _PyTime_AsTimespec() now ensures that tv_nsec is always positive
* _PyTime_AsTimeval() now returns an integer on overflow instead of raising an
exception
* Rename _PyTime_FromObject() to _PyTime_FromSecondsObject()
* Add _PyTime_AsNanosecondsObject() and _testcapi.pytime_fromsecondsobject()
* Add unit tests
In practice, _PyTime_t is a number of nanoseconds. Its C type is a 64-bit
signed number. It's integer value is in the range [-2^63; 2^63-1]. In seconds,
the range is around [-292 years; +292 years]. In term of Epoch timestamp
(1970-01-01), it can store a date between 1677-09-21 and 2262-04-11.
The API has a resolution of 1 nanosecond and use integer number. With a
resolution on 1 nanosecond, 64-bit IEEE 754 floating point numbers loose
precision after 194 days. It's not the case with this API. The drawback is
overflow for values outside [-2^63; 2^63-1], but these values are unlikely for
most Python modules, except of the datetime module.
New functions:
- _PyTime_GetMonotonicClock()
- _PyTime_FromObject()
- _PyTime_AsMilliseconds()
- _PyTime_AsTimeval()
This change uses these new functions in time.sleep() to avoid rounding issues.
The new API will be extended step by step, and the old API will be removed step
by step. Currently, some code is duplicated just to be able to move
incrementally, instead of pushing a large change at once.
I expected more users of _Py_wstat(), but in practice it's only used by
Modules/getpath.c. Move the function because it's not needed on Windows.
Windows uses PC/getpathp.c which uses the Win32 API (ex: GetFileAttributesW())
not the POSIX API.
which returned an invalid result (result+error or no result without error) in
the exception message.
Add also unit test to check that the exception contains the name of the
function.
Special case: the final _PyEval_EvalFrameEx() check doesn't mention the
function since it didn't execute a single function but a whole frame.
interrupted by a signal
Add a new _PyTime_AddDouble() function and remove _PyTime_ADD_SECONDS() macro.
The _PyTime_ADD_SECONDS only supported an integer number of seconds, the
_PyTime_AddDouble() has subsecond resolution.
EINTR error and special cases for Windows.
These functions now truncate the length to PY_SSIZE_T_MAX to have a portable
and reliable behaviour. For example, read() result is undefined if counter is
greater than PY_SSIZE_T_MAX on Linux.
* _Py_open() now raises exceptions on error. If open() fails, it raises an
OSError with the filename.
* _Py_open() now releases the GIL while calling open()
* Add _Py_open_noraise() when _Py_open() cannot be used because the GIL is not
held
Disable completly pyatomic.h on C++, because <stdatomic.h> is not compatible with C++.
<pyatomic.h> is only needed by the optimized PyThreadState_GET() macro in
pystate.h. Instead, declare PyThreadState_GET() as an alias to
PyThreadState_Get(), as done for limited API.
raise a SystemError if a function returns a result and raises an exception.
The SystemError is chained to the previous exception.
Refactor also PyObject_Call() and PyCFunction_Call() to make them more readable.
Remove some checks which became useless (duplicate checks).
Change reviewed by Serhiy Storchaka.
Declarations of Windows-specific auxilary functions need Windows types
from windows.h. Instead of including windows.h in Python.h and making
it available to all Windows users, it is simpler and safer just move
declarations to the single file that needs them.
- Move all Py_LIMITED_API exclusions together under one #ifndef
- Group PyAPI_FUNC functions and PyAPI_DATA together.
- Bring related comments together and put them in the appropriate section.